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ABSTRACT

We collected a massive and heterogeneous

dataset of 20 255 gene expression profiles (GEPs)

from a variety of human samples and experimental

conditions, as well as 8895 GEPs from mouse

samples. We developed a mutual information (MI)

reverse-engineering approach to quantify the

extent to which the mRNA levels of two genes are

related to each other across the dataset. The result-

ing networks consist of 4 817 629 connections

among 20255 transcripts in human and 14 461095

connections among 45101 transcripts in mouse,

with a inter-species conservation of 12%. The

inferred connections were compared against

known interactions to assess their biological signifi-

cance. We experimentally validated a subset of not

previously described protein–protein interactions.

We discovered co-expressed modules within the

networks, consisting of genes strongly connected

to each other, which carry out specific biological

functions, and tend to be in physical proximity at

the chromatin level in the nucleus. We show that

the network can be used to predict the biological

function and subcellular localization of a protein,

and to elucidate the function of a disease gene.

We experimentally verified that granulin precursor

(GRN) gene, whose mutations cause frontotemporal

lobar degeneration, is involved in lysosome

function. We have developed an online tool to

explore the human and mouse gene networks.

INTRODUCTION

Tens of thousands of protein–protein, protein–DNA and
protein–RNA interactions have been experimentally
identified in mammalian organisms (1,2). However, they
constitute only a small part of the cell regulatory network.
Efforts have been made to infer transcriptional gene
networks directly from gene expression profiles, using a
variety of ‘reverse-engineering’ algorithms (3–9). Among
the plethora of different approaches to reverse engineer-
ing, only information-theoretic approaches are applicable
at the genome scale (10). In these approaches, the network
among genes is reconstructed by considering pairs of genes
and checking whether the two genes in each pair are sig-
nificantly co-regulated across the experimental dataset by
mutual information (MI), a probabilistic measure of re-
latedness (11). Significant co-regulations among genes are
then represented as a network, by connecting two genes
with an edge if their pairwise MI is significant.
Since MI measures statistical dependencies between two

variables, an edge in the network implies a coordinated
response between the two connected genes, but does not
necessarily imply causality. Hence, a gene–gene ‘connec-
tion’ is not necessarily a direct physical interaction
between the protein products of the two genes, or a tran-
scription factor (TF)–target gene interaction, but can also
imply a functional, but indirect, regulation, through one
or more intermediaries.
In order to eliminate indirect interactions, the final

network is usually pruned by removing edges which
have a higher probability of representing indirect relation-
ships, using a variety of techniques (4,5). The pruned
network can then be used to discover TF–target-gene
interactions (4,5).
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Another popular way to measure relatedness between
two genes is correlation that measures co-expression
between two genes. A limitation of correlation is its
ability to measure only linear relationships between
genes (i.e. gene A increases/decreases linearly with
gene B). However, it fails when relationships are more
complex (saturation, hysteresys, etc.), whereas MI is not
affected at all by non-linearities (12).
Reverse engineering becomes much more powerful as

the number of gene expression profiles (GEPs) used to
infer the network increases (10,13). However, the require-
ment of using homogeneous GEPs (i.e. from a specific cell
type, tissue or condition) typically limits their number to
the order of hundreds. There has been a multitude of
approaches towards integrating heterogeneous gene ex-
pression profiles from multiple experiments (14–16). Two
main strategies can be recognized: (i) a ‘pluribus unum’
approach, where the different GEPs within each experi-
ment are processed as if they were part of a single massive
experiment. The disadvantage of this approach is that nor-
malization of large heterogeneous datasets forces expres-
sion values to be comparable across conditions even if
they are not; moreover, only around half of expression
datasets in public repositories contain unprocessed data
(e.g. Affymetrix CEL file), which are indeed needed for
normalization; (ii) a ‘divide and conquer’ approach,
where each experiment is used independently to compute
a measure of co-regulation among genes of interest. This
measure is then averaged out across the different experi-
ments. The disadvantages are 2-fold: a loss of informa-
tion, since experiments may differ considerably in the
number of expression profiles, thus leading to discard
some experiments due the paucity of samples; and a loss
in the precision of the computed ‘co-regulation’ measure,
due to the fragmentation of the dataset.
An example of the ‘pluribus unum’ approach can be

found in Ref. (14), where a collection of 5372 microarrays
from different tissues and conditions was simultaneously
normalized together using standard procedures. This is
considered a significant achievement due to the large
number of samples analysed. The results were used to
relate genes to the conditions in which they are over- or
under-expressed. Examples of the ‘divide and conquer’
approach, are found in Refs (15,16) where the Pearson
correlation coefficient is measured independently in each
experiment for each gene. In the study by Lukk et al. (15),
a final list of genes co-expressed with a gene of interest is
obtained via rank aggregation methods, whereas in
Ref. (16) an averaged correlation value across experiments
is attributed to each gene pair.
Our starting hypothesis was that, despite the extreme

heterogeneity of gene expression profiles coming from
different cell types, tissues and conditions, it is indeed
possible to infer a meaningful ‘consensus’ gene network
from tens of thousands of GEPs, which can then be used
to investigate cell transcriptome organization and gene
function. Towards this end, we collected a massive and
heterogeneous dataset of >20 000 GEPs measured in
human samples from almost 600 different experiments,
as well as a similar number of GEPs in mouse samples.
About a third of these, contained only normalized GEPs

that cannot be directly compared across different
experiments.

To infer a gene network from this massive dataset, we
needed to overcome current limitations of multi-
experiment intergration approaches and of MI-based
reverse-engineering algorithms, which have been applied
at most to hundreds of GEPs from the same tissue, or cell
type, and which require normalized GEPs across the
whole dataset. We, therefore, developed and applied a
simple but powerful approach to recover a comprehensive
gene network among most of the known genes from this
massive dataset. We decided not to apply a ‘network
pruning’ step, since we wanted to keep as many meaning-
ful gene–gene connections as possible, even if these are not
direct TF–target gene interactions. Indeed, we show that
the resulting network is a powerful resource that can be
used to discover new protein–protein interactions, to gain
insight into the cell transcriptome organization, and to
make hypothesis on the biological function of a gene.

We have developed an online tool (http://netview.tigem
.it) for querying and exploring the gene network, for both
human and mouse species.

MATERIALS AND METHODS

Gene expression profile dataset, gene network inference
and computation of pairwise MI

We collected, from ArrayExpress (17), 20 255 GEPs (591
experiments) in human samples measured with the
Affymetrix HG-U133A microarray, and 8895 GEPs (614
experiments) in mouse samples, with the Affymetrix
Mouse430A_2 (Supplementary Table S1). Normalized
GEPs within each experiment were retrieved from the
database. The two mammalian dataset were analysed sep-
arately. The expression values of all GEPs within an
experiment were discretized into a predetermined
number n of bins (n=3), with equal number of values
in each bin. The bins are determined using the n quantiles
of the normalized expression values as cut points. Each
expression value is then replaced by an integer value cor-
responding to the bin it falls into (see also Supplementary
Data).

In this way, we could use all the available experiments
even when unprocessed data were not available in the
public repository (�30% of the experiments have no un-
processed data). Moreover, this simple technique works
even when different normalization algorithms are used.
The discretized values of gene expression are used to
compute a ‘co-occurency’ matrix between each pair of
probe-sets in each experiment, which is then used to
estimate the joint probability distribution across the
experiments.

Specifically, we considered two discrete random vari-
ables I and J assuming values in the set {1, 2, 3} describing
the discretized expression values of two probe-sets I and J.
In this context, MI can be defined as:

MIIJ ¼
X3

i¼1

X3

j¼1

�ij log
�ij

�iþ�þj

; ð1Þ

8678 Nucleic Acids Research, 2011, Vol. 39, No. 20

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
9
/2

0
/8

6
7
7
/2

4
0
9
5
0
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://netview.tigem.it
http://netview.tigem.it
http://nar.oxfordjournals.org/cgi/content/full/gkr593/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr593/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr593/DC1


where pij represents the joint probability P(I= i, J= j)
with (i, j)2 {1, 2, 3}� {1, 2, 3} and pi+=

P
jpij and

p+j=
P

ipij are, respectively, their marginal probabilities
P(I= i) and P(J= j).

In order to estimate the joint probability pij, we used a
simple frequentist approach: let nkij be the counts of the
outcomes (I= i, J= j) across the nk GEPs of experiment
k, then the frequency �̂ij can be estimated jointly from the
all the K experiments:

�̂ij ¼

PK
k¼1 n

k
ijPK

k¼1 n
k
¼

nij

n
ð2Þ

This leads to a point estimate of MI equal to

cMIIJ ¼
X3

i¼1

X3

j¼1

nij

n
log

nijn

niþnþj

: ð3Þ

The computational complexity of our algorithm is
o(N2�n), where N is the number of probe-sets and n is
the total number of GEPs.

The choice of a different number of discretization bins
does not considerably affects the results (Supplementary
Data and Supplementary Figure S4). The MI significant
threshold was obtained by fitting a Gamma distribution to
the values of the MI across all the probes’ pairs (18) and
selecting only MI with a P< 0.01.

Yeast two hybrid assays

The Yeast two Hybrid (Y2H) kit ‘ProQuest Two-Hybrid
System’ (Invitrogen) included the Saccharomyces
cerevisiae MAV 203 strain (MATa, leu2-3,112, trp1-901,
his3�200, ade2-101, gal4�, gal80�, SPAL10::URA3,
GAL1::lacZ, HIS3UAS GAL1::HIS3@LYS2, can1R,
cyh2R), the bait vector pDEST32 and the prey vector
pDEST22. The ‘Ultimate ORF’ (Invitrogen) of the genes
of interest were used to generate prey and bait plasmids
using the GateWay technology and protein–protein inter-
action assays were performed according to the manufac-
turer the instructions, along with the appropriate positive
and negative control (Supplementary Table S5 and
Supplementary Data).

Cell culture and transfection

For GRN functional assays, HeLa cells were cultured in
DMEM supplemented with 10% FBS and treated for 96 h
in the presence of sucrose to a final concentration of
100mM with daily changes of medium. Cells were col-
lected and analysed by immunofluorescence and
RealTime PCR (Supplementary Data). For TFEB or
GRN over-expression 500 000 HeLa cells were transfected
with 4 mg of DNA expressing the human TFEB or GRN
using lipofectamine transfection reagent (Invitrogen), and
collected after 48 h (Supplementary Data).

Electron microscopy

GRN or EGFP over-expressing HeLa cells were fixed in
1% glutaraldehyde in 0.2M HEPES buffer and further
incubated in uranyl acetate and in OsO4. After dehydra-
tion through a graded series of ethanol, the cells were

cleared in propylene oxide, embedded in the Epoxy
medium (Epon 812) and polymerized at 60�C for 72 h.
From each sample, thin sections were cut with a Leica
EM UC6 ultramicrotome. Electron microscopic images
were acquired from thin sections using an FEI Tecnai-12
electron microscope equipped with an ULTRA VIEW
CCD digital camera (FEI, Einhoven, The Netherlands).
Quantification of the lysosome-like organelle dimensions
was performed using the AnalySIS software (Soft Imaging
Systems GmbH, Munster, Germany).

RESULTS

We collected 20255 GEPs from 591 different experiments
(Supplementary Table S1) performed in a variety of
human tissues, cell types and conditions from public
microarray repositories. A total of 22 283 different tran-
scripts were measured, corresponding to the probe sets in
the Affymetrix HG-U133A microarray. Our aim was to
reverse engineer a consensus transcriptional gene network
among the 22 283 transcripts from these multiple experi-
ments. However, only �70% of these experiments con-
tained unprocessed data (CEL file), whereas the
remaining 30% contained just normalized GEPs.
We could not apply ‘off-the-shelf’ (Supplementary

Data) state-of-the-art approaches to reverse engineering
(5,19), because gene expression profiles are not compar-
able to each other across experiments in different tissues,
cell types or conditions. For example, one of the most
successful reverse-engineering algorithms based on MI
[ARACNE (5)] is limited by a considerable loss of preci-
sion, if the ‘divide and conquer’ approach to multiple ex-
periments is used (Supplementary Data).
To overcome these problems, we developed a simple MI

reverse-engineering approach, which works in two steps:
(i) by discretizing normalized gene expression values
within each experiment and computing for each pair of
genes a ‘co-occurrency’ matrix, which summarizes the co-
herence in gene expression changes across the samples in
the same experiment; (ii) by estimating MI from the whole
dataset at once, summing up the co-occurrency matrices
across all the experiments, thus avoiding loss in precision
due to dataset fragmentation (Supplementary Data). We
then generated a network by connecting two genes in the
network, if the associated MI was greater than a signifi-
cance threshold (P< 0.01) obtained by fitting a Gamma
distribution to the MI values, which has been shown to be
a good approximation under the null hypothesis of statis-
tical independence (18).
Our approach can in principle be applied also to GEPs

obtained from RNA-seq technology, but at the moment
their number is much smaller than the GEPs obtained
from microarrays.
The inferred network consists of 4 817 629 connections

among 22 283 transcripts (probe-set on the microarray).
To our knowledge, this is the largest and most compre-
hensive dataset ever used to reverse engineer a transcrip-
tional gene network.

Nucleic Acids Research, 2011, Vol. 39, No. 20 8679
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Connections in the gene network are biologically relevant

To validate at least a subset of predictions, we generated a
reference human interactome, Golden Standard (GoS),
consisting of 105 588 experimentally verified interactions
including protein–protein (2), TF–target gene and meta-
bolic interactions (1).
Since the GoS interactome is at the gene/protein level,

whereas the network we inferred is at the ‘probe-set’ level,
we first needed to transform probe-sets to the correspond-
ing genes.
In order to reduce as much as possible cross-

hybridization issues known to affect microarray technol-
ogy (20), we first removed 18.8% (4187) of the probe-sets
that could not be reliably mapped to the coding genome,
or that mapped to multiple genes (20).
After this step, only probes associated to a single gene

were retained. However, some genes can be associated to
more than one probe-set. We verified that 35% (4200/
11978) of the genes represented on the microarray are
indeed associated to multiple probe-sets (Supplementary
Table S2). We checked for the consistency between
probe-sets associated to the same gene by verifying that
these probe-sets were indeed connected in the probe-set
level network. We found that 69% (2884/4200) of the
genes mapped by multiple probes are consistent
(Supplementary Table S3). Out of the remaining 31% of
the genes, 14% (596/4200) are associated to probe-sets
that target alternative transcripts of the same gene,
which may not be well co-regulated, and hence were
retained in the analyis. The remaining 1243 of the
probe-sets corresponding to 540 genes were removed
from further analysis.
We then generated a gene-level network from the

probe-set level network by connecting two genes with an
edge, if the corresponding probe-sets were connected in
the probe-set level network. When one, or both genes
were associated to more than one probe-set, we required
that at least one probe-set pair was connected in the
probe-set level network, and assigned as the MI value of
the gene pair, the maximum MI among the corresponding
probe-set pairs (21).
Supplementary Figure S1a shows the percentage of

inferred connections that were confirmed by the GoS
interactome. The network reaches a maximum of 90%
of correct predictions, with an average precision of 32%.
We estimated the percentage of correct connections, had
these been randomly guessed, to be equal to 0.0028%, as
described in Ref. (10). The GoS interactome includes only
a subset of the interactions occurring in a cell, because
only a small subset of these have been experimentally
verified. Moreover, a high MI does not necessarily imply
physical interactions. Nevertheless, the GoS interactome
provides evidence of the biological significance of the
inferred connections.
For comparison, Supplementary Figure S1a also shows

the percentage of correctly predicted connections by
CoexpresDB (16), a database of human co-expressed
genes measured using a classic Pearson Correlation
Coefficient (PCC) from multiple experiments using the
‘divide and conquer’ strategy.

Connections tend to be conserved across species

To understand whether, and to what extent, connections
among genes are conserved across human and mouse
species, we collected 8895 gene expression profiles from
614 experiments in mouse, each measuring 45 101 tran-
scripts, corresponding to the probe-sets in the
Affymetrix Mouse430A_2 microarray. We then applied
our approach to this massive dataset to reconstruct the
network. Out of all the possible 1 017 027 550 gene–gene
connections, only 14 461 095 connections among 45 101
transcripts were deemed significant (P< 0.01). The differ-
ence in the number of inferred connections between the
human and mouse network is due to the different number
of probe sets between the two microarray models
analysed.

In order to compare the two networks, we first removed
from the human network those genes without an ortholog
in mouse, resulting in a ‘reduced’ network of 11 318 genes.
We then found that 218 700 connections (12%) were
conserved in mouse (Supplementary Figure S1b). This per-
centage is in line with previous studies involving a limited
number of known protein–protein or protein–DNA inter-
actions. In yeast, it has been reported that between 10%
(22) and 30% (23) of protein–protein interactions occurring
during the cell cycle of S. pombe (fission yeast) and
S. cerevisiae (budding yeast) are conserved; another
cross-species (fly and yeast) protein interaction study (24)
resulted in a ratio of conservation ranging from 6% to
15%; in Ref. (25), the authors report a database of
protein–protein interactions occurring among transcription
factors in human and mouse, where the percentage of
effective conserved interactions is �16% (the estimated
range is 34–64% when taking into account the false
positive rate of the experimental technique). A recent
genome-wide analysis (26) integrating heterogeneous sets
of experimental data (including 338 expression profiles in
human and 1048 in mouse) showed a conservation of 15%
of interactions between the two mammalian species.

Prediction of new protein–protein interactions

We investigated the identity of the top one thousand con-
nections with the highest MI in the network (Figure 1,
Supplementary Figure S2, and Supplementary Table S4).
Forty per cent of these connections, involving a total of
302 genes, were confirmed by the GoS interactome. An
additional 13% of the connections were predicted
among genes in the same gene-family, which, therefore,
may well be functionally related, although not physically
interacting.

In order to test the predictive ability of the network, we
focused on the subnetwork (b) in Figure 1 consisting of 12
genes most of which (CENPF, NUSAP1, KIF2C, BUB1B,
ASPM, ZWINT and CCNB2) involved in mitotic spindle
checkpoint, chromosome motility and mitotic progression
(27–30).

According to the GoS interactome, three protein–
protein interactions were known to occur among the
genes in subnetwork (b), therefore we decided to verify
whether the predicted connections, could be yet undiscov-
ered protein–protein interactions. We selected only the

8680 Nucleic Acids Research, 2011, Vol. 39, No. 20
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subset of seven genes (NUSAP1, KIF2C, BUB1B, ASPM,
ZWINT, KIAA0101 and RRM2), which according to our
network formed a tight cluster of genes all connected to
each other. We performed a series of yeast two hybrid
(Y2H) assays to test a total of 21 connections (i.e. all
the possible interactions among seven proteins).
According to the Y2H assay, 20 of these were positive.
Since Y2H are known to be prone to false positive detec-
tions, we also experimentally estimated the precision (true
positives over true positives plus false positives) of the
Y2H assay by using appropriate positive and negative
controls (Supplementary Data). The estimated precision
resulted to be equal to 77%, hence, at least 15 (=77%
of 20) of the experimentally identified interactions should
be true positive predictions. This means that we can
predict new protein–protein interactions with a precision
of 75% (15 out of 21, Supplementary Table S5).

The modular structure of the network

The structure of the network has a typical exponential
degree distribution (31,32) consisting of a large number
of genes with very few connections, and very few genes
with a large number of connections, termed hubs.

We observed that, as the number of connections of a
gene increases, so does its average expression level
(Supplementary Figure S3a,b and Supplementary Data);
in contrast, the intrinsic protein disorder (33) of its
protein product significantly decreases (P=0.009)
(Supplementary Figure S3c,d and Supplementary Data).
Protein disorder, defined as the length of the unstructured
part of a protein, is an important determinant of gene
dosage sensitivity (34).
A cell is able to regulate its complex behaviour thanks

to sets of genes that perform different but coordinated
functions. We asked whether we could find such function-
al modules within the network, which could reveal
how the cell transcriptome is organized. We searched the
network for modules, which are defined as ‘communities’
and ‘rich-clubs’ in network theory. A community is a
group of genes highly inter-connected to each other, but
with few connections to genes outside the group. A
‘rich-club’ can be defined as a ‘community of communities’,
i.e. a group of closely inter-connected communities.
In order to identify communities, we represented the

network as a matrix, as shown in Figure 2. The matrix
was obtained by defining each entry mij as the value of the

Figure 1. Subnetworks obtained by collecting the top 1000 connections with the highest MI within the network. Subnetwork (a) contains genes that
codify for the ‘ribosomal protein complex’, (‘Translation’, P< 1.0�113). Subnetwork (b) is enriched for genes involved in the ‘spindle checkpoint’
(‘Nuclear division’ P< 3.1�7), for clarity only a subset of interactions are shown. Subnetwork (c) is enriched for ‘metallothionein’ genes, a family of
low molecular weight, heavy metal binding proteins. Subnetwork (d) contains major histocompatibility complex proteins (Antigen processing and
presentation, P< 7.5�16). Pairs of genes are connected if their MI (probabilistic measure of relatedness) confirms a significant co-regulation.

Nucleic Acids Research, 2011, Vol. 39, No. 20 8681
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MI between gene i (in the i-th row) and gene j (in the j-th
column). We observed that genes lying within the same
chromosome (squares in Figure 2a) tend to be connected
to each other more often than what would be expected by
chance. We then applied a hierarchical clustering algo-
rithm to the matrix representing the network, and thus
identified 393 communities with more than 4 genes
(Supplementary Table S6 and Supplementary Data).
Figure 2 shows the matrix representing the network

before (a) and after (b) the hierarchical clustering proced-
ure. Communities appear as dark squares, with genes be-
longing to the same community grouped together, giving a
striking check-board pattern.
We assessed that 36% of these communities are

enriched for a specific biological function by Gene
Ontology analysis (Supplementary Table S7). This per-
centage increases up to 47%, when considering only
communities composed by >10 genes. We also found
that 6 out of 393 communities of the network are signifi-
cantly enriched for disease genes (P< 0.05, Gene Set
Enrichment Analysis, in Supplementary Data): commu-
nity number 1, 11, 22, 40, 54 and 96. The most significant
community, number 40, is composed by genes whose
protein products localize to the ‘lysosome’, and is highly
enriched for disease-genes involved in lysosomal storage
disorders. Other examples include community 11, whose
genes are related to cell adhesion and extracellular matrix
organization, and include disease-genes causing develop-
mental or cardiovascular defects; community 22, related
to the immune system and including genes causing related
disorders; community 54, composed by genes involved in

oxygen transport and enriched for genes involved in
haematological disorders. These ‘disease communities’
could contain other yet unknown disease-related genes,
and could be helpful in identifying candidate genes in
disease-related loci.

We observed that communities interact with each other;
for example community 1, enriched for transmembrane
receptor activity (P=2.01� 10�35) interacts with commu-
nity 3, enriched for ‘extracellular region’
(P=7.33� 10�06, Figure 2b, arrow), but not to commu-
nity 2 involved in ‘RNA processing’.

In order to better elucidate community function and
interactions among them, we defined the interaction
strength (IS) between two communities as the number of
connections occurring among genes belonging to the two
different communities, divided by the expected number of
connections. The IS is equal to 0 if no connections exist
among genes belonging to the two different communities.
We computed the IS between all the pairs of 393
communities for a total of 77 028. Only 5074 pairs of
communities had an IS >0. Similarly to the gene-wise
network, also the community-wise network can be repre-
sented as a matrix. We can, therefore, apply a clustering
procedure to group the communities into sets of highly
interconnected communities (‘rich-clubs’) (35)
(Supplementary Data).

We thus obtained 58 rich-clubs. Each rich-club has a
representative community termed ‘exemplar’, to which
all of the other communities in the rich-club are
connected. The community-wise network is shown in
Figure 3.

Figure 2. Modular structure of the network. Adjacency matrix of the network before (a) and after (b) the hierarchical clustering procedure used to
identify communities. Each dot represents a connection among two genes, that is a matrix entry, whose MI is greater than the significance threshold.
(a) Genes are sorted according to their chromosomal location. Numbers on the x and y axes indicate chromosomes. (b) Genes are sorted according
the community they belong to. Square dimensions are proportional to the number of genes in each community. The inset shows an enlargement of an
area of the adjacency matrix where single dots are visible.
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Communities in our network can be considered as func-
tional modules consisting of genes whose expression is
coordinated, and that carry out specific biological func-
tions. We asked whether these communities could have a
‘physical counterpart’ in the cell. We investigated whether
genes that are connected to each other according to our
network, were also physically close to each other at the
chromatin level, in the cell nucleus. We used a recent com-
prehensive 3D topological mapping of chromosomal loci
physical interactions using an innovative ‘Hi-C’ chromatin
capture technology (36).

This map of physical interactions can be represented as
a matrix (Mp), where each entry mij reports the probability
of the i-th Mb of the genome to be in physical contact with
the j-th Mb, according to ‘Hi-C’ experimental results.
Figure 4b is a graphical representation of this map for
chromosome 19.

In order to compare our network with the physical
contact probability map, we generated a ‘connection
tendency matrix’ (Mc) at 1 Mb resolution from the
network. Each entry mij of this matrix is simply the
number of connections occurring among genes found
within the i-th and j-th Mb of the genome, divided by
the expected number of connections. Figure 4a is a graph-
ical representation of the network at 1Mb resolution,
where red color represents two chromosomal regions
which contain more connections than expected among
the genes they harbour.

In both matrices (Figure 4a and b), there is a clear ‘plaid
pattern’ highlighting chromosomal regions whose genes
are strongly connected to each other (red in Figure 4a)
and regions that are physically close to each other at the
chromatin level (red in Figure 4b). These regions have a
striking overlap (correlation=0.4, P=7.3� 10�123) espe-
cially the p-arm of chromosome 19 (upper left square in
both matrices), revealing that genes that are physically
close to each other at the chromatin level tend to be
‘co-regulated’ (i.e. have a significant MI) and vice versa.
By extending this analysis to all the chromosomes, we

found a significant overlap (correlation significance:
P< 0.01) for all but three chromosomes (9, 20 and 21).
The significance is also present at the whole genome level,
when considering also inter-chromosomal interactions.

Elucidating gene function

We exploited the information embedded in the network to
identify gene function, or protein subcellular localization,
via a guilty-by-association analysis. It consists in assigning
a function to a gene (or a localization to the encoded
protein) by checking whether there is a shared function
among the genes connected to it (or a shared localization
of their protein products). In what follows, we termed
‘gene neighbours’ the set of genes connected to a gene of
interest.

Figure 3. Community-wise network. Each node is a community. A color and a number identify each rich-club (i.e. a group of highly interconnected
communities). The width of each edge reflects the IS between communities. ‘Exemplars’ are indicated by triangles. Examples of rich clubs:
(a) communities of genes involved in ‘intracellular trafficking’; (b) communities involved in the ‘extracellular matrix maintenance, and cell
mobility’; (c) communities involved in ‘immune response’; (d) communities of genes involved in house-keeping functions: ‘gene expression’
(rich-club 197), ‘translation’ (rich-club 246), ‘RNA processing’ (rich-club 2) and ‘cell cycle’ (rich-club 7).
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We performed a Gene Ontology Enrichment Analysis
(GOEA) on the set of gene neighbours for each gene
(http://netview.tigem.it). We then selected, as a test set,
18 141 transcripts for which the function/localization was
known according to their Gene Ontology classification.
The percentage of correct predictions for each of the
three GO classes (Biological Process, Molecular
Function and Cellular Localization) ranged from 59%
to 71%, respectively.
We next asked whether the guilty-by-association

approach could be helpful in generating hypotheses on
the function of genes involved in genetic diseases. We
used our approach to identify human disease genes that
may have a yet undiscovered role in lysosome function
and organization.
To this end, we ranked, by their P-value from the

GOEA, all the genes predicted to be lysosomal, or
associated with lysosome organization, by our guilty-
by-association analysis (http://netview.tigem.it and
Supplementary Table S8). The top ranked genes included
both lysosomal enzymes and other genes involved in lyso-
somal function. Among these, at position one, NPC2
(Niemann-Pick disease, type C2) disease-gene, is known
to be an intralysosomal gene (37); at position two, we
found another disease-gene, GRN. Both genes are also
members of community 40, which is enriched both in
disease genes and in lysosomal genes.
Despite extensive studies, the role of GRN is far from

being understood and it has not been directly linked to
lysosomal function. GRN is a highly conserved gene
bearing multiple copies of the cysteine-rich granulin
motifs. Proteolytic cleavage of the precursor protein by
extracellular proteases, gives rise to smaller peptide frag-
ments termed granulins which have been linked to a range
of biological functions including ‘cell division’, ‘survival’,
and ‘migration’ (38). Mutations in GRN cause

frontotemporal lobar degeneration with ubiquitin-
immunoreactive neuronal inclusions (FTLD-U) (39,40).
Of note, mutations in NPC2 results in a wide spectrum
of clinical phenotypes including a form of frontal lobe
atrophy (41).

To investigate whether GRN was indeed related to lyso-
somal function, we first evaluated GRN expression levels
following sucrose treatment, a known inducer of lyso-
somal biogenesis (42,43). Following sucrose treatment,
we observed a 2-fold increase over baseline in GRN
mRNA levels, along with a 3-fold increase in Cathepsin
D (CTSD), a lysosomal enzyme used as positive control
(Figure 5a). We also found an increased GRN
immunostaining using a specific anti-GRN antibody in
sucrose-treated cells (data not shown).

The transcription factor EB (TFEB) has been recently
identified as the transcription factor controlling most of
the known lysosomal genes via direct binding to their
proximal promoter (44), and therefore we next asked
whether GRN is regulated by this transcription factor.
We first identified, by bioinformatics analysis, two
TFEB binding sites upstream of the GRN coding
sequence (Supplementary Data). We then over-expressed
TFEB in human cell lines and detected a 3-fold increase in
GRN mRNA levels, along with a 3-fold increase in CTSD,
a known target of TFEB, used as a positive control
(Figure 5b).

We next over-expressed GRN in HeLa cells to investi-
gate if this had any effect on lysosomes; as shown in
Figure 5c, the LAMP1 and LAMP2 signal significantly
increased when compared to a mock control, or
over-expression of EGFP, as assessed by immunofluores-
cence (Supplementary Data). Electron microscopy in
HeLa overexpressing GRN showed that the increase in
LAMP1 and LAMP2 is likely due to an increase in the
size of lysosomes but not in their number (Figure 6).

Figure 4. Genes that are co-regulated tend to be physically close at the 3D chromatin level. (a) Connection tendency matrix of chromosome 19. Grey
stripes highlight regions with no probes designed for the microarray model HG-U133A. A red color indicates two different 1 Mb loci whose
genes are strongly connected to each other. (b) Physical contact matrix of chromosome 19. Grey stripes highlights chromosomal regions where
centromeres are located, plus unalignable regions. A red color indicates two different 1Mb loci that are physically close to each at the chromatin
level. Physically close regions may also contain genes that are not co-expressed and vice versa: region (I) in (a) has an opposite tendency with respect
to the corresponding region (I) in (b). This means that regions that are not in physical contact may contain genes that are co-expressed. The opposite
can also be true, for example region (II) shows that loci physically interacting with each other do not necessarily contain genes that are co-expressed.
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The effect of GRN on lysosomes was observed on the
great majority of cells, despite transfection efficiency being
not as extensive. Therefore, we hypothesized that GRN-
transfected cells could secrete a factor inducing lysosome
biogenesis in neighbouring cells. To test this hypothesis,
we collected the medium from HeLa transfected cells
over-expressing GRN and confirmed GRN protein expres-
sion in the medium by western blot analysis (data now
shown). We then used this medium to grow untransfected
wild-type cells. This resulted in a consistent increase
(P< 0.003) in LAMP1 and LAMP2 signal compared to
control as shown in Figure 5c (medium).

DISCUSSION

We inferred a network of co-regulated genes from a
massive gene expression dataset in both human and
mouse species. We showed that, when properly handled,
this massive dataset, yields a powerful resource to identify
both functional and physical interactions among genes,
and to make hypotheses on transcriptome organization
and gene function.
A further advantage of our resource is that it can auto-

matically integrate gene expression measurements per-
formed with different technologies, such as microarrays
and RNA-seq from next-generation sequencing, since

Figure 5. GRN is involved in lysosomal function. (a) GRN and CTSD increase in expression level in HeLa following sucrose treatment, a known
inducer of lysosomes, as measured by realtime qPCR. (b) Expression level of GRN and of CTSD increase in HeLa cells following TFEB
over-expression, a transcription factor known to regulate lysosome biogenesis. (c) Immunofluorescence with antibody anti-LAMP1 and
anti-LAMP2, used as a lysosomal marker, of transfected HeLa cells over-expressing GRN, or EGFP and in HeLa cells grown in medium collected
after GRN, or EGFP over-expression.
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normalization is required only within each experiments
and not across experiments.
Genes that are co-regulated in human tend to be

co-regulated in mouse more than what is expected by
chance; however, this is not the general trend, since only
12% of connections are conserved. Our observation adds
weight to the hypothesis that regulation of gene expression
may be different between species, even if they share a
similar proteome.
The gene network structure is typical of complex

networks with the presence of hub genes with a large
number of connections. Our findings suggest that hub
genes are highly expressed and may have been selected
to be less dosage sensitive, i.e. not pathological when
their expression is increased, as confirmed by their
tendency to have a lower protein disorder.
We identified biologically relevant functional modules

within the network, thus providing a modular view of the
wiring diagram of a cell. Genes connected within function-
al modules in the network tend to have a ‘physical coun-
terpart’ in the 3D conformation of the chromatin. We
observed a striking similarity between genes that appear
to be connected, and, therefore, are co-regulated, and their
physical proximity at the 3D chromatin level. This
suggests that regulation of coordinated gene expression
is ‘hard-wired’ in the physical arrangement of the chroma-
tin within the nucleus.
We have shown how the network can be used to identify

new protein–protein interactions and to investigate the
function of a disease-gene.
Upregulation of GRN by known inducers of lysosomal

biogenesis and function, together with the increase in the
LAMP1 and LAMP2 signal following GRN over-
expression, or treatment with medium from GRN

over-expressing cells, clearly supports a role of GRN in
lysosome biology. This finding is also supported by
previous evidence indicating that GRN colocalizes with
lysosome-associated CD68 antigen in activated macro-
phages and microglia (45) and is overexpressed in the
cerebral cortex of MPSIIIB and MPSI mice (46).
Although GRN may bind the mannose 6-phosphate
receptor (47,48), more recently it was demonstrated that
GRN is endocytosed by sortilin and rapidly delivered to
lysosomes (49). In addition, it has also been shown that
inhibition of vacuolar ATPase increases intracellular and
secreted GRN, which again support a lysosome involve-
ment (50).

The approach we developed has some intrinsic limita-
tions, since the MI measure does not allow to recover
causal relationships between genes, hence we cannot dis-
tinguish direct from indirect regulation. To overcome this
limitation, it should be possible to extend the approach to
infer n-way dependencies, by computing for example con-
ditional MI, in order to eliminate indirect interations.
Another limitation is due to the fact that we used a
variety of tissue and cell types in order to increase the
statistical power of the inference method; however in so
doing, we lost the capability of identifying tissue-specific
(or cell-type specific) co-regulation among genes. Such in-
formation could be retrieved by first dividing the expres-
sion dataset according to the sample of origin, and then
applying a Bayesian framework to determine the probabil-
ity of each connection of occuring in a specific tissue or
cell type.

We have made our resource publicly available as an
online tool (http://netview.tigem.it). The gene network
can be easily searched for a gene of interest, queried
with a Gene Ontology term to detect all the genes with

Figure 6. Electron microscopy of HeLa cells overexpressing GRN reveals increase in lysosomes size. Electron microscopy of Hela cells after GRN, or
EGFP over-expression. Lysosomes (indicated in EM images by arrows) appear to be larger in cells that overexpress GRN. Morphometric analysis of
lysosome diameter (meanSD; n=0 cells) confirms the increase in the lysosome size in GRN-expressing cells.

8686 Nucleic Acids Research, 2011, Vol. 39, No. 20

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
9
/2

0
/8

6
7
7
/2

4
0
9
5
0
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://netview.tigem.it


that predicted function, or searched with a list of genes to
identify one or more common regulators, i.e. genes that
are significantly co-regulated with most of the genes in the
query list.

Additional studies can be easily conducted using our
online resource. For example, we predicted for each gene
its function. Specifically, it is possible to search for a
function of interest, or a cellular compartment and
identify the TFs predicted to be involved in that
function, and thus possibly acting as master regulators.
This analysis could help in hyoptheses generation, which
should then be followed by ad hoc experimental
investigation.

We believe our resource will provide a valuable tool to
the research community.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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