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Transcriptional landscape of repetitive elements
in normal and cancer human cells
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Abstract

Background: Repetitive elements comprise at least 55% of the human genome with more recent estimates as

high as two-thirds. Most of these elements are retrotransposons, DNA sequences that can insert copies of

themselves into new genomic locations by a “copy and paste” mechanism. These mobile genetic elements play

important roles in shaping genomes during evolution, and have been implicated in the etiology of many human

diseases. Despite their abundance and diversity, few studies investigated the regulation of endogenous

retrotransposons at the genome-wide scale, primarily because of the technical difficulties of uniquely mapping

high-throughput sequencing reads to repetitive DNA.

Results: Here we develop a new computational method called RepEnrich to study genome-wide transcriptional

regulation of repetitive elements. We show that many of the Long Terminal Repeat retrotransposons in humans are

transcriptionally active in a cell line-specific manner. Cancer cell lines display increased RNA Polymerase II binding

to retrotransposons than cell lines derived from normal tissue. Consistent with increased transcriptional activity of

retrotransposons in cancer cells we found significantly higher levels of L1 retrotransposon RNA expression in

prostate tumors compared to normal-matched controls.

Conclusions: Our results support increased transcription of retrotransposons in transformed cells, which may

explain the somatic retrotransposition events recently reported in several types of cancers.
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RNA-seq, ChIP-seq

Background

The initial sequencing of the human genome revealed

that ~55% of the genome is comprised of repetitive

DNA sequences [1]. More recent computational ap-

proaches indicate the proportion of repetitive elements

in the human genome may be as high as two-thirds [2].

Identified repetitive DNA sequences can be character-

ized using five broad categories. Four minor categories,

accounting for ~10% of genomic DNA, include simple

sequence repeats, segmental duplications, tandem re-

peats and satellite DNA sequences, and processed pseu-

dogenes. The fifth category is transposable elements,

accounting for ~45% of genomic DNA and is primarily

composed of retrotransposons. Retrotransposable ele-

ments (RTEs) are parasitic DNA sequences that can

proliferate by a “copy and paste” mechanism and insert

themselves into new genomic positions. RTEs are classi-

fied into Long Terminal Repeat (LTR) elements, whose

structure and mechanism of retrotransposition resem-

bles that of retroviruses, and non-LTR elements, which

do not contain LTRs, resemble integrated mRNAs, and

have a distinct mechanism of retrotransposition [1]. In

humans only the non-LTR elements are believed to be

capable of retrotransposition, and can be classified as ei-

ther Long Interspersed Nuclear Elements (LINEs) or

Short Interspersed Nuclear Elements (SINEs) [3]. They

are predominantly represented by the L1 and Alu fam-

ilies, respectively. The process of retrotransposition re-

quires the transcription of an mRNA intermediate and

its reverse transcription into cDNA, and can lead to the

disruption of genes by insertional mutagenesis. Retro-

transposition occurs de novo in the germ-line and can
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cause single-gene mutations that result in disease, an ex-

ample being hemophilia A [4]. The L1 protein machinery

may also retrotranspose copies of genes and structural

non-coding RNAs yielding processed pseudogenes.

The majority of our understanding of retrotransposon

transcription and function comes from studies of single el-

ements and their DNA sequence, primarily autonomous

elements capable of active retrotransposition such as the

L1Hs retrotransposon (a human-specific L1 subfamily) or

non-autonomous elements such as Alu that can retrotran-

spose in trans using the L1 protein machinery. These

studies revealed that endogenous retrotransposons are re-

pressed in human cells under normal conditions, predom-

inantly via silencing by promoter DNA methylation [5].

However, when retrotransposons are expressed, such as in

response to cellular stress, Alu is thought to be transcribed

by RNA polymerase III (Pol III), and L1 by RNA polymer-

ase II (Pol II) from an internal promoter [5].

Few studies have attempted to survey transposable elem-

ent transcription genome-wide. High throughput sequen-

cing data poses a challenge to these studies due to the

ambiguity in assigning short reads mapping to more than

one genomic location (referred to here as multi-mapping

reads). Application-specific strategies have been developed

to recover multi-mapping reads, such as assignment of

Cap Analysis Gene Expression (CAGE) reads to the most

represented Transcriptional Start Site (TSS) in CAGE se-

quencing data [6], a method to identify TSS. A genome-

wide analysis of retrotransposon expression using CAGE

data revealed that repetitive elements are expressed in the

mouse in a tissue-specific manner [7].

More recent attempts to address systematically the

ambiguity in read assignment have followed two comple-

mentary strategies. The first attempts to include multi-

mapping reads in computing the read coverage across the

genome by either assigning reads proportionally to all

matching regions [8,9], or by assigning them probabilistic-

ally to a specific location based on the local genomic tag

context [10]. The second strategy addresses the ambiguity

in read mapping by assigning them to subfamilies of re-

petitive elements as opposed to their specific locations

across the genome. Early examples estimated repetitive

element enrichment by mapping short read data to con-

sensus sequences [11,12]. However, this approach did not

account for the majority of genomic instances, many of

which deviate from the consensus sequence. A more re-

cent example of the second approach incorporated both

consensus and genomic instances in the analysis but ex-

cluded reads aligning to more than a single repetitive

element subfamily [13]. Because individual repetitive

element subfamilies are highly conserved within their fam-

ilies, this latter approach excluded a significant fraction of

mapping reads from the analysis. For example, the L1PA2

and L1PA3 subfamilies have a high degree of homology;

many reads mapping to one of these two subfamilies also

map to the other and would be excluded.

In this study we extend these approaches to quantify re-

petitive element enrichment by utilizing all mapping reads

in estimating read counts. The resulting computational

pipeline, RepEnrich, was integrated with existing computa-

tional tools to test for differential enrichment between two

or more experimental conditions. We report here the re-

sults of a whole-genome analysis of the transcription and

regulation of repetitive elements, obtained by applying

RepEnrich to both RNA-seq and ChIP-seq datasets for

RNA Pol II, Pol III and associated transcription factors in

a panel of human cell lines, as well as several chromatin

activation and repression marks [14-20]. Finally, we iden-

tify transposable elements overexpressed in tumor tissue

collected from prostate cancer patients [21].

Results
Comprehensive assessment of repetitive element

enrichment

In RepEnrich, reads are initially aligned to the unmasked

genome and divided into uniquely mapping and multi-

mapping reads. Uniquely mapping reads are tested for

overlap with repetitive elements, while multi-mapping

reads are separately aligned to repetitive element assem-

blies representing individual repetitive element subfamilies

(Figure 1). Repetitive element assemblies are represented

by all genomic instances (assembled from the RepeatMasker

annotation) of an individual repetitive element subfam-

ily, including flanking genomic sequences, concatenated

with spacer sequences to avoid spurious mapping of reads

spanning multiple instances. The repetitive element as-

semblies are an extension of the strategy used by Day

et al. [13], which however only used reads that could be

unambiguously assigned to an individual subfamily.

By combining the counts from uniquely mapping

reads and multi-mapping reads RepEnrich keeps track of

all repetitive elements that every read aligns to and sys-

tematically estimates enrichment from all mapping reads.

Using this strategy we can compute read abundance in

three different ways. First, we can compute the total num-

ber of reads mapping to each repetitive element subfamily

(Additional file 1: Figure S1A), which we refer to as total

counts. Second, we can compute the total number of reads

mapping exclusively to a single repetitive element sub-

family. This methodology is similar to the one used Day

et al. and we refer to it as unique counts (Additional file 1:

Figure S1B). Third, we can count reads that map to a sin-

gle repetitive element subfamily assembly once and assign

reads that map to multiple subfamilies using a fractional

value 1/Ns (where Ns is the number of repetitive element

subfamily assemblies the read maps to), which we call

fractional counts (Additional file 1: Figure S1C).
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To investigate how these three counting strategies dif-

fered in their ability to estimate read abundance, we

used in silico generated ChIP-seq data. The ChIP-seq

data simulators currently available [22] cannot modu-

late the sampling rate of reads at specific loci in the gen-

ome. Hence, we developed a general-purpose Hidden

Markov Model (HMM) ChIP-seq simulator that can gen-

erate sample reads at user-defined emission rates from spe-

cified genomic loci. We simulated ChIP-seq and input data

in triplicates for whole human chromosomes to represent

scenarios in which different families of repetitive elements

were enriched. To assess the generality of our results our

simulations used different chromosomes, read lengths,

and families of enriched repetitive elements (L1, Alu, and

SVA). The HMM structure and parameters used in our

simulations are described in Additional file 1: Figure S2.

Additional file 1: Figure S3 shows a representative read

alignment in a 35 kb region of chromosome 19 for a simu-

lation in which retrotransposons in the L1 family were

enriched with respect to background.

In all our simulations we applied RepEnrich to com-

pute the abundance, expressed in counts per million

mapping reads (CPM), for all repetitive elements based

on the three counting strategies. Because we knew the

exact chromosomal location each read was sampled

from in the simulation, we could unambiguously com-

pute the true abundance of each repetitive element.

Our simulations revealed clear differences in the per-

formance of the three counting strategies. Figures 2A-C

and Additional file 1: Figure S4A-C show the scatterplots

of the RepEnrich CPM estimate versus the true abun-

dance CPM for all repetitive element subfamilies the L1

enrichment and Alu enrichment simulations respectively.

The unique counting strategy (Figure 2A and Additional

file 1: Figure S4A) tends to over- or under-estimate the

true abundance of repetitive elements and thus intro-

duces the most variance to the estimate. In addition,

specific families of repetitive elements show a common

bias; most notably SINEs are consistently underesti-

mated. The total counting strategy performs better over-

all but suffers from a strong bias in a few families of

repetitive elements, such as SINEs and SINE-Variable

Number Tandem Repeat-Alus (SVAs) elements, which

are consistently overestimated (Figure 2B and Additional

file 1: Figure S4B). The fractional counting strategy ap-

pears to provide the optimal estimate: deviation from the

true abundance is smallest for all subfamilies (Figure 2C

and Additional file 1: Figure S4C). The largest deviations

occurred for elements with smaller CPM values. Although

some of the family-specific biases in the total counts are

still present, they are greatly reduced and limited to ele-

ments with low CPM values.

We confirmed these observations by conducting three

additional comparative analyses. First we applied multi-

dimensional scaling to the four vectors containing the

unique, total, fractional and true CPMs respectively

(Figure 2D and Additional file 1: Figure S4D). The frac-

tional count strategy is more similar to the true abun-

dance as demonstrated by the smaller distance between

these two in the multi-dimensional scaling plot.

Figure 1 RepEnrich read mapping strategy. Reads are mapped to the genome using the Bowtie1 aligner. Reads mapping uniquely to the

genome are assigned to subfamilies of repetitive elements based on their degree of overlap to RepeatMasker annotated genomic instances of

each repetitive element subfamily. Reads mapping to multiple locations are separately mapped to repetitive element assemblies – referred to as

repetitive element psuedogenomes – built from RepeatMasker annotated genomic instances of repetitive element subfamilies.
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Next, we computed the deviation from the 45° line in

the scatterplots of estimated abundance vs. true abun-

dance (Additional file 1: Figures S5B-D and S6B-D).

Additional file 1: Figures S5A and S6A show the R-squared

value for all elements combined and for each repetitive

element class separately in two sets of L1 enrichment

Figure 2 Performance comparison of counting strategies on simulated L1-enriched data. Three replicates of ChIP-seq (50 bp single-end

reads) data enrichment at L1 elements on chromosome 19 were simulated using the hidden Markov model (HMM) in Additional file 1: Figure S2.

The expected average log2CPM for the simulation was computed using the repetitive element counts computed from the true read coordinates.

The average log2CPM read abundances, computed by EdgeR from RepEnrich estimated count values using total, unique, and fractional count

methods were compared to the expected true abundance. The solid line indicates y = x, values falling on the line are identical between the

estimated average log2CPM and expected average log2CPM. The repetitive element subfamilies are colored according to class with small RNA

repeats including scRNA, rRNA, snRNA, and tRNA classes. A) Comparison of the estimated abundance from the unique count method, which only

sums reads that can be assigned uniquely to a single subfamily of repetitive elements, versus the true abundance. B) Comparison of the

estimated abundance from the total count method, which sums the reads assigned to each repetitive element subfamily and allows for multiple

counting of reads, versus the true abundance. C) Comparison of the estimated abundance from the fractional count method, which sums the

reads that fall into each individual repetitive element subfamily once, but adds a fraction for reads mapping to more than one subfamily

(1/# of repetitive element sub-families aligned), versus the true abundance. D) Multidimensional scaling (MDS) plot of the Euclidean distances

between the average log2CPM values for the unique, total, and fractional count estimates of RepEnrich and the expected average log2CPM values.

The fractional count average log2CPM estimate was closest to the true abundance.
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simulations in with 2 M reads for two different chromo-

somes. The R-squared values in the fractional count strat-

egy were consistently close to 1 only in the case of the

fractional count, and varied widely between 0 and 1 for the

unique counts strategy. Comparison with the scatterplots

in Figure 2, which were obtained from simulating 20 M

reads, also indicate that the unique count strategy is more

affected by read coverage than the other two methods and

performs poorly at lower coverage.

Finally, we assessed the ability of the various counting

methods to reveal significant differences between two ex-

perimental samples. To do so we compared the SVA, L1,

and Alu enriched samples to their input samples via a

Generalized Linear Model (GLM) fit to a negative bino-

mial distribution (see Methods). We created a benchmark

set of differentially enriched elements in each simulation

by applying the GLM model to the true abundance counts,

and compared this set to the elements detected as differen-

tially enriched in each of the three counting strategies. In

all simulations the fractional counting method recovered

numerous significant repetitive elements that were identi-

fied to be differentially enriched in the true abundance

comparison benchmark; it also returned the least number

of false positive (Additional file 1: Figures S7 and S8).

To assure our observations were not restricted to in

silico data we compared the performance of the fractional

counting and unique counting methods on real ChIP-seq

data. We utilized a ChIP-seq dataset for RNA polymerase

II (Pol II) conducted in K562 cell-line (Additional file 2:

Table S1), and applied the GLM to identify repetitive ele-

ments enrichment for Pol-II with respect to input. Con-

sistently with our simulations, the fractional counting

method identified more elements as enriched for Pol-II

with respect to the unique counting method (Additional

file 1: Figure S9).

Because the fractional counts displayed the least bias

and variance in the estimation of repetitive element

abundance, and was most similar to the true abundance,

we chose to use fractional counts as the default counting

strategy for RepEnrich.

Experimental design

To investigate transcription of different classes of repeti-

tive elements in human cells we applied RepEnrich to a

collection of publicly available RNA-seq and ChIP-seq

datasets. We collected high-throughput sequencing data

from the ENCyclopedia Of DNA Elements (ENCODE),

the Gene Expression Omnibus (GEO) and the European

Nucleotide Archive (ENA). A detailed list of individual

samples can be found in Additional file 2: Table S1.

Transcription in eukaryotes is performed by three dif-

ferent RNA Polymerases, Pol I-III. With the exception of

Pol I, which specializes in ribosomal RNA (rRNA) tran-

scription, both Pol II and III are known to transcribe

repetitive elements [5,23]. Hence, to address the question

of how repetitive elements are transcribed we utilized

ChIP-seq data for Pol II, Pol III, and TFIIIB (a Pol III-

associated transcription factor complex). ChIP-seq for

TFIIIB subunits has previously been used as additional

support of Pol III binding, because TFIIIB is necessary for

Pol III promoter recognition [15,24]. For Pol II, we ana-

lyzed ChIP datasets generated with a Pol II antibody that

does not distinguish active and inactive enzymes, as well

as an antibody to Pol II phosphorylated on serine 2 (Pol

II S2), which is specific for the active elongating en-

zyme. To our knowledge, no ChIP-seq dataset for RNA

Pol I is currently available.

We adopted a comprehensive approach that included

the analysis of not only transposable elements, but also

other classes of repetitive elements annotated within

RepeatMasker, with the exclusion of simple sequence re-

peats. Among the repetitive element classes we examined

for Pol II and Pol III binding were the small structural

RNAs and their processed pseudogenes. Small structural

RNAs including tRNAs, snRNAs, and rRNAs are included

in the Repeatmasker annotation because of the high de-

gree of sequence homology to processed psuedogenes.

Previous Pol III ChIP-seq studies indicated that the tRNA

pseudogenes are occupied by Pol III [24], which is not sur-

prising since tRNA Pol III promoters are internal. Some

Pol II transcribed snRNA psuedogenes may also be tran-

scribed, and have been found to be associated with L1-

encoded proteins [25].

To investigate the transcription and regulation of repeti-

tive elements in a variety of cell types, we collected data

from multiple cell lines. Specifically, our analysis included

Pol II and III ChIP-seq performed with IMR-90 fibroblasts,

K562 chronic myelogenous leukemia (CML) cells, HeLa

adenocarcinoma cells and GM12878 lymphoblastoid cells,

as well as additional RNA Pol II-only ChIP-seq data for

HUVEC (human umbilical vein) endothelial cells and per-

ipheral blood-derived erythroblast cells (PBDE) purified

from human blood samples (Additional file 2: Table S1)

[15-17,24]. K562 and HeLa are cancer-derived transformed

cell lines, GM12878 is an EBV-immortalized cell line, and

IMR-90, HUVEC and PDBE are normal (non-immortal-

ized) cells.

Regulation and transcription of repetitive elements in

human cells

All ChIP-seq and RNA-seq data were processed with

RepEnrich to generate counts for all repetitive element

subfamilies. Log2-fold-changes between ChIP and input

samples as well as the statistical significance were then

evaluated using a generalized linear model (GLM) fit to

a negative binomial distribution (see Methods).

The repetitive elements that displayed the most shared

pattern of Pol II binding between the cell lines were the
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snRNAs (Figure 3A, B). This is consistent with the known

universal role of snRNAs in RNA processing and their

transcription by Pol II (with the exception of the U6

snRNA, which is a Pol III transcript). Likewise, we ob-

served ubiquitous Pol III binding to tRNAs and the 5S

rRNA across all the cell lines examined (Figure 3C).

Transposable elements rarely displayed consistency across

all cell lines, and instead primarily displayed significant

Pol II or Pol III binding in one or a few cell lines (Figure 3).

This is at least partially explained by a tendency of retro-

transposable elements to be expressed more highly in

transformed versus normal (non-transformed) cell lines.

One interesting feature we identified was significant

co-occupancy of Pol II and Pol III at some repetitive ele-

ments. When overlapped within the same cell line, 89

repetitive element subfamilies were co-occupied by Pol

II and Pol III (Figure 3D). The majority of these repeti-

tive elements were tRNAs (Figure 3D). Because tRNAs

are short and the reads near their borders map uniquely

to the genome, we could examine tRNA elements in the

genome browser for further evidence of Pol II and Pol

III co-occupancy. We identified multiple instances where

Pol II and Pol III were bound at or near the same tRNA

gene (Additional file 1: Figure S10 A), and instances

where snRNA genes, including Pol III transcribed U6,

were co-occupied by Pol II and Pol III (Additional file 1:

Figure S10 B).

To further characterize the transcription of repetitive

elements, we examined binding of Pol III-specific tran-

scription factors, as well as RNA transcript subcellular

localization and polyadenylation status. The tRNA tran-

scriptional signature displayed evidence of Pol III tran-

scription from a type II promoter (Additional file 1:

Figure S11, S12). As expected, the tRNA transcripts

were localized to the cytosol and not polyadenylated

(Additional file 1: Figure S12). Satellite repeat sequences

displayed predominantly Pol II binding, although some

subfamilies also displayed Pol III binding (Additional

file 1: Figure S12). Satellite RNAs were predominantly nu-

clear and polyadenylated, consistent with being primarily
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Figure 3 RNA polymerase binding patterns to repetitive elements. A) RNA Pol II, B) active RNA Pol II S2, and C) RNA Pol III were assessed for

binding to repetitive elements using generalized linear model (GLM) comparisons of ChIP versus input. To view the binding patterns we

examined percent of repetitive element sub-families for the major classes of repetitive elements that displayed significant (FDR <0.05) positive

enrichment (Log2FC >0). The color-coding corresponds to the number of cell lines that displayed the significant positive enrichment. The x-axis

labels the class of repetitive element and the adjacent number indicates how many repetitive element sub-families fall within that class. D) The

repetitive elements that displayed significant (FDR <0.05) positive enrichment (Log2FC >0) for RNA Pol II and RNA Pol III were compared for

overlap across the same cell line. The 89 repetitive elements that displayed co-enrichment within the same cell line for RNA Pol II and RNA Pol III

were then examined for representation of the major classes of repetitive elements, expressed as a percent.
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Pol II transcripts (Additional file 1: Figure S12). The major-

ity of transposable elements did not display strong tran-

scriptional signatures (Additional file 1: Figure S12, S13).

Most notably, LINE retrotransposons, the major active

class of retrotransposons in humans, displayed very few

subfamilies with significant binding of Pol II or Pol III

(Additional file 1: Figure S13). DNA transposable elements,

which are believed to be inactive in the human genome,

also displayed few subfamilies with Pol II or Pol III enrich-

ment (Additional file 1: Figure S13).

SINE elements, predominantly represented by Alu sub-

families, displayed some genome-wide enrichment for Pol

II and III binding; the Pol II binding may be due to the

high representation of Alus within gene introns (Additional

file 1: Figure S12). Similar to Canella et al. we observed sig-

nificant binding of Pol III to SINE elements, likely repre-

senting independent SINE transcription [15]. SINE RNAs

displayed a cytosolic and non-polyadenylated enrichment

pattern, which is consistent with SINE elements being

transcribed from internal Pol III promoters (Additional

file 1: Figure S12) [5]. By far the most transcriptionally ac-

tive endogenous retrotransposons we observed were in

the LTR family (Additional file 1: Figure S13). Many LTR

elements displayed significant binding by Pol II, and some

also displayed enrichment for Pol III (Figure 3, Additional

file 1: Figure S13). As noted above, the majority of LTR

retrotransposon subfamilies that displayed polymerase

binding did so in one or a few cell lines.

The endogenous retrovirus HERV-Fc1 is actively

transcribed by Pol II in a CML cell line

Among the LTR elements, numerous elements displayed

Pol II enrichment that was significant in at least one

cell-line (FDR < 0.05, for a full list see Additional file 1:

Figure S14). One element that displayed a particularly

striking binding was the internal portion of HERV-Fc1,

most prominently in K562 CML cell-line. We chose to

focus on K562 cell-line for additional analysis because

the internal region of HERV-Fc1 displayed 7- and 15-

fold enrichment for Pol II and Pol II S2 in this cell-line

(Figure 4A). To further examine the behavior of HERV-

Fc1 in K562 cells we applied RepEnrich to ENCODE

ChIP-seq data for histone marks associated with active

euchromatin (H3K27ac, H3K4me2, H3K9ac, H3K4me3,

H3K79me2, H3K4me1, H3K36me2) and repressed het-

erochromatin (H3K9me1, H3K9me3, H3K27me3). We

found that the HERV-Fc1 element, especially its internal

region, was highly enriched for marks associated with

active transcription and depleted for marks associated

with repression (Figure 4B). These results indicate dere-

pression of the HERV-Fc1 retrotransposon in the K562

CML cell line.

The HERV-Fc1 subfamily is represented by few copies in

the human genome, and its internal region, HERV-Fc1-int,

has only seven copies in the hg19 build. We therefore ex-

amined all the genomic loci of HERV-Fc1 in K562 cells

using the UCSC genome browser and ENCODE tracks. A

single HERV-Fc1 internal element on chromosome 7 dis-

played RNA expression from the minus strand in K562

cells but not in any other ENCODE cell line for which

PolyA + RNA-seq is available (Figure 4C). This region also

displayed binding for Pol II and active Pol II-S2 as well as

the TATA-box binding protein (TBP). We also noted the

binding of MAFK, MAFF, and NFE2 transcription factors

at the promoter of the HERV-Fc1 element.

L1 retrotransposons are significantly overexpressed in

prostate tumor tissue

Somatic retrotransposition events were recently reported

in several cancers [26]. We therefore examined normal and

transformed cell lines for Pol II binding and tested whether

transformed cells displayed more permissive binding of Pol

II to retrotransposons. Our results indicated that a larger

number of transposable elements show at least 1.5-fold en-

richment for Pol II in HeLa, K562, and GM12878 trans-

formed cells than in PBDE, IMR90, and HUVEC normal

cells (Figure 4D). This is especially true for LTR retro-

transposons. Hierarchical clustering of Pol II binding

for LTR elements with significant enrichment in at least

one cell line revealed that normal cell-lines clustered

separately from cancer and transformed cells (Additional

file 1: Figure S14). We thus wanted to investigate further

whether the increased Pol II binding in transformed cell

lines contributed to increased expression of transposable

elements. However, in this dataset the transformed and

normal cells were derived from a variety of tissues and

hence direct comparison of retrotransposon transcription

was not possible.

To better control for individual and tissue-specific ex-

pression differences, we tested our hypothesis using a

RNA-seq tumor dataset that contains data for matched

prostate tumor and normal tissue from 14 patients with

different grades of prostate cancer [21]. We detected 475

retrotransposon subfamilies that exhibited significant dif-

ferential expression in tumor tissue (FDR < 0.05), preva-

lently from the LTR, LINE and DNA classes (Figure 5A).

Interestingly, very few SINE subfamilies were differentially

expressed in prostate tumor versus normal tissue. Most of

the LTR subfamilies were endogenous retroviruses, with

ERV1 being the most represented. Of the ERV1 family, 53

subfamilies were overexpressed and 51 subfamilies were

under-expressed (Figure 5D). Most of the differentially

expressed DNA elements belonged to the hAT-Charlie and

TcMar-Tigger families, and the vast majority of them (59

out of 66) were significantly under-represented in tumor

tissue (Figure 5B). For LINEs, 99 out of 107 subfamilies

belonged to the L1 family of retrotransposons, and the vast
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majority of these (97 out of 99) were overexpressed in

tumor tissue (Figure 4C).

L1 LINEs are the most active retrotransposons in

humans and their retrotransposition was recently docu-

mented in multiple cancers [26-28]. Figure 6A shows a

heatmap of the log2 fold changes between tumor and nor-

mal tissue for evolutionarily recent primate and human-

specific L1 subfamilies that displayed statistically signifi-

cant differences. We applied bi-clustering (see Figure le-

gend) and identified two major groups of patients. Group

1 showed a marked overexpression of the primate-specific

L1s, while group 2 showed a lower level of overexpression

and in some cases underrepresentation. Patient 8 appeared

to be an outlier. We studied the association of these two
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Figure 4 HERV-Fc1 and Pol II binding in transformed vs. normal cell lines. LTR and other transposable elements displayed differences in

RNA Pol II binding in transformed versus normal cell lines. A) The LTR subfamily HERV-FC1 displayed cell line specific transcriptional profiles for

the LTRs (LTR1-3) or internal region (int) of HERV-FC1. The GLM results are plotted as log2FCs for Pol II enrichment and differential RNA-seq

analysis. The differential RNA-seq analysis compares the PolyA + vs. PolyA – enrichment of Nuclear RNA (positive log2FC values indicates PolyA +

enrichment). B) The enrichment of ChIP compared to input for RNA Pol II, active RNA Pol II-S2, active marks of transcription (H3K27ac, H3K4me2,

H3K9ac, H3K4me3, H3K79me2, H3K4me1, H3K36me2) and repressed heterochromatin (H3K9me1, H3K9me3, H3K27me3) for the LTRs (LTR1-3) or

internal region (int) of HERV-FC1. C) Genome browser view of the primary locus of HERV-FC1-int contributing to expression in the K562 cell line.

The ENCODE signal tracks for K562 cell PolyA + RNA (minus strand), RNA Pol II ChIP, RNA Pol II-S2 ChIP, TBP ChIP, MAFK ChIP, MAFF ChIP, and

NFE2 ChIP were visualized on chr7. All other cell lines for which there was cell PolyA + RNA available displayed minimal signal at this locus.

D) The count of transposable elements displaying modest positive enrichment, log2FC >1.5, in transformed versus normal cell lines. The counts

are colored by the class of transposable element.
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groups with some clinical parameters available for each

patient [21]. We detected no association with patient

age or preoperative PSA, but a significant association

with the stage of the cancer: group 1 patients showed a

more advanced cancer state with respect to group 2, as

defined by the TNM score (p = 0.04, Mann Whitney U

test; Figure 6A).

Interestingly, all the novel somatic retrotransposition

events identified in prostate cancer [26] belonged to the

sub-families of L1s that displayed significant enrichment

in our dataset (Figure 6A). In particular, 17 of them were

from the human-specific L1Hs subfamily. Hence, we ex-

amined the L1Hs elements more closely by mapping all

RNA-seq reads to the L1Hs consensus using Bowtie2

Figure 5 Repetitive elements differentially expressed in prostate cancer tissue. (A) Classes and families of repetitive elements differentially

expressed in prostate cancer tumor tissue versus normal tissue. The number next to each class and family name corresponds to the number of

differentially expressed subfamilies (FDR < 0.05). (B-D) Expression fold-change between prostate cancer tumor tissue and normal tissue computed

by the GLM on the 14 patients. The most represented family of DNA, LINE and LTR elements are shown.

Criscione et al. BMC Genomics 2014, 15:583 Page 9 of 17

http://www.biomedcentral.com/1471-2164/15/583



local alignment mode. This method is not entirely specific

to L1Hs as closely homologous L1PA elements are also

represented. The L1Hs subfamily and its closely related

primate-specific L1PA subfamilies are composed of gen-

omic instances that are 3′ biased as a consequence of a 5′

truncation that frequently occurs during retrotransposi-

tion [29] (Figure 6B, top panel). The fold-change in cover-

age along the L1Hs consensus between tumor and normal

tissue was increased 2- to 4-fold across the entire length

of the element, including the 5′ UTR region in patient

group 1. This is consistent with transcription of elements

in the genome that are full length or close to full length.

We also observed interesting and conserved patterns of

fold-changes. For example, patients 1, 10 and 13 in group

1 show dipping at 4 locations corresponding to L1 ORF1

and ORF2, while patient 11 in the same group displayed

the opposite behavior.

Many repetitive element insertions, including those of

L1 and Alu [30], are found in the introns of genes. The

starting material for most RNA-seq libraries is poly-A

purified total cellular RNA, which is predominantly ma-

ture mRNA that is free of introns. However, a small

Figure 6 Primate-specific L1 elements are overexpressed in a subclass of patients with more advanced tumor progression.

(A) Clustering of log2 expression fold-changes in the subset of primate specific L1s that showed significant differential expression reveals two

major classes of patients (Group 1 and Group 2). Group 1 shows widespread overexpression of primate specific L1s and contains patients with

more advanced tumor progression. The number of somatic insertions refers to the number of previously reported somatic retrotransposition

events for that L1 subfamily identified in prostate cancer [26]. (B) All L1 sequences in the human genome were fetched and mapped to L1Hs

consensus using permissive, local alignment parameters to analyze data. Using this distribution we computed the cumulative distribution of start

and end positions of genomic L1s with respect to the consensus to describe the background distribution of L1s that can potentially map to the

consensus element. (C) Coverage of L1 sequences in prostate tumor versus normal RNA-seq that map to L1Hs consensus using a local alignment

(Bowtie2). The log2FC was computed for each position along the L1Hs consensus from tumor and normal-matched RNA-seq coverage.

Hierarchical clustering was done based on the log2FC using Euclidean metrics.
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fraction of total cellular RNA is composed of pre-mRNA,

also known as heterogeneous nuclear RNA (hnRNA),

which also contains intronic sequences and can be polya-

denylated. Hence, some of the reads assigned to repetitive

elements could have originated from this small hnRNA

pool. To address this we examined separately the mapping

of unique L1Hs and L1PA reads to intronic and intergenic

regions, and found very similar tumor-associated in-

creases in the abundance corresponding to both regions

(Additional file 1: Figure S15). Hence, the increased tran-

scription of L1 elements in prostate tumors appears to

affect equivalently elements inserted outside of known

genes, and those inserted within introns.

Discussion

The majority of the human genome is comprised of re-

petitive sequences, most of which are represented by

parasitic retrotransposon elements. Recent years have

seen increased interest in understanding their regulation

because of the important roles in genome evolution, de-

velopment, and disease [31-35]. A prolific expansion of

sequencing data, combined with new experimental and

computational methods in genomics and transcriptomics,

have spurred an extensive exploration of chromatin regu-

lation, and the temporal and spatial organization of the

RNA transcriptome. In spite of these new technologies,

fundamental computational obstacles remain for the ana-

lysis of repetitive elements in the short-read data produced

by high-throughput sequencing. This is because short

reads of repetitive elements align ambiguously and cannot

be assigned to unique locations in the genome.

We wanted to develop a computational pipeline to esti-

mate enrichment and differential expression of repetitive

elements in ChIP-seq and RNA-seq datasets. Because sig-

nal from repetitive elements in many cases is likely to be

weaker than from genes, as a consequence of their low

level of activity, we favored a strategy that assigned reads

to repetitive element subfamilies as opposed to individual

instances. Previous work excluded reads that map to more

than one repetitive element subfamily [13]. This approach

can be problematic, because some individual elements are

highly conserved. For example, multiple sequence align-

ment of the consensus sequence for primate specific L1s

reveals a high degree of homology between individual ele-

ments, despite the fact that these consensus sequences rep-

resent distinct repetitive element subfamilies (Additional

file 1: Figure S16). Many multi-mapping reads tend to align

with multiple repetitive element subfamilies (Additional

file 1: Figure S17). Our tests of this counting strategy indi-

cated that exclusion of reads mapping to more than one

repetitive element subfamily would exclude 64% of 30 bp

repetitive mapping reads and 51% of 50 bp repetitive map-

ping reads (Additional file 1: Figure S17). Furthermore, re-

quiring unambiguous assignment of reads to individual

subfamilies will introduce a bias towards less conserved re-

peats, which will be assigned relatively higher counts.

To assess how to optimally count reads that map to

more than one subfamily, we used in silico ChIP-seq data

simulations where the true abundance of repetitive ele-

ments was known. Double counting reads mapping to

multiple subfamilies (total counting approach) tended to

overestimate enrichment of Alu and SVA elements, while

excluding those same reads (the unique counting method

used by Day et al.) introduced a similar bias but in the op-

posite direction, as well as a larger variance in the count

estimate (Figure 2A). These biases are likely a conse-

quence of the high degree of sequence homology between

subfamilies, and are particularly evident in the Alu and

SVA families. Alu emerged relatively recently in primate

evolution (~60 million years ago), and thus displays a high

degree of sequence homology between subfamilies [36].

SVA elements are also highly homologous as they arose

even more recently in hominid evolution [37]. A third

counting strategy, based on assigning fractional values to

each read mapping to multiple subfamilies (fractional

counting approach), reduced both the bias and variance of

the estimate. It most closely approximates the true abun-

dance, and recovers more differentially enriched elements

in both simulated and real data. Hence we selected frac-

tional counting as the optimal strategy.

Based on this analysis we developed a new computational

pipeline, RepEnrich, for genome-wide studies of repetitive

elements in ChIP-seq and RNA-seq high-throughput data.

Our methodology extends existing strategies by utilizing all

mappable reads in estimating read counts. RepEnrich is a

flexible pipeline that can readily incorporate different se-

quence aligners, multiple sequencing data types, and can

easily interface with existing statistical packages for down-

stream analysis. We demonstrate the utility of RepEnrich

here by examining a large collection of high-throughput

datasets to analyze transcriptional regulation of repetitive

elements in multiple cell lines and human tissues.

RepEnrich readily documented, in a genome-wide man-

ner, several known aspects of the transcriptional activity of

repetitive elements, especially small structural non-coding

RNAs such as tRNAs, snRNAs, and rRNAs. As expected,

tRNAs were predominantly transcribed by Pol III from a

type II promoter and were predominantly enriched in

the non-polyadenylated fraction and in the cytosol. The

snRNAs were observed to be bound by Pol II, in agree-

ment with their known transcriptional mechanism. One in-

teresting observation was that many small structural non-

coding RNAs, especially tRNAs, displayed co-occupancy of

binding by Pol II and Pol III (Figure 3D). While the co-

binding of Pol II and Pol III to small structural non-coding

RNAs has been described previously at specific genomic

locations [17], our results suggests such association occurs

genome-wide.
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Polymerase binding to small structural non-coding RNA

elements was observed to be wide-spread across all the cell

lines examined, which is consistent with their core roles

in basic biological processes. Very low levels of polymerase

enrichment were found at LINEs and DNA transposons,

which is likely a consequence of their constitutive repres-

sion by DNA methylation and heterochromatin silencing

mechanisms [5]. SINEs and LTR elements showed signifi-

cant polymerase binding that was typically restricted to one

or a few of the cell lines examined (Figure 3A, B and C).

The LTR subfamilies were the most active retrotransposa-

ble elements, with a general trend towards increased poly-

merase binding in transformed cells (Figure 4D).

Although LTR retrotransposons are thought to be mostly

inactive in humans, and very few cases of novel germ-line

and somatic retrotranspositions have been reported [5,26],

our results are consistent with recent genome-wide studies

of chromatin accessibility. Analysis of DNase I hypersensi-

tive sites (DHS), markers of accessible chromatin, revealed

many cell line-specific changes mapping to retrotrans-

posable elements [38]. In particular, LTR retrotransposons

displayed the majority of DHS changes, many of which

correlated with changes in chromatin accessibility. Evi-

dence has also emerged that LTR elements might function

as enhancers [39,40]. Similarly, our results suggest that

LTR retrotransposons are bound by RNA polymerases and

are transcribed in a cell line-specific manner.

Among the LTR elements with Pol II binding, the en-

dogenous retrovirus HERV-Fc1 displayed a large-degree of

Pol II and Pol II S2 enrichment with the most prominent

binding in a K562 CML line. Active Pol II transcription

was also supported by RNA-seq enrichment in the polya-

denylated fraction, as well as enrichment of several chro-

matin activation marks in ChIP-seq data. Although the

HERV super-family of retrotransposons is not thought to

be active for retrotransposition, several of its members

have been associated with multiple diseases. For example,

increased transcription of HERV-K family members has

been reported in amyotrophic lateral sclerosis (ALS) [25],

CML [41], and recently in multiple sclerosis (MS) [42].

Seven HERV-Fc1 elements are currently annotated, and

we were able to identify a single genomic locus represent-

ing the source of most of the ChIP-seq and RNA-seq sig-

nal. Interestingly, at this locus we detected enrichment for

binding of the TATA-box binding protein (TBP), as well

as the MAFK, MAFF, and NFE2 transcription factors. The

MAF family transcription factors contain mutations that

are associated with CML [43] and heterodimerize with

NFE2 [8]. These binding sites might be exposed due to

loss of silencing at repetitive genomic regions in the K562

cancer cell line, consistent with evidence that loss of DNA

methylation can strongly activate HERV-Fc1 [44].

One striking result of our analysis was that trans-

formed cell lines consistently displayed a wider pattern

of Pol II enrichment than normal cells (Figure 4D). A re-

cent report on genome-wide changes in chromatin ac-

cessibility in embryonic stem cells (ESC), differentiated

cells, and cancer cells may shed some light on our obser-

vations [45]. As ESCs differentiate into various cell types,

the proportion of shared DHSs decreases, however, can-

cer cells gain back many of the DHSs originally found in

ESCs. It was suggested that cancer cells adopt a more

accessible chromatin landscape, similar to ESCs. Al-

though this particular study did not look specifically at

retrotransposons, combining this model with our re-

sults on Pol II binding in transformed cells suggests that

genomic regions harboring transposable elements might

be globally de-repressed and increase their transcrip-

tional activity in cancer.

To further examine the transcriptional activity of retro-

transposons in cancer, we examined RNA-seq data from

prostate tumors [21]. Many repetitive element families

were differentially expressed in prostate tumors, with most

of the changes occurring within LINE, LTR, and DNA

class elements. LINE elements displayed a striking ten-

dency to be upregulated in prostate tumors. A closer look

at L1 regulation revealed that patients could be separated

into two groups based on their transcriptional profiles

(Figure 6A). We found that patients in group 1 showed

higher levels of L1 expression in their tumors and, on aver-

age, were diagnosed with a more advanced stage of cancer.

Recently, novel somatic retrotransposition events have

been identified in several different cancers, including ovar-

ian, prostate, hepatocellular, and colon [26-28]. The major-

ity of these new events involved evolutionarily recent

human-specific L1Hs, primate-specific L1PA and Alu ele-

ments. For prostate cancer, 26 out of 28 new retrotranspo-

sitions identified [26] belonged to the L1Hs and L1PA

families that were also significantly upregulated in our ana-

lysis. Because only full-length elements are competent for

retrotransposition and the majority of L1Hs elements in

the genome are 5′ truncated, we further studied changes

in read coverage along the entire consensus L1Hs se-

quence. We found that tumors of group 1 patients showed

a 2-fold (or greater) increase in read coverage and that

read coverage was elevated equivalently across the entire

element including the 5′ end. This suggests that the in-

crease in transcription involved predominantly full-length

elements and was initiated at the L1 promoter.

Conclusions

In summary, our study underscores the richness of in-

formation on the transcriptional regulation of repetitive

elements, and transposable elements in particular, con-

tained in publically available, high throughput sequen-

cing datasets. Because the amount of this information is

expected to vastly increase in the near future, dedicated

computational pipelines, such as RepEnrich, will be of
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great utility in mining these datasets. RepEnrich allows for

the analysis of repetitive elements in any organism with a

reference genome available that has repetitive element an-

notation (such as Repeatmasker annotation). RepEnrich

also allows for a custom repetitive element annotation,

which can be used for a variety of applications where

multi-mapping reads become an issue such as gene clus-

ters repeats that appear in tandem duplicates.

Our study also supports the importance of activation of

endogenous retrotransposons as an important, and prob-

ably universal, feature of cancer. Whether retrotranspo-

sable elements are drivers or passengers of the cancer

development process is still an open question and will re-

quire further investigation. In addition, we suggest that

they will have considerable utility as biomarkers, and in

combination with other genomic features, will help in elu-

cidating cancer subtypes, progression and prognosis.

Methods
Analysis of repetitive element enrichment using RepEnrich

Sample reads were aligned to the genome using Bowtie1

with the requirement that reads map uniquely, command =

bowtie hg19 -p 16 -t -m 1 -S –chunkmbs 512 –max multi-

map.fastq input.fastq output.sam [46]. Reads mapping to

multiple locations of the genome were assigned to a separ-

ate FASTQ file (i.e. –max). Annotation was constructed

from RepeatMasker annotated genomic instances of repeti-

tive elements (downloaded from Repeatmasker.org). The

genomic coordinates of repetitive elements were used to

build repetitive element psuedogenome assemblies for each

distinct repetitive element subfamilies. Repetitive element

psuedogenome assemblies were built by concatenating gen-

omic instances of each repetitive element subfamily, their

flanking genomic sequences (default = 15 bp), and a spacer

sequence (default = 200 bp) in FASTA format, in a manner

similar to Day et al. [13]. These psuedogenomes were

indexed using Bowtie. A genomic feature file was also built

in BED format, which describes the coordinates of all anno-

tated repetitive element instances. The genomic feature files

in BED format and the distinct repetitive element psue-

dogenome assemblies in FASTA format were used to se-

parately analyze the unique mapping reads and the reads

mapping to more than one location. Reads mapping to

unique genomic positions were sorted based on overlap

with repetitive element genomic instances. To conduct the

overlap we used Bedtools to intersect the alignment file and

the genomic instances of repetitive elements [47]. Reads

that map to more than one location are categorically

aligned to the repetitive psuedogenome assemblies using

Bowtie. For paired-end reads, each mate pair is separately

mapped to the repetitive psuedogenome assemblies. RepEn-

rich systematically tracks all repetitive element subfamilies

a given read aligns for all reads. We can determine the

number of reads mapping to repetitive element subfamilies,

repetitive element families, or repetitive element classes.

RepEnrich uses three separate ways of classifying the reads

that map to multiple repetitive element subfamilies: total

counts, unique counts, and fractional counts. The total

counts output sums all reads that map to an individual re-

petitive element subfamily. The unique counts output sums

only reads that can be uniquely assigned to a single repeti-

tive element subfamily, similar to the output of Day et. al.

[13]. The fractional counts sums reads mapping uniquely to

a repetitive element subfamily once and counts reads map-

ping to multiple subfamilies using a fraction 1/Ns, where

Ns = number of repetitive element subfamilies the read

aligns with. The fractional count rounds the estimate for a

subfamily to the nearest integer and is the default method

used by RepEnrich.

Availability

The RepEnrich tutorial and source code is available for

download at our github repository https://github.com/

nerettilab/RepEnrich. RepEnrich supports analysis for

ChIP-seq and RNA-seq for any organism where a refer-

ence genome and repetitive element annotation (such as

Repeatmasker annotation) is available. RepEnrich also

supports custom repetitive element or repeat feature an-

notation in bed format.

Simulation of ChIP-seq datasets

To conduct the ChIP-seq simulation we developed a hid-

den Markov model (HMM) that simulates separate states

for different genomic features over the length of a chromo-

some. The strategy is similar to approaches used for previ-

ous studies addressing ChIP-seq simulation, however, we

extended these methods to cover an entire chromosome

and to use underlying information about genomic features

[22]. The output for the HMM is the probability that a

read is selected from a given genomic position in a ChIP-

seq experiment. This probability is derived from the emis-

sion state profile generated by the HMM. The transition

matrix for the HMM simulates whether a given base pair

along the length of the chromosome is in a high or low

emission state. The simulator was built such that differen-

tial enrichment profiles could be generated by defining the

coordinates of repetitive elements, or other genomic fea-

tures. To simulate enrichment over a repetitive element,

we specified a transition state probability matrix that

yielded more frequent occupancy of the high emission

state for their coordinates. The output for the simula-

tion is the true start positions of all the simulated reads.

We then generated reads from the start positions in

FASTA format.

We used the ChIP-seq simulation to evaluate the pre-

dictive power of RepEnrich. To test the repetitive element

analysis we simulated ChIP-seq data on human chromo-

somes 5, 10, and 19 (see Additional file 1: Figure S2 for
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HMM parameters). For the simulation of separate chro-

mosomes we used only RepeatMasker genomic instances

present on human chromosomes we examined (build

hg19). We simulated ChIP-seq data for three experimental

comparisons and six experimental conditions. We exam-

ined conditions where L1, Alu, and SVA family retrotran-

sposons were enriched and conditions where the L1, Alu,

and SVA family retrotransposons were near background,

considered an input. Each condition was simulated in trip-

licate with a parameter to introduce technical variance.

For chromosome 19 we simulated a situation with high se-

quencing depth (twenty million reads) at three read

lengths (30, 50, and 100 base pairs). For chromosomes 5

and 10 we simulated a situation with lower sequencing

depth (two million reads) at three read lengths (35, 50,

and 75 base pairs). Simulated reads were aligned uniquely

to human chromosome 19 and reads mapping to multiple

locations were output to a separate FASTA file. Repetitive

element enrichment was determined by RepEnrich. The

expected abundance of repetitive element enrichment was

determined for the various conditions using the true pos-

ition of the simulated reads. The simulated positions of the

reads were also used to generate the true alignment file, in

bam format, as if all the multi-mapping reads had mapped

uniquely. Using the true positions the expected count for

each repetitive element subfamily was determined by over-

lapping the reads with the genomic coordinates of each re-

petitive element subfamily using Bedtools [47].

Using the read counts determined by RepEnrich, frac-

tional, unique, and total counting methods and the ex-

pected count we calculated the normalized read abundance

or CPM and conducted differential enrichment analysis.

To do so, the various count estimates generated by

RepEnrich were analyzed using EdgeR bioconductor pack-

age for statistically significant enrichment of repetitive ele-

ments in simulated ChIP-seq conditions [48]. EdgeR uses

a generalized linear model (GLM) to identify differential

enrichment by fitting the genomic count data to a negative

binomial distribution. Recent work extends the use of

EdgeR from RNA-seq analysis of differential expression to

diverse types of genomic count data arising from ChIP-

seq experiments [49]. The data were first normalized using

trimmed mean of M-values (TMM) normalization method

and manually inputted total mapping reads [50]. Using

Edger built-in functions we could then compute the nor-

malized read abundance. EdgeR was then used to make a

pooled comparison L1, Alu, SVA enriched samples versus

input samples, where L1, Alu, SVA were at background

levels (see EdgeR tutorial for pooled comparisons). EdgeR

analysis yielded the log2 fold changes for ChIP with re-

spect to input and an associated p-value for each repetitive

element subfamily. The p values were corrected using an

FDR correction using the method described by Storey

et al. [51].

Analysis of ENCODE ChIP-seq datasets for enrichment to

repetitive elements

Raw data for RNA Polymerase ChIP-seq experiments was

downloaded in FASTQ from the ENCODE data consor-

tium or the European Nucleotide Archive (for complete list

see Additional file 2: Table S1) [14-17,24,52]. TFIIIB factor

components Bdp1, Brf1, Brf2, and SNAP45 ChIP-seq data

was obtained from ENCODE and published datasets

[15-17]. K562 ChIP-seq data for active and repressed chro-

matin marks was downloaded from ENCODE data con-

sortium [53]. ChIP-seq and input samples were mapped

uniquely to the genome (build hg19) using Bowtie1 short

read aligner [46]. Repetitive element analysis was con-

ducted as described above using RepEnrich software. The

fractional count output of RepEnrich was used for analysis

of RNA Pol II and III ChIP-seq data. The raw fractional

counts generated by RepEnrich for RNA polymerases in

human cell lines was analyzed using EdgeR bioconductor

package for statistically significant enrichment of repetitive

elements in ChIP-seq samples with respect to input [48].

The data was first normalized using TMM normalization

method and manually inputted total mapping reads [50].

EdgeR was then used to make a pooled comparison be-

tween RNA Polymerases ChIP-seq versus input using cell

line as an independent factor. EdgeR analysis yielded the

log2 fold changes for ChIP with respect to input and an

associated FDR value.

Detecting transcripts from repetitive elements in ENCODE

RNA-seq experiments

The RepEnrich method was extended to the analysis of re-

petitive element reads present in RNA-seq data. Three cell

lines were chosen to complement the analysis of RNA

polymerases and TFIIIB subunits: GM12878, HeLa, and

K562 cells. The RNA-seq data for GM12878, HeLa, and

K562 cells was generated as part of the ENCODE project

[18-20,54]. The data includes three sub-cellular compart-

ments including total RNA, cytosol, and nucleus. For each

cellular compartment we examined PolyA selected and

non-PolyA selected RNAs using duplicate samples. The

GM12878, Hela, and K562 cells were sequenced using 75

base pair paired-end reads. The analysis serves as an ex-

ample of how RepEnrich can also be applied to paired-end

data. Reads for all samples were trimmed to 50 base pair

paired-end, to avoid inconsistency in sequencing quality

present at 3′ distal end of reads from different samples.

All reads from each RNA-seq sample were mapped

uniquely to the human genome (build hg19) using Bow-

tie1. We used Bowtie1 for the analysis of RNA-seq because

repetitive element reads that map specifically to a splice

junction may be unreliable and highly ambiguous. By using

Bowtie1 rather than Tophat we simply excluded splice-

junction reads from our analysis. The alignments were an-

alyzed using RepEnrich and the fractional count output.
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Downstream analysis was similar to the analysis of ChIP-

seq data using EdgeR, with two key differences. First the

manually inputted library sizes were obtained by calcu-

lating the total mapping reads of STAR alignment BAM

files available through ENCODE data consortium using

samtools [48,55,56]. To identify significant differences in

subcellular compartments we built a GLM in EdgeR and

conducted comparisons within K562, HeLa, and GM12878

cell lines between the various compartments (all compari-

sons described in Additional file 2: Table S1). We decided

to treat cell line as a separate factor instead of a covariate

due to improved performance of the edgeR GLM model,

although both approaches yielded similar results.

Differential RNA expression analysis of repetitive element

subfamilies in prostate cancer

RNA-seq data from 14 prostate tumors and paired nor-

mal tissue was analyzed as follows [21]. The 90 bp

paired-end RNA-seq reads were mapped uniquely to the

human genome (build hg19) using Bowtie1. RepEnrich

fractional counts were analyzed using EdgeR as was

done for ENCODE RNA-seq data. The published total

mapping reads for the study were inputted to EdgeR. To

identify repetitive element subfamilies with significant

differences in tumor versus control we built a paired

GLM in EdgeR using individual as a covariate. The FDR

corrected significance values were obtained for the com-

parison between tumor and normal tissue. In addition,

we also calculated the log2 fold change for each individ-

ual tumor vs. normal matched tissue using the normal-

ized count values.

Visualizing coverage along a single repetitive element

subfamily consensus

To better examine coverage of repetitive element subfam-

ilies along the full length of the elements we built RepCon-

sensus, an extension of previous efforts to characterize

read coverage with respect to a consensus element with

added visualization tools [12]. RepConsensus is a package

independent of RepEnrich that can be used to visualize

coverage of reads along a consensus element. Alignment

parameters needed to be more relaxed such that reads

containing SNPs can still map to the consensus element

and reads that contain adjacent non-repetitive genomic se-

quence may also map. Consensus elements were down-

loaded from RepBase.org, including the human-specific L1

element L1Hs. To align reads to the L1Hs consensus we

used Bowtie2 local alignment mode (bowtie2 –no-unal -p

16 -N 1 –local -x L1Hs −1 pair1.fastq −2 pair2.fastq -S

out.sam). Local alignment mode can soft-clip the reads to

allow alignment, which helps align reads that may contain

adjacent non-repetitive genomic sequence. The –N 1 op-

tion allows for up to one mismatch in the seed sequence,

which aids in the mapping of reads containing SNPs

different from the consensus. We also build the back-

ground distribution of L1 family element genomic in-

stances that map to the L1Hs subfamily consensus using

these parameters. This is done to understand the degree

with which other highly related subfamilies (such as evolu-

tionarily recent primate-specific L1PA subfamilies) also

map to the L1Hs consensus. In addition, we can determine

the background distribution of L1 element lengths in the

genome. We map all the L1 family genomic instances to

L1Hs using the same parameters. Then we calculate the

cumulative distribution of L1 genomic instances start and

end sites with respect to the length of the L1Hs element.

This reveals a preponderance of 5′ truncated elements

consistent with what is known about L1 insertions, how-

ever, few elements contain 3′ truncations [57]. The infor-

mation regarding the start and end sites along the L1Hs

consensus is important when interpreting RNA-seq align-

ment to the consensus. To do the analysis of RNA-seq

data for prostate cancer, we mapped all the data for tumor

and normal matched control to the L1Hs consensus. Then

we computed the coverage along the L1Hs consensus

using bedtools. The data were normalized by the total

mapping reads and the paired calculation of log2 fold

change was computed along the length of L1Hs consensus

for each individual tumor.

Investigating the genic vs. intergenic contribution of L1Hs

and L1PA RNA-seq transcripts in prostate cancer

To approximate the genic and intergenic contribution of

transcripts we examined the reads that mapped uniquely to

the genome. We defined L1Hs and L1PA coordinates that

overlapped 99% within gene bodies and 99% overlapping

with intergenic regions using bedtools and Refseq hg19

gene annotations. Next we computed the coverage for

genic L1Hs and L1PA elements and intergenic L1Hs and

L1PA elements using bedtools. We summed the coverage

for genic L1Hs and L1PA elements and intergenic L1Hs

and L1PA elements and then computed the counts per mil-

lion for these two values without TMM normalization

using the total mapping reads. Finally for the paired tumor

and normal matched control we computed the log2FC for

tumor vs. normal from the normalized log2CPM values.

Availability of additional files

All data presented in this study was previously published

and is publicly available. For detailed summary of samples

used see Additional file 2: Table S1. The data is available

online through the ENCODE consortium (http://genome.

ucsc.edu/ENCODE/). Published datasets are available

through the NCBI Gene Expression Omnibus. Oler, A.J.

et al. [24] accession number: GSE20309, Canella, D.

et al. [15] accession number: GSE18184, and through

the European Nucleotide Archive Ren S. et al. [21] ac-

cession number: ERP000550.

Criscione et al. BMC Genomics 2014, 15:583 Page 15 of 17

http://www.biomedcentral.com/1471-2164/15/583

http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/


Additional files

Additional file 1: Figure S1. RepEnrich read counting strategies.

Figure S2. HMM parameters used in the ChIP-seq simulations.

Figure S3. Genome browser view of simulated data. Figure S4. Comparison

of counting strategies performance on Alu enriched simulated ChIP-seq data

for human chromosome 19. Figure S5. Comparison of counting strategy

performance over a wide-range of parameters for human chromosome 5.

Figure S6. Comparison of counting strategy performance over a wide-

range of parameters for human chromosome 10. Figure S7. Comparison of

counting strategy differential enrichment analysis predictions for ChIP-seq

data simulations over human chromosome 5. Figure S8. Comparison of

counting strategy differential enrichment analysis predictions for ChIP-seq

data simulations over human chromosome 10. Figure S9. Comparison of

counting strategy differential enrichment analysis predictions for real

ChIP-seq data. Figure S10. Representative genome browser view of

ENCODE enrichment tracks. Figure S11. Pol III promoter-type assignment.

Figure S12. ENCODE RNA Polymerases and differential RNA-seq analysis of

SINE, tRNA, and Satellite class elements. Figure S13. ENCODE RNA

Polymerases and differential RNA-seq analysis of DNA, LINE, and LTR class

elements. Figure S14. Summary of RNA polymerase II enrichment to LTR

retrotransposons in ENCODE cell-lines. Figure S16. Example of homology

between repetitive element L1PA subfamilies. Figure S17. Effect of read

length on repetitive element subfamily read assignment.

Additional file 2: Table S1. Description of publically available datasets

used in this study. Set 1–7 refers to how the datasets were grouped into

separate GLM models that were used in our analysis (see Methods).
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