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Abstract

Background: It is well known that many malignancies, including pancreatic cancer (PC), possess the ability to evade the
immune system by indirectly downregulating the mononuclear cell machinery necessary to launch an effective immune
response. This knowledge, in conjunction with the fact that the trancriptome of peripheral blood mononuclear cells has
been shown to be altered in the context of many diseases, including renal cell carcinoma, lead us to study if any such
alteration in gene expression exists in PC as it may have diagnostic utility.

Methods and Findings: PBMC samples from 26 PC patients and 33 matched healthy controls were analyzed by whole
genome cDNA microarray. Three hundred eighty-three genes were found to be significantly different between PC and
healthy controls, with 65 having at least a 1.5 fold change in expression. Pathway analysis revealed that many of these genes
fell into pathways responsible for hematopoietic differentiation, cytokine signaling, and natural killer (NK) cell and CD8+ T-
cell cytotoxic response. Unsupervised hierarchical clustering analysis identified an eight-gene predictor set, consisting of
SSBP2, Ube2b-rs1, CA5B, F5, TBC1D8, ANXA3, ARG1, and ADAMTS20, that could distinguish PC patients from healthy controls
with an accuracy of 79% in a blinded subset of samples from treatment naı̈ve patients, giving a sensitivity of 83% and a
specificity of 75%.

Conclusions: In summary, we report the first in-depth comparison of global gene expression profiles of PBMCs between PC
patients and healthy controls. We have also identified a gene predictor set that can potentially be developed further for use
in diagnostic algorithms in PC. Future directions of this research should include analysis of PBMC expression profiles in
patients with chronic pancreatitis as well as increasing the number of early-stage patients to assess the utility of PBMCs in
the early diagnosis of PC.
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Introduction

Pancreatic cancer (PC) remains a lethal malignancy with an overall

five-year survival rate of only about 5% [1]. A significant contributor

to the poor prognosis of PC patients is the failure to detect the tumor

at an early and potentially resectable stage. It is estimated that only

8% of PC cases are diagnosed with tumors localized to the pancreas,

while only 15–20% are considered resectable. Further, of those

patients who have had their tumor resected, only 20% live more than

5 years post-diagnosis [2]. The most common cause of death post-

resection is distant metastases; local recurrence is rare. Although

studies showing prolonged survival in PC patients are rare, it is

unquestionable that early detection and resection of PC, especially in

a localized state, would likely yield a significant increase in survival.

Designing an early diagnostic test for PC however, presents a
particular challenge owing to the relative rarity of the disease and

the fact that the disease often remains asymptomatic until an

advanced stage. Ideally, an early diagnostic test for PC would be

minimally invasive, and relatively inexpensive, while being

sufficiently sensitive to identify all or most cases of PC. When

combined with a highly specific confirmatory test, it could

potentially permit the early identification of patients with

resectable disease.

CA19-9 is currently the only marker approved by the FDA for
use in PC. However, while CA19-9 is useful as a marker of disease
burden, it lacks both sensitivity and specificity (approximately 80%
and 73% respectively) as a diagnostic marker [3–8]. Nonetheless, it
remains the gold standard against which every potential biomarker
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is compared. In recent years, several new promising biomarkers
have emerged which can potentially detect early stage PC either in
the tissues (MUC4, MUC1, CECAM1) or in blood (MIC-1,
NGAL, telomerase and microRNAs) [9]. However, none of these
potential biomarkers are free of significant imperfections, showing
sensitivities and/or specificities that are either poor or inconsistent
between studies. Thus, there is a clinical need for novel markers
for the early diagnosis of PC.

Peripheral blood mononuclear cells (PBMCs) comprise the

circulating mononuclear cells, including monocytes, T-cells, B-

cells, and natural killer (NK) cells, and have emerged in recent

years as surrogate markers of several diseases including inflam-

matory (e.g. preeclampsia, rheumatoid arthritis, and chronic

pancreatitis) and malignant (chronic lymphocytic leukemia and

renal cell carcinoma) diseases [10–14]. However, their role in the

detection and prognostication of solid tumors remains limited. In

the present study, we hypothesized that an alteration in the global

gene expression profile of PBMCs occurs in patients with PC and

identification of PC-specific gene subsets in PBMCs could be

potentially useful in the early detection of this malignancy.

Recent developments have permitted the development of gene

chips containing a set of disease specific genes for either the

diagnosis or predicting prognosis of several malignancies including

breast and esophageal cancers [15–18]. The results of our study

suggest that an eight-gene predictor set (selected from 383

differentially expressed genes out of 39,200 genes) can distinguish

between PC and healthy individuals with a sensitivity and

specificity of 83% and 64% respectively.

Materials and Methods

Study population
The study of blood-based biomarkers in PC was approved by the

Institutional Review Board (IRB) at the University of Nebraska

Medical Center (UNMC) (IRB number 209-00). Written informed

consent was obtained from all patients and controls before enrollment

into the study. For this study, 26 PC patients and 33 age, race, and

gender matched healthy controls were recruited. A total of 35 samples

were obtained from the PC and 33 from the healthy group. Baseline

demographic information for both groups is detailed in Table 1.

The diagnosis of PC was based on a positive biopsy of a pancreatic

mass or a metastatic lesion. The PC patients were further classified as

localized (stage 1 and 2a) or non-localized (stage 2b and higher), pre-

or post-surgery, and pre- or post-chemotherapy. A patient was

classified as being post-surgery if they had undergone a pancreat-

icoduodenectomy before the sample was drawn. All other samples,

including samples from patients who never had surgery during the

course of their disease, were classified as pre-surgery. Any sample

drawn before the patient had undergone any chemotherapy for PC

was classified as pre-chemotherapy. If the patient had ever had

chemotherapy for PC, regardless of whether or not that patient was

undergoing chemotherapy at the time the sample draw, the sample

was classified as being post-chemotherapy. For patients in whom

multiple samples were drawn on different dates, all samples were

used in the data analysis unless explicitly stated in the results section.

PC staging was based on one of four criteria: 1) pathological

staging post-surgery, 2) MRI/CT/ultrasound staging, 3) endo-

scopic staging, or 4) biopsy of metastatic disease.

Isolation of total RNA from PBMCs
PBMCs were isolated from whole blood using the PharmLyse

RBC lysis solution (BD, San Jose, CA) according to the

manufacturer’s instructions. Total RNA was extracted using the

Qiagen RNAeasy RNA isolation kit (QIAGEN, Valencia, CA,

USA) and then converted to cDNA using the SuperScript II

cDNA synthesis kit (Invitrogen, Carlsbad, CA) according to a

previously published protocol [19].

cDNA microarray analysis of global gene expression
profile of PBMCs

Microarray analysis was performed by the UNMC microarray

core facility using established lab protocol on a Phalanx whole

genome cDNA microarray containing 30,275 features probing for

approximately 22,000 unique genes. A universal human reference

(Stratagene, Cat: 740000, Cedar Creek, TX) was used as the

reference against which all samples were normalized.

Statistical Analysis
Log2 transformation was applied to all ratios followed by

normalization to ‘‘center’’ each array using Lowess smoother

through BRB ArrayTools developed by Dr. Richard Simon and

Amy Peng [20]. Any gene in which the percent of spots missing or

filtered out exceeded 50% was excluded. Duplicate spots were not

averaged but treated as separate genes for analysis. Mixed effects

models were then used to determine which genes were significantly

differentially expressed between the PC and the healthy control

groups, allowing for a 10% false discovery rate. Diagnosis group

(cancer vs. normal) was included in the model as a fixed effect and

a random subject effect was also included to account for multiple

samples per person.

Hierarchical clustering analysis of the arrays based on similarity

of expression profiles was performed using the normalized and

log2-transformed data. Clustering was done using Gene Cluster

version 3.0, using the ‘‘centered’’ Pearson correlation similarity

metric and complete linkage clustering method, and visualized

using Java TreeView.

Validation of microarray data by Q-RT PCR
The microarray results were validated by quantitative real time

PCR (Q-RT PCR). All Q-RT PCR reactions utilized SYBR green

based chemistry. For validation, six of the most differentially

expressed genes: 3 up-regulated (ANKRD22, ANXA3, ARG1) and 3

down-regulated (FCER1A, GRAMD1C, and MS4A1) by microarray

were chosen. Validation was done in a randomly selected subset of

the original samples (submitted for microarray analysis) that

included nine healthy controls and twelve PC patients. The fold-

change in gene expression was determined by the 2-DDCt method

using the same human reference RNA as that employed in the

microarray. To determine the correlation between the microarray

and Q-RT PCR results, we calculated the median fold change in

expression (for a given gene) for PC vs. healthy controls, and

compared it to the fold change seen by microarray to determine

whether the gene was still differentially expressed in the same

direction.

Correlation of gene signatures with clinicopathologic
characteristics in PC

To determine if there is the differential expression of genes in

PC patients correlates with patient characteristics, a mixed effects

model was applied to the PC samples that were grouped according

to the following criteria: surgical status (pre- vs. post-surgery),

chemotherapy status (pre- vs. post-chemotherapy), history of type-

II diabetes mellitus prior to the diagnosis of PC (present vs.

absent), location of the tumor (head vs. body/tail), and stage of PC

(localized vs. non-localized, and metastatic vs. non-metastatic).

Significant genes were chosen based on an allowable false

discovery rate of less than 10%. Stage 1a and 2a PC were

Transcriptional Profiling of PBMCs in PC
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considered localized, while stages 2b, 3, and 4 PCs were

considered non-localized, and stage 4 tumors were considered

metastatic. For two patients recruited into the study, information

on tumor stage, tumor location, and history of type-II diabetes

mellitus could not be obtained.

Identification of a gene predictor set that distinguishes
PC from healthy individuals

BRB-ArrayTools Version 3.8.0 was used to analyze all possible

combinations of the 21,671 valid genes identified by microarray to

determine whether a genetic signature could be identified that

would distinguish PC patients from healthy controls with the

optimum combination of sensitivity and specificity. The micro-

array data for 24 randomly chosen PC samples and 20 healthy

controls was entered into the analysis. Genes to be selected for the

predictor set were required to be significantly different between the

PC and healthy control groups with a significance level of

p#0.0001 and with a fold difference expression between the two

groups $1.5. Cross validation of the gene predictor set was

repeated 1 times K-fold (K = 10). The gene predictor set arrived at

through these methods was analyzed by various methods,

including Compound Covariate Predictor, Diagonal Linear

Discriminant Analysis, 1-Nearest Neighbor, 3-Nearest Neighbors,

Nearest Centroid, Support Vector Machines, and Bayesian

Compound Covariate Predictor. Of these, the Compound

Covariate Predictor gave the best predictive capabilities using

the gene predictor set and consequently used.

Validation of the gene predictor set
Once the predictor set was established, it was validated in a

second set of randomly selected PC and healthy samples. The

statistician was blinded to the identity of the samples. Applying the

cut-off obtained through the Compound Covariate Prediction

method, the samples were classified as either ‘‘PC’’ or ‘‘non-PC’’.

The analyzer (M.B.) was then unblinded and the accuracy of the

prediction determined by comparison with the actual diagnosis.

We also applied the same equation to a subset of pre-

chemotherapy pre-surgical PC patients to determine the ability

of the predictor set to correctly classify patients into PC vs. non-

PC. This is important as the influence of chemotherapy and/or

surgery on the gene expression profile of PBMCs cannot be ruled

out. Further, the latter group of patients represents the ideal

patient population in whom the test, if validated would be applied

in a clinical setting.

Table 1. Demographics of PC Patients and Controls used in the study.

Characteristic PC Healthy Controls

Samples

Number of patients 26 33

Number of PBMC samples 35 33

Gender

Male 13 (50%) 6 (18.2%)

Female 13 (50%) 22 (66.7%)

Unknown 0 (0%) 5 (15.2%)

Age

Mean (6SD) 64.4 (69.0) 55.7 (66.1)

Unknown 0 (0%) 5 (15.2%)

Race

Caucasian 21 (80.8%) 25 (75.8%)

Non-Caucasian 3 (11.5%) 3 (9.1%)

Unknown 2 (7.7%) 5 (15.2%)

Stage at Diagnosis

Resectable (stage 1- 2a)-patients recruited into study 4 (15.4%) N/A

Resectable (stage 1-2a)-blood samples drawn 6 (17.1%) N/A

Non-resectable (stage 2b or higher)-patients recruited into study 20 (76.9%) N/A

Non-resectable (stage 2b or higher)-blood samples drawn 27 (77.1%) N/A

Stage unknown-patients recruited into study 2 (7.7%) N/A

Stage unknown-blood samples drawn 2 (5.7%) N/A

Surgical Status

Pre-surgical 23 (65.7%) N/A

Post-surgical 12 (34.3%) N/A

Chemotherapy Status

Pre-chemotherapy 15 (42.9%) N/A

Post- Chemotherapy 20 (57.1%) N/A

Undergoing Chemotherapy at time of Sample Collection 10 (28.6%) N/A

Abbreviations: PC, pancreatic cancer; PBMC, peripheral blood mononuclear cells.
doi:10.1371/journal.pone.0017014.t001
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Results

After normalization and filtering of the microarray data, 21,671

genes remained for analysis. Of these, 383 genes were found to

have a significant differential expression between PC patients and

healthy controls (Table S1). Of these, 65 genes were observed to

have a differential expression $1.5-fold between the two groups

(Tables 2–3).

A hierarchical clustering of the microarray data identified two

clusters of samples, shown in Figure 1 and in dendrogram form in

Figure 2, a PC group and a healthy control group. Two PC

samples however clustered with the healthy controls, while one

healthy control fell into the cluster containing the majority (32/35)

of the PC samples. Additionally, the gene expression profile of one

PC sample did not cluster with either the healthy controls or the

other PC samples.

Q-RT PCR Validation
Six of the most differentially expressed genes (ANKRD22,

ANXA3, ARG1, FCER1A, GRAMD1C, and MS4A1) were chosen

for validation by Q-RT PCR in a randomly selected subset of 21

PBMC samples (comprised of 12 PC samples and 9 healthy

control samples from the original 68 used in the microarray). The

median fold expression for five of them was in the same direction

as that in the microarray, giving us a validation rate of 83%.

FCER1A was the only gene for which a positive correlation was not

obtained. The results are depicted in Table 4.

Correlation of PBMC expression profile with
clinicopathologic characteristics

To determine whether a correlation existed between the PBMC

gene expression profile in PC patients and clinically relevant

patient characteristics, we divided the PC samples based on

surgical status (23 pre-surgery vs. 12 post-surgery), history of

chemotherapy (15 pre-chemotherapy vs. 20 post-chemotherapy),

diagnosis of type-II diabetes mellitus prior to the diagnosis of PC

(14 with a positive history vs. 19 with a negative history), location

of the primary tumor (25 head vs. 8 body/tail), and stage of the PC

at diagnosis (6 localized (Stage 1/2A) vs. 12 non-localized non-

metastatic (Stage 2B/3) vs. 15 metastatic (Stage 4) PC). However,

we did not observe any significant difference in gene expression

between any of these patient groups applying the criterion of an

FDR ,10%.

Gene Predictor Set
We next investigated whether we could identify a minimal gene-

predictor set that would accurately discriminate PC cases from

healthy controls. To do this, 44/68 samples comprising 24 PC and

20 healthy control samples were randomly chosen. All 21,671

Table 2. Genes Shown to be at Least 1.5 Fold Upregulated in PBMCs of PC Patients.

Gene symbol Unique id FDR Fold-change (PC/HC) Gene Information and Normal Gene Function

TMEM22 PH_hs_0038059 0.069 4.812 Transmembrane protein 22, Function unknown

MMP8 PH_hs_0024515 0.076 2.351 Neutrophil protein used to degrade type I, II and III collagens

ARG1 PH_hs_0025817 0.021 2.106 Catalyzes the hydrolysis of arginine to ornithine and urea

DEFA4 PH_hs_0000344 0.086 2.098 A neutrophil protein thought to be involved in host defense

SLC27A3 PH_hs_0025689 0.039 2.024 Protein with acyl-CoA ligase activity for LCFA and VLCFA

USH1C PH_hs_0023496 0.086 2.022 May be involved in protein-protein interaction

FBXW12 PH_hs_0035757 0.067 1.893 Substrate-recognition component of SCF-type E3 ubiquitin ligase

CRISP3 PH_hs_0024631 0.027 1.891 A secreted protein found in the salivary gland, pancreas and prostate

USP30 PH_hs_0026074 0.084 1.819 Responsible for c-terminal deubiquitination

ANXA3 PH_hs_0021146 0.039 1.793 Important in cell growth/signaling and possibly anti-coagulation

HIST1H4I PH_hs_0029514 0.071 1.786 A member of the histone H4 family

PROS1 PH_hs_0003988 0.054 1.751 Helps to prevent coagulation and stimulates fibrinolysis

GYG1 PH_hs_0010438 0.015 1.722 Involved in glycogen anabolism

ANKRD22 PH_hs_0032205 0.063 1.676 Ankyrin repeat domain-containing protein 22

GADD45A PH_hs_0004630 0.025 1.596 Responds to environmental stresses through activation of p38/JNK

F5 PH_hs_0002589 0.010 1.587 Coagulation factor V which circulates in plasma

KIF15 PH_hs_0023756 0.062 1.577 A member of the kinesin-like protein family

ST14 PH_hs_0003679 0.031 1.551 Degrades extracellular matrix and may play a role in cancer invasion

HIST1H2BG PH_hs_0034684 0.072 1.546 A member of the histone H2B family

CLU PH_hs_0025525 0.038 1.545 A secreted protein of unknown function

C19orf59 PH_hs_0010615 0.093 1.523 Speculated to be involved in regulating mast cell differentiation

ATP9A PH_hs_0019278 0.053 1.512 Catalyzes ATP+H2O+phospholipid(In) = ADP+phosphate+phospholipid

FKBP5 PH_hs_0000782 0.046 1.511 Plays a role in immunoregulation, protein folding, and trafficking

ASGR2 PH_hs_0000166 0.092 1.510 Mediates endocytosis of plasma glycoproteins

SLC37A3 PH_hs_0025758 0.025 1.500 Sugar phosphate exchanger 3 (Solute carrier family 37 member 3)

Abbreviations: PC, pancreatic cancer; HC, healthy controls; PBMC, peripheral blood mononuclear cells; FDR, false discovery rate.
doi:10.1371/journal.pone.0017014.t002
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genes for each of the samples were entered into the analysis. An

eight-gene predictor set was obtained and comprised of SSBP2,

Ube2b-rs1, CA5B, F5, TBC1D8, ANXA3, ARG1, and ADAMTS20.

Using the Compound Covariate Prediction Method (CCPM), this

predictor set gave a correct classification of PC vs. non-PC with an

accuracy of 73%, providing a sensitivity of 71% and a specificity of

75%. The weights given to each gene using CCPM were –4.97,

–4.83, –4.38, 4.43, 4.44, 4.53, 4.84, and 4.96 respectively with a

threshold value of 38.98 such that if Siwixi was . the threshold for

a sample it was predicted as being from a PC patient (where wi =

gene weight, xi = log2 gene expression intensity).

Validation of Gene Predictor Set
Using this eight-gene predictor set, classification of a sample as

being either PC or a healthy control was attempted in a blinded

manner using a sample set consisting only of the samples that were

Table 3. Genes Shown to be at Least 1.5 Fold Downregulated in PBMCs of PC Patients.

Gene symbol Unique id FDR Fold-change (PC/HC) Gene Information and Normal Gene Function

CCR5 PH_hs_0031237 0.021 0.66 A chemokine receptor expressed by T cells and macrophages

MTAC2D1 PH_hs_0003705 0.058 0.66 Tandem C2 domains

UBASH3A PH_hs_0010839 0.052 0.66 Promotes accrual of activated TCRs, EGFR and PDGFRB on cell surface

AKT3 PH_hs_0023601 0.013 0.66 An AKT serine/threonine kinase stimulated by PDGF, insulin, and IGF1

PRF1 PH_hs_0000291 0.097 0.65 Perforin, non-specifically lyses target cells

PKIA PH_hs_0020144 0.014 0.65 Potent competitive inhibitor of cAMP-dependent protein kinase activity

PLEKHA1 PH_hs_0014922 0.058 0.65 Binds specifically to PtdIns3,4P2, highly expressed in the pancreas

AQP3 PH_hs_0012796 0.003 0.65 A water channel protein that also transports of nonionic small solutes

CD1C PH_hs_0000177 0.027 0.65 Mediates the presentation lipid and glycolipid antigens to T cells

LRRC8C PH_hs_0002135 0.020 0.64 Leucine-rich repeat-containing protein 8C

GZMA PH_hs_0005055 0.027 0.64 A T cell and NK cell serine protease, possibly needed for target cell lysis

SH2D1A PH_hs_0009133 0.008 0.64 An inhibitor of SLAM self-association

PTPN4 PH_hs_0023771 0.010 0.63 Responsible for protein tyrosine dephosphorylation

CD5 PH_hs_0003778 0.028 0.63 May act as a receptor in regulating T-cell proliferation

PTPRCAP/
CORO1B

PH_hs_0009399 0.071 0.63 PTPRCAP is a regulator of T- and B-lymphocyte activation.
CORO1B regulates leading edge dynamics and cell motility in fibroblasts

FOSB PH_hs_0002354 0.001 0.63 Dimerizes with JUN proteins to form the AP-1 complex

LCK PH_hs_0000240 0.009 0.63 Essential to TCR-linked signal transduction and T-cell proliferation

LY9 PH_hs_0024619 0.015 0.63 May participate in adhesion between T lymphocytes and accessory cells

CD3G PH_hs_0000306 0.095 0.63 CD3-gamma, important in T-cell response to antigen recognition

LEF1 PH_hs_0003252 0.027 0.62 Regulates T-cell receptor alpha enhancer function

CA5B PH_hs_0039389 0.001 0.62 A zinc metalloenzyme that catalyzes the hydration of carbon dioxide

CD3D PH_hs_0005206 0.020 0.62 CD3-delta, important in T-cell response to antigen recognition

TRAT1 PH_hs_0031781 0.069 0.61 Stabilizes the TCR/CD3 complex at the surface of T-cells

LAT PH_hs_0026523 0.019 0.61 Recruits downstream proteins near the site of TCR engagement

KIAA0748 PH_hs_0002788 0.085 0.61 hypothetical protein LOC9840

CD3G PH_hs_0030882 0.004 0.60 CD3-gamma, important in T-cell response to antigen recognition

GPR115 PH_hs_0022672 0.059 0.60 An orphan G-protein coupled receptor 2

VSIG9 PH_hs_0033271 0.017 0.59 Thought to assist in regulating T-cell dependent B-cell responses

TRAV20/
TRDV2

PH_hs_0036583 0.068 0.58 T cell receptor alpha variable 20
T cell receptor delta variable 2

CD160 PH_hs_0004672 0.005 0.58 Associates with NK cell and CD8 T-cell cytolytic activity, found on T cells

DYRK2 PH_hs_0010380 0.004 0.57 Activates TP53 to induce apoptosis in response to DNA damage

EBI2 PH_hs_0040414 0.043 0.57 Predicted to encode a GPCR related to the thrombin receptor, found on B cells

MS4A1 PH_hs_0025653 0.015 0.56 Helps in the development and differentiation of B-cells into plasma cells

CCR3 PH_hs_0026576 0.061 0.55 A receptor for C-C type chemokines

EDG1 PH_hs_0009283 0.026 0.54 Possibly involved in regulating endothelial cell differentiation

FCER1A PH_hs_0000108 0.058 0.53 An IgE receptor found on Mast cells central to allergic disease

EBI2 PH_hs_0000092 0.001 0.52 Predicted to encode a GPCR closely related to the thrombin receptor

GRAMD1C PH_hs_0037695 0.009 0.52 GRAM domain containing 1C, Function unknown

Abbreviations: PC, pancreatic cancer; HC, healthy controls; PBMC, peripheral blood mononuclear cells; FDR, false discovery rate.
doi:10.1371/journal.pone.0017014.t003
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not used to create the predictor set (i.e. 24/68). In this blinded

validation, using the equation derived above, the gene predictor

set accurately predicted the diagnosis of PC with 73% accuracy,

giving a sensitivity of 83% and a specificity of 64%.

In an attempt to further test the potential diagnostic utility of

this gene predictor set, a new subset of samples, comprising of 12

PC samples obtained from patients who were both pre-

chemotherapy and pre-surgery, along with an equal number of

randomly selected healthy controls, were again blinded and

analyzed to predict their classification. This time the eight-gene

predictor was able to correctly classify these samples 79% of the

time, giving an 83% sensitivity and 75% specificity of diagnosis.

Discussion

In recent years it has been repeatedly demonstrated that genetic

expression in PBMCs is altered in the context of malignancy

[13,14,21,22]. This observation of an altered PBMC genetic

expression profile in cancer patients was first reported in diffuse

large B-cell lymphoma and chronic lymphocytic leukemia and

later extended beyond hematological malignancies through the

analysis of PBMC expression profiling in patients with advanced

renal cell carcinoma (RCC) [13–14]. In both hematologic

malignancies and in RCC, it was reported that the variation in

gene expression between patients with disease and healthy controls

was much greater than the inter-sample variation observed for the

healthy patients alone, suggesting that PBMCs could be useful

surrogate markers with potential diagnostic and prognostic

applications in cancer. Further, in RCC, it was shown that an 8-

gene classifier set developed from the differentially expressed genes

could predict the diagnosis of malignancy with 100% accuracy

[14].

Recently, Huang et al. have reported that a differential gene

expression profile does exist in PBMCs of PC patients [22]. While

this study also used microarray and Q-RT PCR validation to

establish differential genetic expression in the peripheral blood of

PC patients, its purpose was to establish potential biomarkers that

could differentiate newly diagnosed diabetic patients with PC from

diabetics without PC. While the study authors reported that 48

genes were differentially expressed between PC patients and

healthy controls by microarray, only 8 samples were used in each

of the two groups and they provided no further information

regarding these genes. The smaller sample size and a lack of

blinded validation further contrast this study with the present

report. Additionally, we did not find any significantly differentially

expressed genes based on history of either prior surgery or

chemotherapy, history of type-II diabetes mellitus, or stage of PC

in our study. Importantly, the study by Huang et al. utilized

GAPDH as the housekeeping gene against which the expression of

every gene was normalized. In our study, however, we noted that

GADPH was one of the most significantly overexpressed genes in

PBMCs of PC patients. Upregulation of GAPDH has also been

reported in several malignancies including ovarian, thyroid,

hepatocellular and pancreatic cancers [23–26]. The choice of

the ideal internal reference gene in studies investigating potential

clinical biomarkers by microarray remains an important question

that will need to be addressed in future studies.

This present study represents the first in-depth analysis of the

transcriptome of PBMCs from patients with PC compared to

healthy controls, and only the third instance of such profiling for

solid tumors in general. Establishment of such differential

expression has the potential to yield a rich compendium of

potential genes for further pursuit as novel diagnostic or

therapeutic targets. Further, the gene networks identified in our

study offer novel insights into the disregulation of the immune

system in PC (Figure 3). With the fact that only 15–20% of PC

patients are diagnosed with resectable disease and given the

stubborn resistance of the malignancy to chemo and radiotherapy,

early detection of the disease offers the greatest hope for an

immediate impact on improving patient prognosis.

The potential for PBMC differential gene expression profiling,

or of a pre-determined gene predictor set established from it, to be

useful for early diagnosis of PC is theoretically quite high;

especially when it is considered that the two most likely

mechanisms underlying this differential expression are the

immune system’s recognition of the cancer and the evasion of

the immune system by the cancer. While other biomarkers, such as

CA19-9, are released from the cancer cells and thus rise with

Figure 2. Dendrogram of sample relatedness. A dendrogram of sample relatedness from the cluster analysis shown in Figure 1 using the
statistically significant differentially expressed genes. Samples clustered into main groups, aligning well with classification of PC or HC. PC PBMC
samples are indicated by grey bars while healthy PBMC samples are denoted by yellow bars.
doi:10.1371/journal.pone.0017014.g002

Figure 1. Global gene expression analysis in PBMCs from PC patients and healthy controls. Hierarchical cluster analysis of global gene
expression profile by cDNA whole genome microarray comparing healthy control and PC samples using all genes found to be statistically
differentially expressed between the two groups (FDR,0.10, n = 383 genes). In no instance were samples pooled. Red indicates genes whose
expression is elevated relative to the universal human reference (used to normalize all arrays) and green indicates genes whose expression is
decreased relative to the universal human reference.
doi:10.1371/journal.pone.0017014.g001
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increasing tumor burden, differential expression in PBMCs may

begin, at least partially, as soon as cancer immunogenicity or

immune evasion is established. Immune system evasion has been

shown to be initiated as early as pre-malignant disease in PC, thus

supporting the premise that analysis of differential gene expression

in immune cells may offer the ability to detect a neoplastic lesion

even before it gains invasive capabilities [27].

While this study itself does not attempt to look at the early

diagnostic capabilities of PBMCs, the results obtained from the

work are a necessary first step towards a multiplexed assay based

on alteration of gene expression in PC for potential application in

high-risk groups [28]. The fact that an 8-gene predictor set was

able to establish a sensitivity of 83% with a specificity of between

64 and 75% in a blinded set of samples is promising and will need

to be validated in a large sample set. While the number of samples

is too small to perform any further detailed analysis, the fact that

the sensitivity for the gene predictor set did not decrease when

applied to PC patients prior to chemotherapy or surgery points

toward the potential utility of this 8-gene predictor set in a

diagnostic setting, the main area in which CA19-9 is lacking [4–8].

Additionally, PBMC gene expression analysis is no more invasive

of a test than CA19-9, both being amenable to a simple

venopuncture, and the overall analysis need not be substantially

more expensive than current clinical methods for testing CA19-9.

Figure 3. Potential effect of the differential genetic expression of PBMCs. All genes shown were found to be down-regulated greater than
1.5 fold. The respective amount of differential expression per gene as well as the stated function can be found in Table 3. The differential expression
of these genes indicate that there is a global decrease in cell number, activation, and effectiveness of the adaptive immune system in patients with
PDAC that may have a significant effect on both their morbidity and mortality. Dashed lines indicate the association of cells while solid lines indicate
the differentiation or proliferation of a particular cell type. Numbers represent individual points of interaction between the genes and the immune
differentiation and response pathway: 1, Presentation of antigen to Th0 cells; 2, Differentiation of Th0 cells down the Th1 or Th2 pathway; 3, Immune
cell proliferation; 4, Stimulation of cytotoxic T-cell activity by Th1 cells; 5, Stimulation of humoral immunity by Th2 cells; 6, Recognition and response
to target cells by cytotoxic T lymphocytes (CTL); 7, Differentiation of naı̈ve B-cells; 8, Lysis of target cells by CTLs. Letters represent individual cell
populations: a, Cytotoxic T-lymphocytes (CTL); b, B-cells. Decrease in genes associated with points a and b may represent a decrease in their
respective associated cell’s population.
doi:10.1371/journal.pone.0017014.g003

Table 4. Median fold change (PDAC/Normal) of selected
genes chosen for validation by Q-RT PCR.

Gene Name Microarray Q-RT PCR

ANKRD22 1.68 1.16

ANXA3 1.79 1.71

ARG1 2.11 1.95

FCER1A 0.53 1.24

GRAMD1C 0.52 0.49

MS4A1 0.56 0.62

Microarray results were validated by quantitative real time PCR (Q-RT PCR) using
SYBR green based chemistry. 3 genes shown to be up-regulated by microarray
(ANKRD22, ANXA3, ARG1) and 3 down-regulated (FCER1A, GRAMD1C, and
MS4A1) genes were validated in a randomly selected subset of samples that
included 9 healthy controls and 12 PC patients. The fold-change in gene
expression was determined by the 2-DDCt method using the same human
reference RNA as the standard employed in the microarray. Correlation
between microarray and Q-RT PCR results were determined through calculation
of the median fold change for the PDAC and healthy samples by Q-RT PCR and
comparing it to the fold change seen by microarray to determine whether the
gene was differentially expressed in the same direction using both methods.
doi:10.1371/journal.pone.0017014.t004
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If only the 8-gene classifier set is used for analysis, PBMC testing

could be accomplished through the use of mini-cDNA microarray

chips or through multiplex PCR reactions, both of which are

clinically viable and would be fairly simple to add to the repertoire

of tests provided by a standard clinical lab.

Beyond the diagnostic potential of this PBMC differential

expression profile, the normal functions and direction of

differential expression of each of the genes, especially the 65 that

were $1.5 fold differentially expressed, hints at potential

pathophysiologic mechanisms. 18/65 genes have the potential to

directly decrease T-cell proliferation, T-cell receptor signaling, or

cytotoxic T-lymphocyte (CTL) cytotoxicity while four can directly

modulate a decrease in B-cell activation/differentiation or signal a

decrease in the number of circulating B-cells. Three of the genes

can directly decrease the cytotoxicity of NK cells, and two can

decrease macrophage response. Taken together, the results of our

study suggest that PC is characterized by a significant decrease in

the ability of the immune system to respond to non-self antigens,

including tumor associated antigens, as summarized in Figure 3. A

partial hint about the mechanisms underlying this immune

compromise may come from the observed upregulation of

ARG1, observed to be upregulated more than 2-fold in PBMCs

of PC patients. An expression of ARG1 is closely associated with

an increase in the presence of myeloid derived suppressor cells

(MDSCs) [29]. MDSCs are classically known to decrease CTL

response, mostly through destabilization of T-cell receptors and

decreased expression of certain CD3 subtypes, ultimately leading

to CTL apoptosis. However, MDSCs are known to specifically

cause the down regulation of CD3Z, which was not shown to be

differentially expressed in PBMCs analyzed in this study [29].

Additionally, MDSCs are known to cause a funneling of the

immune system away from cellular immunity and toward humoral

and allergic-response immunity, a property that is not clearly

represented in the PBMC differential expression data. Conversely,

it appears (from the alteration in gene expression) that the number

of circulating B-cells is decreasing while both FCER1A, a receptor

central to allergic response, and MS4A1, which plays a role in B-

cell to plasma cell differentiation, are down regulated. Thus, while

MDSCs may play a role in modulating the differential expression

seen in PBMCs of PC patients, they likely operate in concert with

other mechanisms to affect a down-regulation of both the body’s

cellular and humoral immune response machinery.

A comparison of the gene expression profile observed in our

study with that reported in other diseases revealed little similarity

with other benign (pre-eclampsia, rheumatoid arthritis (RA), and

chronic pancreatitis (CP)) and malignant diseases (RCC). In total,

6 genes (CD160, GOLGA8B, RABGAP1L, MMP8, CRISP3, and

ARG1) that were shown to be differentially expressed in PBMCs of

patients with pre-eclampsia were also differentially expressed in

PBMCs of PC patients, with 4 (CD160, MMP8, CRISP3, and

ARG1) being differentially expressed in the same direction (1%

commonality) [10]. Twelve genes (BTG2, CCND3, CD151, CD7,

CLU, CTSB, KLRK1, SPN, GSTO1, PCMT1, PRDX6, and PRF1)

that were shown to be differentially expressed in PBMCs of

patients with RA were also differentially expressed in PBMCs of

PC patients, 8 of which (CCND3, CD151, CLU, CTSB, GSTO1,

PCMT1, PRDX6, and PRF1) were in the same direction (2%

commonality) [11]. Two genes (PDE3B and GADD45a) found to

be differentially expressed in PBMCs of CP patients were also

differentially expressed in PBMCs of PC patients, neither of which

being differentially expressed in the same direction (0% common-

ality) [12]. However, there was no similarity in the list of

significantly differentially expressed genes between PC and RCC

[14]. These results strongly suggest that the gene expression

observed in the present study is highly specific to PC, and thus

increases the potential applicability of differential expression

profiling of PBMCs as a diagnostic tool in PC.

To investigate the possibility that the gene expression profile in

PBMCs is a reflection of the genes expressed in the PC tissues

itself, we also investigated if there was a similarity between the

differentially expressed genes identified in our study and those

identified by microarray analysis in pancreatic primary tumors. In

total it was found that, of the 383 differentially expressed genes

found in PBMCs of PC patients, only 4 (ADAM9, IMP3, BTG2,

and G6PD) were also shown to be differentially expressed in PC

primary tissues, with 2 (ADAM9 and BTG2) being differentially

expressed in the same direction (0.5% commonality) [30]. Thus it

appears that, in general, the gene expression in PBMCs does not

mimic that in the primary tumor.

Further, if circulating tumor cells from the pancreas were the

cause of the differential expression profile seen in this study, it would

be expected that genes normally expressed in pancreatic cells but

not peripheral blood cells would be identified by microarray. While

this was the case for USH1C, CRISP3, and USP30, all genes that are

expressed at low to moderate levels in the pancreas but not

expressed normally in the peripheral blood, PLEKHA1, a gene that

is normally highly expressed in the pancreas but only expressed at

very low levels in the peripheral blood, was shown to be down

regulated in our samples, adding to the evidence that the differential

expression we report truly is from PBMCs.

In conclusion, we have shown that a differential gene expression

profile exists in PBMCs of patients with PC. Further, an 8 gene

classifier set has been established which provides, in a blinded

subset of our samples, an improved sensitivity over CA19-9 with a

similar specificity [3,4,6,28]. Significantly, there was no decrease

in sensitivity when employing samples from patients prior to any

form of chemotherapy or surgery. Comparison with other studies

points toward this differential expression profile as being specific to

PBMCs and particularly to PC. Additionally, the differential gene

expression seems to represent a systemic compromise of both

cellular and humoral immunity, although it does not point toward

one particular underlying mechanism.

Based on these results, future research is needed to establish the

various mechanisms behind PC-induced differential PBMC

genetic expression and how much effect this differential expression

actually has on the body’s immunologic capabilities. Further, the 8

gene classifier set must be tested in an expanded set of both healthy

controls and PC patients as well as in a set of non-PC patients with

benign/malignant disease to clarify its sensitivity and specificity.

PC sample selection for such a study should be biased toward early

stage patients to elicit the diagnostic capabilities of PBMC

differential expression in the patient population in which it has

the greatest likelihood of having a positive impact on patient

outcome. Due to the difficulty of attaining ample specimens from

early stage patients, preliminary study of early stage PC diagnosis

through PBMC expression analysis may be first carried out in a

spontaneous PC murine model which recapitulates the preneo-

plastic and early neoplastic processes seen in human PC as a proof

of concept [31,32]. Upon conclusion of such a murine study,

resources could then be expended in the recruitment and testing of

enough early stage human PC subjects for ample analysis to be

conducted. Once PBMC expression has been diagnostically

validated in an expanded sample set, the gene set could also be

used to characterize potential prognostic abilities of the PBMC

differential expression in PC.

Though further studies are necessary to contingently state the

diagnostic and prognostic potential of PBMC gene expression

profiling in general and of the 8 gene PC classifier set in particular,
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our current results are promising and point toward the potential for

peripheral blood mononuclear cells to be highly efficacious tools for

improving the prognosis of one of the world’s deadliest cancers.

Supporting Information

Table S1 Genes Shown to be Statistically Differentially
Expressed in PBMCs of PDAC Patients (FDR,0.10).
Global expression profiles of peripheral blood mononuclear cells

from 26 pancreatic ductal adenocarcinoma (PC) patients and 33

age, race, and gender matched healthy controls were compared by

whole genome microarray. After normalization, filtering, and

statistical analysis, 383 genes were found to be significantly

differentially expressed (FDR,0.10) between the two groups.
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