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Abstract 
Understanding how new genes originate and integrate into cellular networks is key to 
understanding evolution. Bacteria present unique opportunities for both the natural history 
and experimental study of gene origins, due to their large effective population sizes, rapid 
generation times, and ease of genetic manipulation. Bacterial small non-coding RNAs 
(sRNAs) in particular, many of which operate through a simple antisense regulatory logic, 
may serve as tractable models for exploring processes of gene origin and adaptation. 
Understanding how and on what timescales these regulatory molecules arise has important 
implications for understanding the evolution of bacterial regulatory networks, in particular for 
the design of comparative studies of sRNA function. Here we introduce relevant concepts 
from evolutionary biology and review recent work that has begun to shed light on the 
timescales and processes through which non-functional transcriptional noise is co-opted to 
provide regulatory functions. We explore possible scenarios for sRNA origin, focusing on the 
co-option, or exaptation, of existing genomic structures which may provide protected spaces 
for sRNA evolution. 
 
Introduction 
 
Far from being relics of a lost RNA world (1) , most bacterial non-coding RNAs (ncRNAs) 
appear to be relatively recent innovations, with only a handful that are involved in translation, 
transcription, and translocation exhibiting deep conservation (2)  ( Figure 1). One class of 
bacterial ncRNA that appears to be exceptionally dynamic over evolutionary time are the 
small non-coding RNAs (sRNAs) - functionally heterogeneous transcripts of around 50-500 
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nucleotides, the majority of which appear to base-pair with mRNA targets to affect 
translation and/or mRNA stability (3) . Many of these functions are mediated by 
RNA-binding proteins, such as Hfq (4) , though some operate by sequestering RNA-binding 
proteins, such as the global regulator CsrA (5)  or RNA polymerase (6) .  
 

 
Figure 1: broadly conserved ncRNAs in bacteria. These ncRNAs are involved in core 
cellular processes: Translation (ribosomal RNAs, tRNAs, RNAse P, and tmRNAs), 
regulation of transcription (the 6S RNA, aka SsrS) and translation (TPP riboswitch, aka 
Thi-element), and protein export (the Signal Recognition Particle (SRP) RNA, aka 4.5S). 
Conserved ncRNAs were identified by phylogenetic distribution of ncRNA annotations in the 
Rfam database (Hoeppner et al. 2012). 
 
The development of RNA-seq-based techniques to identify transcripts has led to an explosion 
of uncharacterised putative sRNAs (7) , with whole-genome screens regularly reporting 
hundreds of novel sRNAs per genome (8–11) . While functional roles for sRNAs are well 
established in the Proteobacteria Escherichia coli and Salmonella enterica, the continuing 
discovery of sRNAs in other phyla, such as Cyanobacteria (12)  and Firmicutes (13) , indicate 
that sRNA-based regulation is prevalent across the bacterial phylogeny.  
 
While sRNAs appear to be a widespread feature of bacterial transcriptomes, individual sRNA 
loci themselves are generally not. BLAST-based analyses of Escherichia (14) , Salmonella 
(10,15) , Listeria (16)  and Campylobacter (17)  sRNAs indicate that the majority are order or 
genus-specific, with some specific to serovars or even strains. It could be argued this result is 
an artifact of the sensitivity of homology search tools, as the lower bound for local alignment 
of nucleotide sequences is around ~50-60% sequence identity (18) , and sRNAs may be 
relatively robust to mutation given that their function is primarily attributed to ‘seed regions’ 
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of complementarity to their targets that may be as short as 6-8nt (19,20) . However, 
phylogeny-wide analysis of ncRNA conservation with more sensitive methods, including 
both profile hidden Markov models (HMMs) and curated covariance models (CMs) from the 
Rfam database (21) , suggests a similar overall pattern of narrow conservation, with a sharp 
drop in the number of conserved ncRNAs at the genus to family level (22)  ( Figure 2). It is 
important to note that this analysis will overestimate conservation, since Rfam families are 
overwhelmingly constructed from conserved sequences. This lead us previously to propose a 
narrow ‘Goldilocks Zone’ where comparative transcriptomics studies would be most useful 
for identifying conserved transcripts (22) . 
 

      
 
Figure 2: A comparison of conservation of RNA and protein families. Rfam and Pfam 
families were identified in 2,562 bacterial genomes using the Infernal and HMMER 
packages, respectively. The maximum phylogenetic distance spanned by each family was 
estimated using pairwise phylogenetic distances estimated from 16S rRNA sequences. Top: 
The percentage of Rfam (N=331) or Pfam (N=6,671) families that are conserved over 
phylogenetic distances ranging from 0 (closely related) to 0.6 (very divergent). The shaded 
regions under the curves indicate the “Goldilocks” phylogenetic ranges where between 95 
and 75% of RNA (light red) or protein (light blue) families are conserved. Bottom: The 
distribution of phylogenetic distances between randomly sampled pairs of genomes at 6 
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taxonomic ranks: genus, family, order, class, phylum and kingdom. At each taxonomic level, 
pairs were chosen from e.g. the same genus but different species, and so on up the taxonomic 
hierarchy until pairs of species from the same kingdom (bacteria) and different phyla are 
shown. Figure adapted from (Lindgreen et al. 2014). 
 
The near universal presence of a large cohort of non-coding transcripts paired with their 
apparent narrow conservation raises a number of questions: where do these transcripts come 
from? How are they turned over? How many serve biological functions in the cell, and how 
many are just transcriptional noise? Two excellent recent reviews have addressed how 
specific features of sRNA evolution may have evolved (23,24) . Here we aim to complement 
this previous work by investigating evolutionary dynamics underlying the generation and 
removal of transcriptional noise, and how this could serve as the raw stuff from which 
functional sRNAs emerge. 
 
Transcriptional noise 
 
What do we mean by transcriptional noise?  The term has been used to discuss ‘noisy’ 
interactions between the transcriptional machinery and DNA, in at least four distinct senses 
(25) . In this article, we use it in the sense of non-functional transcripts that accumulate over 
evolutionary time due the interaction of permissive transcriptional machinery with random 
mutations in the genome (26)  — however, it should be noted that even the concept of 
“function” is subject to multiple, competing definitions (27) .  
 
To clarify the sense in which we use the term transcriptional noise here, the Random Genome 
Project, a thought experiment proposed by Sean Eddy (28) , is illustrative. Given the low 
information content of many protein binding sites, we would expect that any sufficiently long 
random DNA sequence will reproducibly interact with DNA-binding proteins, such as 
transcription factors. This will lead to the generation of discrete non-coding transcripts 
indistinguishable from native transcripts, including for instance condition-specific expression 
or affinity for RNA-binding proteins. By extension, random mutation will similarly lead to 
the generation of new, discrete transcripts over time as the accumulation of small changes 
lead to the generation of promoter-like sequences. Some proportion of these nascent 
transcripts will fix in the population depending on the effectiveness of selection and the 
dynamics of the host genome (Figure 3), discussed below. Importantly in the absence of 
perfectly efficient selection, a beneficial function is not a necessary condition for fixation. 
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Figure 3: Fixation of transcriptional noise. At Time=0: The top panel shows hypothetical 
genome sequences for four related bacterial strains (a, b, c, d) with regions of varying 
conservation along the sequence. The middle panel shows transcripts produced by each strain 
- dark colours indicate coding sequences, light colours indicate non-coding sequences. Noise 
transcripts are common, but not consistently expressed across strains and typically have low 
expression levels. At Time=N (bottom panel): In descendents of strain ‘C’ (C1, C2, C3, C4, C5) 
a noise transcript from the ancestral ‘C’ has been fixed due to drift, a selective sweep or 
population bottleneck.  
 
For the purposes of this review, we define transcriptional noise as transcription which does 
not have a fitness benefit to the organism in its native environment(s) sufficient to drive 
fixation, providing a null model for observed transcripts (29) . While testing this condition in 
multicellular eukaryotic cells may prove difficult, the development of high-throughput 
approaches to phenotyping has made testing this condition theoretically tractable in most 
bacteria (30,31) , limited mainly by our understanding of and ability to model bacterial 
ecology. In particular, technologies like transposon insertion sequencing (32) , CRISPRi (33) , 
and robotics platforms (34)  are increasingly making it easier to test the fitness effects of 
genes in a range of physiologically relevant conditions. Applying these technologies in 
concert with experimental evolution (35)  may allow for the calibration of the selection 
coefficients necessary to maintain a gene in a given population, at least under laboratory 
conditions. 
  
Estimating the rate of de-novo sRNA evolution 
 
So, how likely is the de novo generation of a functional sRNA? We may never know for 
certain, but attempting to establish the parameters necessary to estimate this probability can 
help to clarify our expectations and direct investigation. In this back-of-the-envelope spirit, 
we have tried to lay out the key parameters for sRNA generation in Figure 4A, inspired by a 
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similar Drake-like equation for the de novo generation of protein-coding genes (36) . This 
comprises three primary components: the transcript birth rate and the transcript death rate, 
which together establish the reservoir of transcriptional noise available for selection to act on, 
and finally the probability of acquiring a beneficial function. The fitness effects of any 
particular nascent transcript on the host organism will represent a draw from the distribution 
of potential effects (Figure 4B).  
 
 
 

 
 
Figure 4A: Estimating the probability of de novo sRNA formation with a Drake-like 
equation . Details of each term are discussed in detail in the text. Briefly, the probability of 
sRNA formation has been decomposed into three relatively independent factors, the 
probabilities of transcript birth, transcript death and of acquiring a beneficial function. These 
probabilities can be further decomposed, into e.g. the probabilities of promoter and 
terminator acquisition, as well as acquiring stabilisation factors for the transcript birth 
probability. 
4B Theoretical distribution of fitness for potential transcripts of detrimental (red), 
neutral (grey) or beneficial (green) function. While P[beneficial function] and P[detrimental 
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function] are not independent, they represent extremes of the distribution of potential 
transcript fitness, separated by a large number of transcripts with a neutral or ‘weak’ function. 
(Based on Figure 1, (37) )   
 
Transcript birth requires three basic components: promotion, termination, and transcript 
stabilization. A number of lines of evidence suggest the generation of spontaneous promoters 
is common. Many bacterial promoter sequences are degenerate, and transcription factor 
binding sites may arise from just a few point mutations (38) . This result has recently been 
confirmed by experimental evolution in E. coli (39) , showing that random sequences can 
rapidly acquire promoter activity. These theoretical and laboratory results are supported by 
observations that antisense promoters are common (40,41)  but rarely conserved (42,43) , 
suggesting a continuous turn-over in these sites. 
 
It is less clear how transcriptional termination might evolve. Classical Rho-independent 
terminators are complex, requiring both a stable stem loop and poly-uridine stretch (44) . It is 
not obvious how they might frequently arise, though the frequent occurrence of inverted 
repeat structures in intergenic sequences suggests it may be possible (45,46) . These repeats, 
through their provision of secondary structure, might also serve as a reservoir of important 
stability determinants by protecting nascent transcripts from exonuclease digestion (47) .  The 
acquisition of secondary structures and/or associations with protective proteins may be 
especially important for the survival of non-coding transcripts, which unlike mRNAs do not 
benefit from protection against degradation by the presence of translating ribosomes (48) .  
 
Alternatives to de novo evolution of Rho-independent terminators include the deposition of 
terminators by mobile elements (49) , or through genomic rearrangements, either of which 
could provide a space in which an sRNA could evolve. A recent study has indicated the 
generation of a genus-specific non-coding transcript through just such a rearrangement in 
Salmonella (50) . Additionally, Rho-dependent termination appears to occur in a number of 
intergenic transcripts (51) , although as the features promoting Rho recruitment are less well 
understood, the evolutionary implications of this are unclear. 
 
Once expressed, a nascent transcript has to survive long enough to acquire function. 
Pervasive transcription from non-coding regions is now an accepted feature of eukaryotic 
genomes (52) , and it appears selective constraints in eukaryotes are weak enough to allow for 
nearly every possible non-coding transcript to be sampled over evolutionary time (53) . 
However, relative to eukaryotes, bacteria have extremely compact genomes with gene 
contents averaging ~88% (54) , reducing the sequence space available for the generation of 
intergenic transcriptional noise. This is driven by two factors: differences in mutational biases 
between bacteria and eukaryotes, and differences in the selective pressures felt by each.  
 
In contrast to eukaryotes, there is a strong bias towards deletion mutations in bacteria in the 
absence of selection (55,56) . This has important consequences for genome dynamics and the 
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maintenance of non-coding sequence. In populations with small effective population sizes 
where selection is less effective, including many important human pathogens (57) , genetic 
drift leads to reduced genome sizes (58) . In these bacteria, transcript removal will be 
dominated by the neutral removal rate. Somewhat counterintuitively, this can also lead to a 
higher proportion of non-coding sequence in these genomes, due to the accumulation of 
pseudogenes and proliferation of selfish elements (59) .  
 
On the other hand, some environmental bacteria have large population sizes, increasing the 
effectiveness of selection in these populations compared to eukaryotes, and their smaller cell 
size increases their sensitivity to the energetic costs of gene maintenance relative to 
eukaryotes (60) . Large population sizes may also make nascent transcripts more vulnerable to 
clonal interference (61) , where neutral or weakly beneficial mutations are rapidly removed 
through competition with other, more beneficial mutations that arise independently. As it is 
unlikely a novel transcript will be sufficient to confer a competitive advantage organism 
without time for selection to act, the rate of acquisition of beneficial mutation in the 
population as a whole will impact the rate of transcript fixation.  

 
Additional fitness costs may be imposed by the biochemical activity of the noise transcript 
itself, for instance through stochastic interactions with other transcripts (62)  — these may be 
increased by the relative lack of compartmentalization in bacterial cells. This selective 
pressure results in a reduced non-coding:coding DNA ratio (59) , in extreme cases leading to 
another form of genome reduction driven by streamlining (63)  as observed in the SAR11 
clade of marine bacteria (64) .  
 
The final term in our Drake-like equation is acquisition of a beneficial function. Biochemical 
activity, in the form of affinity for other transcripts or RNA-binding proteins, would likely 
exist in any random transcript. However, such interactions are unlikely to have a strong effect 
on fitness prior to selection (Fig 4B). The observation that for many sRNAs, at least one of 
their target sites either pre-dates or originated at the same time as the sRNA (14)  certainly 
suggests acquisition of interactions can be rapid; however, the majority of random 
interactions are likely detrimental to organismal fitness. As has been suggested for eukaryotic 
microRNAs (65) , bacterial noise transcripts that survive initial purification by selection are 
likely to have weak initial interactions with target genes, and low-level, condition-specific 
expression. Initial analysis of expression of young non-coding transcripts in Escherichia coli 
and Salmonella enterica suggest this is in fact the case (66) , and it has similarly been 
estimated that most antisense transcripts are expressed at levels too low to have major 
impacts on fitness (67) . This line of argument also suggests affinity for RNA-binding proteins 
should follow a similar pattern. The ability to increase the effectiveness of interactions 
through acquisition of protein chaperone affinity (see box 1: RNA-binding proteins ) may 
provide a route to rapidly tune the activity of a nascent sRNA.  
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The terms in our sRNA Drake-like equation are of course all contingent on the specifics of 
each bacterial genome. Some examples include that genome-wide A/T content may make 
promoters and terminators more or less likely to occur (67) , or that large effective population 
sizes may make selection more effective in some bacteria than others (59) , or that the 
presence of RNA-binding proteins may make sRNA-based regulation more effective in some 
lineages than others (14) . These terms can also be locally manipulated, by taking advantage 
of existing genomic features through the process of exaptation. 
 
Box 1: RNA-binding proteins 
Many sRNAs require RNA-binding proteins, such as Hfq, CsrA, and ProQ, to function (68) . 
For instance, association with Hfq can greatly increase the rate of formation and the stability 
of sRNA-mRNA duplexes (69,70) , and is necessary for the function of many E. coli and 
Salmonella trans-acting sRNAs. The requirement for Hfq appears to vary by genome, GC 
content, and sRNA composition, although studies are limited to a small number of model 
organisms with functionally characterised sRNAs (71) . Other sRNAs, such as the Csr/Rsm 
family, appear to operate primarily through titration of RNA-binding proteins themselves (5) . 
 
RNA-binding protein interaction sites appear to be relatively simple. Hfq has multiple 
binding surfaces with different sequence specificities (72) , primarily consisting of A- or 
U-rich tracts. The CsrA binding site is similarly small, requiring just a GGA sequence within 
a hairpin loop (5) , though other factors can influence binding affinity (73) . The size and 
degeneracy of these motifs may provide a quick route to acquiring chaperone affinity, and 
many may require only small modifications of existing structures. For example, mutagenesis 
and CLIP-seq studies have shown that many Rho-independent terminators associate with Hfq 
(74,75) .  
 
Exaptation in the evolution of sRNAs 
 
Exaptation is the process through which existing features, sometimes referred to as 
pre-adaptations, are co-opted to provide a new function not previously selected for (76) . In 
the simplest case, processes such as duplication or horizontal transfer allow for 
transplantation of transcribed sequences, removing the need for de novo evolution of 
promoters, terminators, or stability determinants and hence increasing the probability of 
sRNA generation. Importantly, both duplications and horizontal insertions provide 
non-deleterious sequences that are already adapted to the host, presenting a low-risk route to 
acquiring new ncRNAs.  
 
Recognizable sRNA duplications appear fairly commonly (77) . N otable examples including 
the Qrr sRNAs involved in quorum sensing in Vibrio species (78), the PrrF sRNAs involved 
in regulating iron homeostasis in Pseudomonas (79) , and the OmrA/B sRNAs in Escherichia 
coli (80) . Such duplications could allow duplicated sRNAs to diverge and gain new functions 
through a process of subfunctionalization and neofunctionalization (81) . While the functional 
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divergence of duplicated sRNAs remains understudied, there are some tantalizing indications 
of regulon drift between duplicated sRNAs (77) .  
 
Many bacterial genomes contain horizontally-acquired genomic islands (GIs) (82) , often 
referred to as pathogenicity islands in virulent bacteria, which are frequent sources of novel 
sRNAs (83–85). The existence of such sRNAs is perhaps unsurprising, as many common 
mobile elements utilize ncRNA regulation to control their replication and integration (86) , or 
to ensure their maintenance, such as the sRNA antitoxins in Type I toxin-antitoxin systems 
(87) . One recent example of an apparent exaptation event is the art200 antisense RNA 
derived from tnpA transposase loci that has been suggested to regulate Salmonella 
Typhimurium virulence by targeting invasion genes (88) , and may affect gastrointestinal 
colonization of mice (89) . 
 
Protected spaces for sRNA evolution 
 
Beyond the direct duplication or import of transcriptional units, reusing the existing genome 
architecture provides another way to tweak the parameters of our Drake-like equation so as to 
increase the rate of sRNA formation. In particular, mRNA operon structures harbor expressed 
untranslated regions (UTRs) that are protected from large-scale deletions by the selective 
pressures maintaining the associated coding sequences, eliminating the need for de novo 
evolution of transcription and lowering the probability of transcript removal. Recent work has 
suggested ncRNAs may be generated from within coding sequences themselves (90) , though 
no specific function has been proposed for these fragments as of yet. 
 
3′ UTRs at the end of mRNA transcripts appear to be a particularly fertile ground for sRNA 
formation, with several instances well characterized (91) .  The presence of rho-independent 
terminators at many gene ends provides a natural termination point, stable secondary 
structure, and possibly a precursor to an Hfq binding site (Box 1). The natural degradation of 
mRNA transcripts may by chance liberate such a stable fragment which is then free to acquire 
a secondary function. Indeed, such a stepwise evolution has been proposed for the cpxQ 3′ 
UTR derived sRNA (92)  ( Figure 5A). The expression of such sRNAs would be tied to the 
expression of their parent transcript, possibly limiting the functional space the sRNA could 
explore. A natural extension then would be the evolution of independent cryptic promoters 
that could unlink expression of the sRNA from the parent transcript. This is the case for the 
sRNA MicL expressed from the 3′ UTR of the cutC locus (Figure 5B), which has been 
shown to be responsible for the copper sensitivity phenotype previously attributed to the 
coding sequence (93) . Intriguingly, MicL is transcribed as a 308 nucleotide sequence that is 
then processed to its active 80 nucleotide length. In fact, many well characterized intergenic 
sRNAs, for instance ArcZ (94) , are similarly processed. Are these processing sites genomic 
relics of a past 3′ UTR origin?  
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Many 5′ UTRs contain transcriptional attenuators, including riboswitches, RNA 
thermometers, peptide leaders, and RNA-binding protein motifs (95) . As a side-effect of 
attenuation some of these generate stable, or at least abundant, short transcripts that are then 
free to explore new functional spaces (Figure 5C), though this would be constrained by the 
need to conserve the original attenuator function. Functionally characterised examples of 
such dual-purpose cis/trans regulators have been found derived from attenuators involved in 
virulence, such as the riboswitch-derived SreA in Listeria monocytogenes (96) , and the ATP- 
and charged tRNA-sensitive leader sequence of the Salmonella mgtCBR operon (97) . 
 
Beyond coding sequences, core ncRNAs such as ribosomal and tRNAs are often arranged in 
operons that are processed to generate functional molecules, producing various intermediates 
and byproducts along the way. The tRNAs have been proposed as promising candidates in 
particular (98) , as a number of tRNAs and their intermediates have been suggested to interact 
with Hfq (99,100) . Spacers excised from pre-tRNA transcripts during tRNA processing have 
been indeed found to act as sRNA sponges (Figure 5D) (101) . Given the consistency of the 
tRNA complement across related species (102)  it is unclear how often such transcripts might 
make the transition to independent sRNAs through duplication or decay of tRNA function, 
though the presence of enigmatic expressed repeats in the vicinity of some tRNA loci (103) 
suggests it may be possible. A recent report has additionally suggested a role for Hfq in 
ribosomal RNA biogenesis (104) , in particular providing evidence for Hfq binding of spacer 
regions flanking the mature 16S sequence, again raising the question of whether these 
sequences could acquire secondary functions.  
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Figure 5 : Routes for sRNA evolution within “protected spaces” - Functional genomic 
elements sheltered from deletion by selection on neighbouring genes, that may increase the 
probability of sRNA evolution. These include known examples from within 3′ UTRs, either 
derived from processing products (A), or cryptic promoters (B); from existing cis-regulatory 
elements in 5′ UTRs (C); or from existing ncRNAs, such as tRNAs (D).  
 
 
Future Directions  
 
Here we have attempted to sketch the outline of a quantitative understanding of sRNA birth. 
Understanding the parameters of this equation will take significant work. One promising 
approach is through molecular archeology, attempting to infer the sequence of events that 
have lead to the present sRNA repertoire through the examination of increasingly plentiful 
bacterial genome sequences. Already, this approach has provided the first putative examples 
of sRNA creation through recombination (50) . Scaling this approach to the entire sRNA 
complement of a bacterial clade will be a challenge, with complications we have not touched 
upon in this review — for instance, the selective pressures we have examined are not constant 
but change as a bacterial population is exposed to different environmental circumstances. As 
many bacterial sRNAs appear to be involved in stress responses, these variable selective 
pressures may be particularly important to consider. Perhaps by combining this molecular 
archeology approach with new techniques for high-throughput characterization of sRNA 
function (7) , we can begin to understand how transcriptional noise is domesticated to provide 
regulatory functions in the bacterial cell. 
 
A second approach is to look forward, rather than back. Can we manipulate the terms of the 
sRNA formation equation to make it more likely that we observe the emergence of a 
functional bacterial sRNA under laboratory conditions? Could engineering the protected 
spaces we have reviewed here, coupled with the application of experimental evolution 
(35,105) , provide a means for us to directly and reproducibly drive the de novo birth of a 
gene? It is unclear how feasible this might be, but then aspirations do not need to be 
attainable to be useful. 
 
 
Perspectives 

● Short non-coding transcripts are omnipresent in bacterial transcriptomes; however, 
their conservation tends to be limited. 

● This implies that these transcripts are generated and removed regularly over the 
course of evolution. 

● This dynamic pool of nonfunctional noise transcripts may serve as one reservoir on 
which selection can act to produce functional sRNAs; the specific rates of noise 
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transcript birth and death are likely depend on the characteristics of the bacterial 
population under study. 

● Non-coding regions of the genome protected from removal by their association with 
functional sequences, for example the UTRs of coding sequences or processing 
intermediaries of tRNAs, may provide a more stable reservoir for sRNA evolution 
through exaptation. 

● Understanding the parameters governing the process of functional sRNA generation 
will require the application of both backward-looking (molecular archaeology) and 
forward-looking (synthetic biology and experimental evolution) approaches. 
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