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Abstract 

Background: Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient 

starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional 

regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a 

systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced 

metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii.

Results: We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were 

co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response 

was triggered within 12 min that initiated growth arrest through activation of key signaling pathways, while simul-

taneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-

mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the 

accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events 

were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had 

not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregula-

tion of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Nota-

bly, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a 

different regulatory program. The TRN model described here is available as a community-wide web-resource at http://

networks.systemsbiology.net/chlamy-portal.

Conclusions: In this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition 

from N starvation to lipid accumulation. The program coordinates sequentially ordered transcriptional waves that simul-

taneously arrest growth and lead to lipid accumulation. This study has generated predictive tools that will aid in devising 

strategies for the rational manipulation of regulatory and metabolic networks for better biofuel and biomass production.
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Background
Green algae hold great promise for the manufacture 

of renewable biofuels [1]. �e relatively low yield of 

algae-based biofuels, however, does not currently make 

them an economically viable replacement for fossil fuels 

[1]. Several strategies have been used to improve bio-

fuel production, from strain design to improvements 

in growth, harvesting and refining techniques [2], but a 

large gap still needs to be bridged. Green algae accumu-

late lipids when subjected to nutrient depletion [3–10] 
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and other stresses [11–13]. In parallel, nutrient starvation 

also causes growth arrest, thus limiting biomass accu-

mulation, which is a major disadvantage for large-scale 

biofuel production. Consequently, an obvious strategy 

for the improvement of microalgae biofuel yield would 

be the decoupling of lipid accumulation from growth 

arrest at the molecular level. Such a rational strain design 

strategy requires a comprehensive mechanistic under-

standing of the transcriptional regulatory network (TRN) 

controlling lipid accumulation in order to identify the 

key regulatory elements (e.g., transcription factors (TFs) 

or metabolic bottlenecks), which coordinate the transi-

tion from nutrient starvation to growth arrest and lipid 

accumulation.

Our understanding of lipid accumulation in green algae 

has recently benefited from the use of high-through-

put technologies to track genome-wide transcriptional 

changes during state transitions. In this regard, C. rein-

hardtii has emerged as the de facto model organism for 

algal biofuels research [12]. �e early analyses of whole 

transcriptome changes in C. reinhardtii [6] uncovered 

the main hallmarks of nitrogen (N) starvation and lipid 

accumulation, i.e. the downregulation of protein syn-

thesis and photosynthetic apparatus and redirection of 

primary carbon (C) metabolism. Subsequent high-res-

olution time series transcriptome experiments revealed 

that the TF nitrogen-responsive regulator-1 (NRR1) is 

in part responsible for the transcriptional changes that 

result in lipid accumulation during N starvation [14]. 

More integrative views of the phenotype transition dur-

ing N starvation [15, 16] highlighted the importance of 

early transcriptional responses and gradual upregulation 

of alternative pathways of N assimilation and C metabo-

lism. In addition to transcriptomic approaches, quantita-

tive proteomic methods have provided unique insights 

into the global metabolic adjustments that drive N star-

vation-induced lipid accumulation, uncovering complex 

activity changes in the enzymes responsible for C and N 

metabolism [17–19]. For instance, proteomics analysis of 

lipid bodies revealed lipid accumulation to be a complex 

process involving lipid synthesis and recycling, as well 

as lipid trafficking and signaling to maintain homeosta-

sis in microalgae oil bodies [20]. Further comprehensive 

analysis integrating transcriptome and proteome meas-

urements revealed the multilevel responses of N-sparing 

mechanisms [21]. Metabolomics studies have also been 

conducted to characterize C. reinhardtii response to N 

starvation, which revealed differential flux signatures 

under N deprivation [22–24]. Finally, other macronutri-

ent starvation studies, such as for sulfur (S) and phos-

phorus (P), have allowed for comparative transcriptome 

analyses. While several characteristic physiological 

changes are shared across N, S and P starvations (e.g., 

photosynthesis apparatus downregulation, reduced 

C fixation and lipid accumulation), other acclimation 

responses are nutrient-specific, such as the upstream 

controllers of the starvation response signaling circuit 

(e.g., SNRK2.1 or PSR1 [25, 26]), triacylglycerol (TAG) 

accumulation temporal profiles [27] and thylakoid mem-

brane conservation [28].

�e availability of high-throughput data sets pro-

vides an opportunity to use computational modeling 

approaches to obtain added insight into the process of 

lipid accumulation. In particular, the computational 

inference of TRNs from genome-wide gene expression 

datasets should be achievable, as a suite of methods are 

available to construct such network models [29–31]. For 

instance, the cMonkey algorithm [32], a semi-supervised 

biclustering algorithm that uses gene expression data 

guided by biologically informative priors and de novo cis-

acting gene regulatory element (GRE) detection, has been 

successfully applied to numerous organisms across all 

domains of life to build accurate and predictive models 

of TRNs [33–38]. High-throughput data sets also provide 

an opportunity to study the behavior of metabolism at a 

systems level. In this regard, constraint-based modeling 

approaches such as flux balance analysis [39] have proved 

to be particularly valuable for genome-scale investiga-

tion of metabolic flux distributions and for the develop-

ment of metabolic engineering strategies in many species 

[40–45] while they can also serve as valuable platforms 

for data integration [46].

To obtain mechanistic insight into the transcriptional 

response of C. reinhardtii to N starvation, we employed 

a systems-level approach to unravel the program respon-

sible for coordinating transcriptional changes that occur 

from the onset of N starvation to lipid accumulation. 

�rough the integration of multiple publicly available 

data sets and resources, we used cMonkey to build the 

first mechanistic TRN model for the transition from N 

starvation into lipid accumulation in C. reinhardtii. To 

assess the impact of transcriptional regulation affect-

ing metabolism, we integrated the TRN model with a 

genome-scale metabolic model for C. reinhardtii [47]. 

�is enabled prediction of metabolic flux distribu-

tions during N starvation, as well as the identification of 

putative targets for increasing lipid yield. Furthermore, 

we conducted a comparative analysis of the expres-

sion pattern of key metabolic genes between N, S and 

P starvation experiments to identify common and con-

dition-specific responses to those macronutrient star-

vations. �us, through the integration of co-regulated 

modules identified from the time course analysis into a 

comprehensive metabolic model of C. reinhardtii, we 
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obtained a systems-level understanding of how genome-

wide transcriptional changes induced by N starvation 

drive the metabolic shift into a lipid accumulation state.

Results and discussion
To infer a N starvation-specific TRN model for C. rein-

hardtii, we integrated complementary data from: (1) the 

C. reinhardtii genome annotation [48] (version 5.5, avail-

able from Phytozome [49]), (2) the highest resolution 

time series transcriptome data set available for C. rein-

hardtii N starvation [14], and (3) a network of functional 

protein–protein interactions [50]. Analysis of the publicly 

available transcriptome data resulted in the identification 

of a set of 2,147 transcripts that showed significant differ-

ence in abundance between the onset of N starvation and 

lipid accumulation (see “Methods”; Fig.  1a). �is set of 

transcripts constitutes the core network of transcription-

ally regulated genes responsible for sensing N starvation 

and orchestrating the subsequent physiological shift to 

the lipid accumulation phenotype. We analyzed this set 

of 2147 transcripts with cMonkey [32] and identified a 

total of 215 putatively co-regulated modules, which were 

organized into a high confidence TRN model that can be 

explored through the interactive Chlamy Network Portal 

[51] (Fig. 1b).

�e 215 co-regulated transcriptional modules were 

combined based on their temporal profiles to gener-

ate an ordered sequence of 31 transcriptional waves of 

two types: monotonic, in which transcript abundances 

changed and achieved new steady state levels; and tran-

sient, in which transcript abundances changed transiently 

before returning to the pre-starvation levels (Fig.  1c, d, 

Additional file 1: Table S1). �e sizes of these transcrip-

tional waves ranged from 17 to 340 transcripts, while 

their temporal schedules ranged from 12 min (min), for 

the earliest responding transcriptional modules, through 

8 h (h) for late-stage responses. We labeled each wave by 

the timestamp at which the mean gene expression level of 

the corresponding transcriptional module(s) crossed the 

twofold threshold relative to the pre-starvation condi-

tion. �e overall schedule of changes can be divided into 

three major stages of transcriptome transitions: early-

stage response from 0 to 18 min, which was characterized 

by changes in transcripts for N transport, cellular signal-

ing, ionic composition and protein translation; mid-stage 

response from 18 to 60  min, marked by the reorganiza-

tion of metabolism; and late-stage transition between 1 

and 8 h just before cells undergo a phenotypic state tran-

sition marked by lipid accumulation. We describe below a 

temporally organized summary of changes, with selected 

highlights of major events that occur at each of the three 

stages of the N starvation response (Table 1 serves as a 

reference for summary and highlights, and Additional 

file 1: Table S1 contains a comprehensive list of all tran-

scripts associated with each stage, wave and module).

The early-stage response: sensing a new environment

�e early-stage response occurred from 0 to 18 min, with 

the earliest consistent transcriptional change (>twofold) 

initiating at 12  min. �is stage included 442 transcripts 

in 32 co-regulated modules that were organized into 

6 waves –122 transcripts were in 3 waves that changed 

monotonically (105 upregulated (2 waves), 17 downreg-

ulated (1 wave)), while 320 transcripts were in 3 waves 

that changed transiently [118 upregulated (2 waves), 202 

downregulated (1 wave)] (Table 1, Additional file 1: Table 

S1). As expected, the earliest transcriptional changes 

were directly related to the N starvation response and 

included up to an 8-fold upregulation of 4 ammonium 

transporters and permeases (AMT3-5 and AMT8). In 

addition, transcripts encoding the mitochondrial car-

bonic anhydrase CAH5 and the ABC transporter HLA3, 

key metabolic proteins involved in the regulation of the 

C/N ratio homeostasis [52, 53], were among the earliest 

changing metabolic transcripts. �e early-stage response 

also appeared to be devoted to modulating intracellu-

lar ionic composition through the upregulation of 12 

membrane ion transporters, including Ca2+, Na+, K+, 

and Zn2+ transporters. Nineteen transcripts associ-

ated with signaling and modulation of growth and stress 

response were also upregulated, including transcripts of 

the mitogen-activated protein kinase (MAPK) pathway 

(e.g., PP2C, STK24, MAPK7), brassinosteroids biosyn-

thesis pathway (e.g., DET2 [54]), and the auxin pathway 

(e.g., Ran-binding protein 9 (Cre01.g007150) [55]). Tran-

scripts encoding proteins involved in protein degrada-

tion were also upregulated at this stage including at least 

10 transcripts associated with the ERAD/ubiquitination 

pathway (e.g., CDC48 [56] and Cre01.g038950, a Sep15 

domain protein [57]). Overall, 92 % of the transcriptional 

repression in the early-stage occurred transiently and 

mainly impacted ribosome biogenesis and RNA process-

ing proteins, including RNA methylation (Supplementary 

Table S1). �ese early-stage transcriptional changes likely 

set the stage for the major metabolic restructuring that 

occurs during the mid-stage response.

Mid-stage response: metabolic state transition

�e mid-stage response was comprised of 1203 differ-

entially regulated transcripts within 90 co-regulated 

modules. �ese modules were organized into 15 waves 

that changed between 24 and 60 min after N starvation 

(Fig.  1c, d). Of these transcripts, 856 changed mono-

tonically (304 were upregulated (4 waves), and 552 were 

downregulated (4 waves)) and 347 changed transiently 

(110 upregulated (3 waves), 237 downregulated (4 
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waves)). A significant fraction of the mid-stage transcrip-

tional response was devoted to metabolic N scavenging, 

as evidenced by the upregulation of 14 transcripts encod-

ing key metabolic enzymes involved in N scavenging 

from amino acids, nucleotides and polyamines (Table 2, 

Additional file  2: Table S2). Concomitantly, 12 tran-

scripts responsible for the key steps of purine, pyrimi-

dine, amino acids and polyamines biosynthesis were all 

downregulated (Additional file  2: Table S2). Targeted 

ubiquitin-mediated protein degradation during the early-

stage response might feed amino acids into these N-scav-

enging and recycling processes. Consistent with reduced 

biosynthesis of amino acids, 41 transcripts encoding 

components of the protein synthesis and folding machin-

ery were also downregulated (Table  2, Additional file  2: 

Table S2). Collectively these changes serve to mitigate 

the consequences of N starvation by conserving internal 

N resources for cellular sustenance upon growth arrest. 

Fig. 1 Transcriptional response of C. reinhardtii to N starvation and lipid accumulation. a Heatmap representation for the hierarchical clustering of 

the log2 expression changes in 2,147 post-filtered set of transcripts. Red (blue) indicates a relative increase (decrease) of expression. Color intensi-

ties are proportional to fold change magnitude. b Default view of the front page of the Chlamy Network Portal. In the portal, 2,147 transcripts 

are organized into 215 modules, 118 regulatory influences and 411 motifs. The site includes a powerful Apache Solr-based faceted search and 

navigation tools. The portal content is also linked to other information resources like Phytozome, STRING, GO categories and relevant literature. c, 

d Differentially expressed transcripts organized as a sequential set of transcriptional waves: 17 monotonic transcriptional waves composed of 125 

transcriptional modules and 1,482 transcripts (c), and 15 transient transcriptional waves of 55 transcriptional modules and 758 transcripts (d). Each 

line represents average fold change for a given transcriptional wave. The timestamp on each wave reflects the timepoint at which transcript level 

change crosses a twofold threshold
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Furthermore, the downregulation of the chaperones may 

indicate a higher rate of protein misfolding [58], and as a 

consequence higher endoplasmic reticulum stress which 

has been directly associated with the induction of lipid 

bodies [59].

Transcripts encoding proteins involved in many 

carbon sequestration processes were downregulated 

during the mid-stage response including those impli-

cated in carbon concentrating mechanisms and those 

encoding several key enzymes of the Calvin cycle (5 

transcripts in 10 co-regulated modules in 1 wave, 

see Additional file  2: Table S2). Other C metabolism 

enzymes that were downregulated include glyceralde-

hyde-3-phosphate dehydrogenase (Cre01.g010900), 

which has been recently implicated in lipid accumula-

tion in Arabidopsis [60] and the periplasmic carbonic 

anhydrase 1 (CAH1), which exhibited a dramatic drop 

in abundance from a maximum level of ~1500  to  0 

FPKM (fragments per kilobase of transcript per mil-

lion mapped reads). �e overall repression of C fixation 

is an indication of transition into a lowered metabolic 

state as a consequence of the cessation of growth. In 

addition, alternative sources of carbon such as recycled 

C-backbones from degraded protein and acetate influx 

might also compensate for the downregulation of C 

fixation.

While lipids start to accumulate at 8 h after N starva-

tion [14], within 60  min post N starvation we observed 

the upregulation of transcripts encoding enzymes 

responsible for maintaining the cellular redox balance 

(high NADPH/NADP+) required for lipid biosynthe-

sis [61] and synthesis of lipid precursor metabolites 

(e.g., GLD2 [62]). Similarly and as previously described 

by Boyle et  al. [14], transcripts for TAG biosynthesis 

DGAT1 and DGTT1 were upregulated. Importantly, 

DGAT1, which catalyzes the rate-limiting step in the 

de novo TAG biosynthesis, increased up to fourfold, 

45  min after N starvation. Membrane remodeling [63] 

was enhanced through the upregulation of membrane 

lipases such as saposin (Cre05.g235700), indicative of 

catabolism of glycosphingolipids, which could facilitate 

membrane remodeling and in extreme cases membrane 

Table 1 Summary of the organization of the transcriptional changes

Transcriptional transition is organized within three time stages according to their temporal schedules. Transcripts are organized into co-regulated modules, which in 

turn are compiled into transcriptional waves. Selected signi�cantly enriched functional categories (GO terms) are shown

Stage Time Trend Dynamics Waves, modules,  
transcripts

Functional highlights (corrected p value)

Early 0–18 min Up Monotonic 2, 7, 105 Ammonium transport (1.7e−9)
Potassium ion transmembrane transport (1.4e−5)
Ion channel activity (2.8e−3)
Ion transport (3.4e−3)
Protein kinase activity (1.3e−2)

Transient 2, 7, 118

Down Monotonic 1, 1, 17 Ribosome biogenesis (6.3e−8)
Transcription (3.7e−6)
rRNA processing (2.9e−5)
Pseudouridine synthesis (7.0e−5)
Methyltransferase activity (9.0e−5)

Transient 1, 17, 202

Mid 18–60 min Up Monotonic 4, 24, 304 Mitochondrial pyruvate transport (1.0e−6)
Glutamine biosynthetic process (3.0e−5)
Lipid metabolic process (5.2e−5)
Amine metabolic process (7.5e−5)
Proteolysis (9.6e−3)

Transient 3, 7, 110

Down Monotonic 4, 44, 552 Purine nucleotide biosynthetic process (5.1e−5)
Fatty acid beta-oxidation (4.9e−4)
Pseudouridine synthesis (8.7e−4)
Malate dehydrogenase activity (1.6e−3)
Fatty acid biosynthetic process (1.9e−3)

Transient 4, 15, 237

Late 1–8 h Up Monotonic 3, 12, 177 DNA replication (8.6e−7)
Microtubule cytoskeleton organization (1.1e−4)
NADP binding (3.5e−3)
Lipid metabolic process (1.8e−2)
Nucleotide binding (2.4e−2)

Transient 2, 8, 139

Down Monotonic 3, 47, 489 Photosynthesis (7.7e−31)
Protein folding (1.0e−13)
Fructose-bisphosphate aldolase activity (8.4e−6)
Cell redox homeostasis (4.9e−5)
Fatty acid biosynthetic process (7.5e−3)

Transient 2, 5, 95
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lysis [64]. Notably, transcripts encoding key enzymes 

for the de novo fatty acid (FA) biosynthesis, such as the 

three β-ketoacyl-(acyl-carrier-protein) synthases (KAS1, 

KAS2 and KAS3; Cre11.g467723, Cre07.g335300 and 

Cre04.g216950, respectively), which are responsible for 

the first enzymatic step catalyzed by the multi-enzyme 

Table 2 Transcriptional changes on the cellular hallmarks of N starvation

Summary of key cellular pathways di�erentially regulated with representative transcript examples. Timestamp and direction of regulation (trend) are indicated

Trend Pathway Representative examples Timestamp

Up Pentose phosphate pathway Glucose-6-phosphate dehydrogenase 18 min

Purine catabolism Xanthine dehydrogenase
Adenosine deaminase

18–30 min

Urea metabolism Carbamoyl phosphate synthetase
Ornithine transcarbamylase
Agmatine deiminase
Allophanate hydrolase
Urea carboxylase

24–30 min

Glutamine metabolism Glutamine synthetase 30 min

Polyamines oxidation Copper amine oxidase 18 min–2 h

TAG biosynthesis Diacylglycerol acyltransferase 24–45 min

Down FA β-oxidation Acyl-CoA oxidases
2,4 dienoyl-CoA reductase

24 min

Purine and pyrimidine biosynthesis Adenylosuccinate synthase
Uridine 5′-monophosphate synthase

24 min

FA biosynthesis 3-ketoacyl-CoA-synthase
Biotin synthase
Acetyl-CoA carboxylase,
3-ketoacyl-ACP reductase

24–45 min

Translation Translation initiation factors
Translation elongation factors
Release factors

24 min–4 h

Amino acid biosynthesis Threonine deaminase
Shikimate dehydrogenase
Dihydrodipicolinate synthase
3-Phosphoglycerate dehydrogenase

24–30 min

Protein folding Chaperonins 45 min

Calvin cycle Triose phosphate isomerase
Transketolase
Ribose-5-phosphate isomerase

45 min

Carbon concentrating mechanism Malate dehydrogenase 45 min

Polyamines biosynthesis Ornithine decarboxylase
Adenosylmethionine decarboxylase
Spermidine synthase

45 min–4 h

Glycerolipid metabolism Phosphatidate cytidylyltransferase
Glycerol-3-phosphate acyltransferase

45 min–4 h

Chlorophyll biosynthesis Chlorophyll synthase
Geranylgeranyl diphosphate synthase
Geranylgeranyl reductase
Uroporphyrinogen decarboxylase

60 min–4 h

Two-component peroxide-detoxifying system NADPH-dependent thioredoxin reductase
2-Cys peroxiredoxin
Peroxidase

2 h

Photosynthesis Ferredoxin
Photosystem I and II proteins
ATP synthase
Cytochrome b6f complex subunits
PsbP

2–8 h

Glutathione-ascorbate cycle Ascorbate peroxidase
Prohibitin, thioredoxin

4 h

Glycolysis Glyceraldehyde-3-phosphate Dehydrogenase 4 h
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complex fatty acid synthase (FAS) were all downregu-

lated. Importantly, the downregulation of lipid biosyn-

thesis transcripts continued through the late-stage of the 

N starvation response.

Late-stage response: transition into the lipid accumulation 

state

�e observed commencement of significant lipid accu-

mulation 8 h after N starvation was set up by transcrip-

tional changes occurring in the late-stage response, 

which began after 1 h from N starvation. Comprised of 

665 monotonic (177 up-, 489 downregulated) and 234 

transient (139 up-, 95 downregulated) transcripts organ-

ized into 72 co-regulated modules in 10 waves, the late-

stage response was characterized by lipid metabolism 

remodeling, downregulation of photosynthesis, oxida-

tive stress and protein folding stress responses, and an 

upregulation of sugar catabolism. While an increased 

metabolic flux into FA biosynthesis would be expected 

to support TAG production, the late-stage response 

involved the downregulation of many transcripts asso-

ciated with FA biosynthesis such as the chloroplastic 

pyruvate dehydrogenase complex (PDC), acetyl-CoA 

carboxylase (ACC), and malonyl-CoA:ACP transac-

ylase, all involved in the biosynthesis of FA precursors 

(Fig.  2a, b). Interestingly, upregulation of some of these 

enzymes such as PDC is known to be strongly correlated 

with lipid accumulation [65]. Additionally, the down-

regulation of FA biosynthesis-related transcripts during 

the mid-stage response (i.e., downregulation of KAS1-

3), continued into the late-stage response with the tran-

scriptional downregulation of the 3 enzymes of the FAS 

complex involved in the subsequent steps of FA bio-

synthesis: 3-ketoacyl-ACP reductase (Cre03.g172000), 

β-hydroxyacyl-ACP dehydratase (Cre03.g208050) and 

enoyl-ACP-reductase (Cre06.g294950). �e FAs 16:0 and 

18:1 are the most abundant of the TAG fractions in N 

starved cells [28], reflecting the importance of de novo FA 

synthesis for TAG accumulation, which accounts for 79 % 

of the TAG content in N starved cells [63], providing fur-

ther evidence that the lipid accumulation response is a 

time-dependent additive process. Indeed, transcriptional 

downregulation of FA biosynthesis enzymes during lipid 

accumulation is consistent with previous observations 

in C. reinhardtii [14, 21, 23] and other microalgae [66, 

67], but not in diatoms [68, 69]. Downregulation at the 

transcriptional level is consistent with a strong reduction 

in protein levels for enzymes of the early steps of the FA 

biosynthesis, particularly ACC [21, 70]. It is of note that 

although FA biosynthesis enzymes were transcriptionally 

Fig. 2 FA biosynthesis pathway is transcriptionally downregulated during N starvation. a Schematic view of the reaction steps for FA biosynthesis 

and the enzymes that catalyze them. b Expression profile for transcripts encoding enzymes highlighted in (a). c Absolute expression values for FA 

biosynthesis transcripts in log10 FPKM (open bars represent absolute expression level at time t = 0 while solid bars represent levels at t = 8 h). PDC 

pyruvate dehydrogenase complex, ACC acetyl-CoA carboxylase, MCT1 malonyl-CoA:ACP transacylase, ACP2 acyl carrier protein, KAS β-ketoacyl-(ACP) 

synthase, KAR1 3-ketoacyl-ACP reductase, HAD1 β-hydroxyacyl-ACP dehydratase, ENR1 enoyl-ACP-reductase
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downregulated, their absolute abundance remained rela-

tively high at this stage, ranging from a minimum value of 

3 FPKM for KAS3 to 572 FPKM for ACP2, presumably to 

maintain flux towards FA biosynthesis (Fig. 2c). Further-

more, while transcript abundance provides insights into 

changes in metabolic activity, actual enzyme levels can 

deviate from transcript levels based on other factors such 

as protein stability and turnover. �erefore, long-term 

lipid accumulation might be accomplished by increasing 

the overall carbon flux towards the FA pathway [71] or, 

as previously noted, by limiting the catabolism of lipids 

through the FA β-oxidation pathway during lipid accu-

mulation [72]. Besides, several FA desaturases (FAB2, 

FAD3, FAD7), which incorporate double bonds into FAs 

at the cost of reducing equivalents, were downregulated, 

potentially to conserve energy while producing lower 

amounts of unsaturated FAs.

�e transcript encoding the mitochondrial glycerol-

3-phosphate dehydrogenase (GPD2, Cre01.g053000), 

which serves as a major link between carbohydrate 

metabolism and lipid metabolism, is upregulated as part 

of the late-stage response, in agreement with previous 

studies of the C. reinhardtii transcriptome during N star-

vation [18, 21]. Interestingly, Phaeodactylum tricornutum 

cells overexpressing GPD had a 60 % increase in neutral 

lipid content, reaching 39.7  % of dry cell weight in sta-

tionary phase [73], plus overexpression of GPD has also 

been reported to increase lipid content in plants [74]. By 

contrast, the cytoplasmic isoform GPD1 (Cre12.g511150) 

was downregulated as part of a late-stage response, high-

lighting the importance of cellular compartmentaliza-

tion to achieve modularity in metabolism. Additionally, 

consistent with the previously described role for lipases 

in lipid accumulation [6], the TAG lipase expression pro-

files changed, with TGL9 and Cre09.g391838 upregu-

lated, while TGL15 was downregulated up to 18-fold. 

Undoubtedly, TAG lipases are key modulators of TAG 

accumulation in C. reinhardtii as previous works have 

demonstrated [75, 76]. �e extensive transcriptional 

changes in genes encoding lipid composition enzymes 

underscore the importance of regulatory mechanisms for 

the overall lipid increase and changed lipid composition 

during N starvation in C. reinhardtii.

Other pathways associated with biosynthesis of mem-

brane components that were downregulated in the late-

stage response (see Table  2, Additional file  2: Table S2) 

included biosynthesis of glycerolipids and isoprenoids 

(at least 7 key enzymes), porphyrin and chlorophyll (at 

least 4 key enzymes). Downregulation of the photosyn-

thetic function and apparatus is a major hallmark of N 

starvation [77]. Our model accounts for the entire chlo-

roplast light reaction chain, including photosystem I and 

II, cytochrome b6f, plastocyanin, ferredoxin, ferredoxin-

NADP+ reductase and ATP synthase, comprising 54 

transcripts distributed in 35 co-regulated modules and 

4 waves (see Table  2, Additional file  2: Table S2). �is 

downregulation during the late-stage response likely 

results in lower production of reactive oxygen species, 

and is consistent with the observation that many oxida-

tive stress response systems were also downregulated (at 

least 9 transcripts of key oxidative protection enzymes).

The TRN for the N starvation response

In order to construct the network of transcriptional regu-

lators (i.e., TFs and chromatin regulators) that coordinate 

the N starvation response, we computed the distances 

between temporally ordered, smoothed expression pro-

files of the transcriptional regulators (TRs) and the tran-

scriptionally co-regulated modules. We selected the first 

fifth percentile of all distances within the physiologically 

relevant window of 15–90 min time lag between a change 

in the TR and its putative target transcriptional module. 

�is time window was selected based on the time it takes 

for a differentially regulated TR to exert an observable 

effect on transcription ([75]; see “Methods” for details). 

Despite the possible contribution of post-transcriptional 

regulatory events in modulating transcriptional activity, 

this analysis uncovered a TRN in which 17 of the 34 dif-

ferentially regulated TRs exerted 118 putative TR-mod-

ule regulatory influences, coordinating 815 transcripts 

within 60 co-regulated modules (Table  3, Additional 

file 3: Table S3). �is TRN model encompasses 17 waves 

across the three stages of the N starvation response 

(Fig. 3).

Based on this TRN model, the transcriptional cascade 

started within 12  min after N starvation with the two-

fold upregulation of a previously described N response 

regulator in C. reinhardtii and plants, RWP11 [78]. By 

18 min, three other TRs were downregulated: BLZ8 and 

Cre17.g746547, both bZIP TFs, and Cre13.g573000, a 

SET domain methyltransferase (Fig.  3a, d). �e subse-

quent remodeling of metabolism during the mid- and 

late-stage response was coordinated by at least 8 TRs 

that acted from 24 min to 2 h after N starvation. One of 

these TRs is NRR1, the squamosa promoter binding pro-

tein described by Boyle et al. [14] which reaches twofold 

upregulation 44 min after N starvation (Fig. 3c, e). Inter-

estingly, RWP1, a RWP-RK domain TF [79], showed a 

very similar temporal expression pattern as NRR1. In the 

48–68 min time frame, three other TFs crossed the two-

fold upregulation threshold: Cre12.g523000 (a C3H Zinc 

finger TF), RWP4 and GSM1. While GSM1 is known to 

function as a regulator of the minus mating type game-

togenesis response, the function of these other two TFs 
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is less well understood. Additionally, other TRs down-

regulated at this point include a FHA domain nuclear 

inhibitor of protein phosphatase-1 (Cre12.g534450) 

and several acetyltransferases (NAT1 and NAT11). �e 

late transcriptional wave was putatively orchestrated by 

the transient upregulation of the subunit D of NF-Y TF 

(Cre07.g341800) [80], the transcriptional downregulation 

of the DNA binding protein S1FA [81], and the C2H2-

family TF Cre03.g152150 (Fig.  3c, f ). Other changes in 

TRs during the late-stage transcriptional waves include 

the upregulation of the NAT31 acetyltransferase and the 

downregulation of NAB1 (Cre06.g268600), which plays 

an important role in controlling the expression of the 

light-harvesting antenna of photosystem II in C. rein-

hardtii [82]. Finally, we found 17 additional transcrip-

tional regulators with differential expression during the 

phenotype transition, but their expression profile did not 

match significantly any of the transcriptional modules, 

suggesting a more cooperative mode of action involving 

multiple TRs regulating the same transcriptional module. 

Additional file 4: Fig. S1 shows the dynamics of such TRs, 

with notable examples including the early downregula-

tion of the AP2-family TF Cre06.g275500, up to 33-fold 

increase of the bHLH TF Cre01.g011150 during the mid-

stage response and the upregulation of RWP8 during the 

late stage. While incomplete, the TRN model organized 

the complex set of transcriptional changes during the 

N starvation response into a modular framework of co-

regulated transcripts that were temporally coordinated 

by as few as 34 TRs, allowing for model-based systematic 

analysis of metabolic consequences.

Metabolic network analysis

Using the available genome-scale metabolic network of 

C. reinhardtii [47], we performed a variation of flux bal-

ance analysis to assess the impact of knocking down the 

metabolic flux through reactions catalyzed by enzymes 

that were transcriptionally downregulated within spe-

cific co-regulated modules. In order to estimate the TAG 

content per biomass, we computed a dimensionless ratio 

(ρ) of relative TAG production per biomass accumula-

tion, which allowed us to predict the impact of knocking 

down a transcript on the amount of lipids per unit bio-

mass (see “Methods” for details). From the 1,058 mono-

tonically downregulated transcripts, this approach led to 

the prediction that the knockdown (KD) of 57 transcripts 

would result in a relative increase of TAG production per 

biomass with respect to wild type conditions (i.e., ρ > 1) 

(Fig. 4a, Additional file 5: Table S4). Investigation of the 

expression patterns for these 57 transcripts revealed that 

they were not uniformly distributed along the whole 

time domain of transcriptional changes, but were mainly 

confined to the 30  min to 4  h range, coinciding with 

the metabolic state transition (Fig.  4b, Additional file  5: 

Table 3 List of the TRs predicted to orchestrate the transcriptional response during N starvation

Seventeen di�erentially expressed TRs during N starvation have a predicted signi�cant in�uence on at least one transcriptional module. TR name and description, �rst 

time point of di�erential expression (timestamp) and predicted in�uenced modules are indicated

Stage Name Description Timestamp (min) Trend Predicted regulated modules

Early Cre13.g573000 SET domain methyltransferase 12 Down 40, 113, 162, 197, 127

BLZ8 Basic region leucine zipper 13 Down 105, 121

RWP11 RWP-RK TF 15 Up 150

Cre17.g746547 bZIP TF 15 Down 105, 121

Mid CGL86 Nuclear inhibitor of protein phosphatase-1 26 Down 129, 130, 99, 172, 13, 45, 82, 148

NAT11 Acetyltransferase (GNAT) 30 Down 129

RWP1 RWP-RK domain protein 36 Up 130, 99, 13, 45, 82, 148

NAT1 Acetyltransferase (GNAT) 37 Down 200, 178, 93, 174

NRR1 SBP domain 44 Up 82, 67

RWP4 RWP-RK domain-containing protein 48 Up 193, 98, 35, 37, 72, 170, 45, 142, 175, 59, 99, 53, 87, 
27, 95

GSM1 Gamete-specific minus 1 50 Up 193, 98, 35, 37, 166, 172, 45, 175, 99, 59, 67, 53, 54, 
87, 27, 149

Cre12.g523000 Zinc finger CCCH domain containing protein 62 Up 149, 193, 98, 35, 37, 102, 170, 172, 45, 142, 175, 99, 
59, 67, 53, 54, 87, 185, 27, 211, 95

Late CGL107 Histone-like transcription factor (CBF/NF-Y) 109 Up 193, 8, 9, 141, 50, 24, 154, 59, 92, 158

Cre09.g386753 DNA binding protein S1FA 109 Down 98, 35, 166, 172, 175, 67, 149, 27

NAB1 Nucleic acid binding protein 146 Down 33, 34, 133, 104, 76, 144, 136, 210, 21, 151, 57, 186

NAT31 Acetyltransferase (GNAT) 371 Up 104, 136, 133

Cre03.g152150 Zinc finger C2H2 type domain 418 Down 129, 13
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Table S4). �e 57 transcripts were distributed across 51 

modules and this TRN mapping further implicated guilt-

by-association of 671 additional genes in driving lipid 

accumulation. �e 12 TRs of these modules are predicted 

by the TRN to be putatively responsible for coordinating 

down regulation of these modules with other transcrip-

tional changes during the N-starvation response. Nota-

ble functions represented among these modules (protein 

synthesis, signaling and photosynthesis) suggest a poten-

tial mechanistic linkage between transcriptional pro-

grams for growth arrest, the photosynthetic machinery 

and lipid accumulation during N-starvation (Fig. 4c).

Metabolic targets changing earliest fall into the ATP 

homeostasis category, particularly control of ATP/NADPH 

ratios, like the nucleoside-diphosphate kinase (Cre07.

g325734), the cytochrome b6f complex (responsible for 

creating the proton gradient that drives the synthesis of 

ATP in chloroplasts) and plastocyanin (Cre03.g182551), 

which is responsible for the flow of electrons between 

cytochrome b6f and photosystem I. Furthermore, we 

identified several targets from central metabolism like tri-

ose phosphate isomerase (TPI). TPI catalyzes the revers-

ible conversion of dihydroxyacetone phosphate (DHAP) to 

glyceraldehyde-3-phosphate (GA3P) and coordinates many 

pathways including glycolysis, Calvin cycle, and glycerol 

metabolism. Notably, recent studies in Arabidopsis have 

uncovered the crucial role of TPI in general lipid metabo-

lism [83]. Indeed, a TPI mutant in Arabidopsis with a five-

fold reduction in transcript levels accumulated DHAP and 

glycerol, both byproducts of TAG mobilization and precur-

sors for glycerolipid biosynthesis. Another key target iden-

tified from this analysis was Cre02.g080200, which encodes 

Fig. 3 Expression dynamics and network of predicted transcriptional influences. a–c Top panels show TR expression dynamics: each profile is 

labeled with the relevant TR it represents. d–f Network of predicted transcriptional influences from TRs (circle nodes) on enriched GO terms (square 

nodes) through transcriptional modules (edges). Edge color indicates transcriptional activation (red) or repression (blue) influenced of a TR on the 

transcriptional module. Edge thickness is inversely proportional to the distance between the TR and the transcriptional module. Nodes are colored 

using the same pattern as in Fig. 1c, d, e.g., blue represents a differential expression acquired at time 18 min after N starvation
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for the transketolase TRK1 which is an essential enzyme 

of both the Calvin cycle and the non-oxidative pentose 

phosphate pathway (PPP). TRK1 has also been found to 

play a key role in the regulation of C allocation through 

calcium-dependent phosphorylation regulation [84]. Our 

metabolic modeling approach also predicted that the KD 

of the next enzyme of the non-oxidative PPP, ribulose 

phosphate-3-epimerase (Cre12.g511900) results in a ρ > 1. 

�e metabolic targets predicted to affect TAG production 

during the late-stage response between 2 and 4 h after N 

starvation were strongly dominated by genes involved in 

photosynthesis. Subunits of photosystem I and II, including 

light-harvesting proteins, chlorophyll binding proteins, thy-

lakoid lumen proteins and ferredoxins, were all predicted 

to result in a ρ > 1 upon KD, in agreement with cell growth 

arrest and recycling of the photosynthetic apparatus. Inter-

estingly, other metabolic targets downregulated in the 

2–4 h period whose KD resulted in a ρ > 1, were involved 

in lipid biosynthesis functions, including enzymes like 

acyl-carrier-protein dehydratase (Cre03.g208050), farnesyl 

pyrophosphate synthase (Cre03.g207700) or geranylgera-

nyl diphosphate reductase (Cre01.g050950), which may be 

responsible of the observed changes in lipid composition in 

C. reinhardtii during N starvation. �ese observations may 

reflect both network redundancy on TAG production and 

how different categories of lipids affect biomass, as defined 

in the metabolic model biomass function.

Finally, we used the model to identify the meta-

bolic genes predicted to be involved in the biosyn-

thesis of acetyl-CoA, malonyl-CoA and glycerol 

3-phosphate, key precursors for lipid biosynthesis. 

Out of the 100 genes predicted to be involved in this 

process, 26 are downregulated and only four are tran-

scriptionally upregulated (Additional file  6: Table S5). 

�e upregulated genes include glycerol-3-phosphate 

dehydrogenase and glyceraldehyde 3-phosphate dehy-

drogenase, key enzymes for the FA biosynthesis [73, 

85], involved in the production of glycerol and reduc-

ing equivalents, respectively. �e 26 downregulated 

enzymes participate at different levels of FA biosynthe-

sis, ranging from carbon fixation and the acetyl-CoA 

and malonyl-CoA synthesis to CoA biosynthesis (Addi-

tional file  6: Table S5). Furthermore, we compared the 

pattern of expression of these metabolic targets under 

other nutrient starvations, e.g., S and P [25]. Virtually all 

the metabolic targets were also downregulated in S star-

vation conditions. We observed, however, a remarkably 

different expression pattern in P starvation, where the 

vast majority of these metabolic targets were not down-

regulated (Additional file  6: Table S5, Fig.  4c). Indeed, 

FA composition of accumulated TAG differs from N to 

P starvation, specially in 16:0 and 18:2 fractions [28], 

reflecting different routes of TAG production. �ese 

observations evidence how the metabolic and regula-

tory changes that occur during lipid accumulation in 

response to N and S starvation are similar, while P star-

vation induces a different lipid accumulation program.

Conclusion
Analysis of expression dynamics at the whole transcrip-

tome scale for C. reinhardtii has uncovered a complex 

but structured transcriptional response during N starva-

tion and subsequent transition into a state of lipid accu-

mulation. �e application of the biclustering algorithm 

Fig. 4 Metabolic targets for higher relative TAG to biomass ratio. a Model-predicted consequences of transcriptional downregulation on relative 

TAG per unit biomass. Dots represent prediction for 57 metabolic enzymes whose downregulation resolves in increased TAG per unit biomass 

(above the diagonal, ρ > 1). Among these 57 metabolic targets, only 10 genes (blue dots) are uniquely downregulated in N starvation, and 40 genes 

are also downregulated during S starvation (green dots). Five genes are downregulated in N, S and P (orange dots) and just one, Cre02.g082750, is 

downregulated in N and P only (red dot). b Average expression profiles during N starvation for the metabolic targets grouped as in a. c Network of 

transcriptional regulatory influences on metabolic targets. Each circle node represents a TR (colored as in Fig. 3). Edges represent the predicted regu-

latory influence of a given TR on specific genes across the different starvation responses (squared nodes). Edge labels indicate the number of genes 

regulated by each TR, one if no label is present
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cMonkey revealed that the transcriptional response was 

modular and organized as 31 temporally ordered waves 

that were triggered as early as 12  min and continued 

changing until 8 h after N starvation. Based on the tim-

ing and functional composition of the waves the N starva-

tion response could be divided into three categories: the 

early response characterized by distinct cellular signaling, 

the mid response recapitulating how the cell metabolism 

transitions into a different state and the late response with 

hallmarks of the acquisition of the final phenotype, domi-

nated by transcripts for photosynthesis, lipid metabolism, 

oxidative stress and protein folding. Furthermore, we pre-

dicted a network of transcriptional regulators, at least 17 

TFs and chromatin remodeling proteins that putatively 

orchestrate the transcriptional response. Certainly, the 

phenotypic transition is not the consequence of regula-

tion by a single TF, but the coordinated response of sev-

eral factors. In fact, integration of the TRN model with 

a genome-scale metabolic flux model demonstrated that 

there are 57 metabolic bottlenecks that are distributed 

across different modules of the transcriptional program. 

�e TRN mediates the coordinated downregulation of 

these 57 metabolic steps to drive increased lipid per unit 

biomass. Similar expression patterns of the 57 enzymes 

under S starvation are suggesting that the same TRN 

might oversee both the S- and N-starvation responses. 

In contrast, different metabolic and transcriptional net-

works appear to be responsible for the P-starvation 

response, wherein only 6 of the 57 enzymes were differ-

entially expressed. Ultimately, to ensure the integration of 

the TRN model with other existing resources and broader 

dissemination among the scientific community, we devel-

oped an accessible web-based resource, the Chlamy Net-

work Portal [51], which incorporates the TRN model 

together with the processed expression data and offers 

filtering and visualization interfaces for further analysis. 

Well-known resources such as Phytozome [49], STRING 

[50], and Gene Ontology (GO) terms [86] are seamlessly 

integrated at the Chlamy Network Portal.

Recent studies in C. reinhardtii [21, 70, 79] and other 

microalgae [87] have integrated various omics data sets to 

reveal that cellular response to N starvation is controlled 

by the structure of a TRN, and cannot be explained by 

individual action of a handful of TRs. Schmollinger et al. 

[21] performed a very comprehensive study of the cel-

lular response to N starvation at different regulatory 

levels, quantifying the transcriptome, proteome and 

metabolome for both wild type and mutant strains. �ey 

uncovered several N-sparing mechanisms and listed a 

set of differentially regulated TFs as candidate regula-

tors of the cellular response. In order to identify the key 

regulatory genes involved in the control of lipid metabo-

lism, Gargouri et al. [79] used a time-lagged correlation 

analysis to identify putative TRs of cellular metabolism, 

before and after the onset of lipid accumulation. Our 

approach is distinct in that it integrates different types of 

evidence for co-regulation to infer a mechanistic and pre-

dictive TRN. Furthermore, by integrating this model with 

a metabolic model we were able to predict consequences 

of specific transcriptional changes on biomass produc-

tion as well as metabolic flux towards TAG accumulation. 

�e modular architecture of this TRN predicts TR regu-

lation of not single transcripts or metabolites, but rather 

co-regulated modules enabling a robust assessment of 

the functional consequences of TR changes. Impor-

tantly, Valledor et  al. [70] combined transcriptomics, 

proteome and metabolome measurements during N star-

vation and repletion to demonstrate how such integrative 

approaches reveal new understandings of molecular reg-

ulation. A beautiful example is the discovery of a central 

role for the major lipid droplet protein within such regu-

latory and metabolic network model in linking signaling 

cascades (GTPases downregulated during N starvation) 

to vesicle formation (COP II) and lipid body formation.

�ere are several possible limitations to our study. First, 

our TRN is based on expression data and transcriptional 

changes do not fully account for changes at the protein 

level, much less for functional activity of post-transcrip-

tionally regulated proteins [88, 89], which may result in 

phenotypic changes not recapitulated by the transcrip-

tional response. �erefore, integration of proteome and 

metabolome measurements would represent a powerful 

complement to our approach. At the level of the integration 

of the metabolic and TRN models, potential missing links 

may occur from the incomplete nature of the currently 

available metabolic models for C. reinhardtii consisting on 

1080 genes and 2190 reactions, which is far from the com-

plete metabolome set. Indeed, in a parallel effort, our group 

recently extended and improved the metabolic model for C. 

reinhardtii, upgrading it to 1355 genes (1460 transcripts), 

2394 reactions and 1133 metabolites, enabling very accu-

rate predictions of gene deletion growth phenotypes, with 

an area under the receiver operating characteristic curve of 

0.92 [90]. Also, the lack of an exhaustive annotation for the 

TF set is another source for missing interactions between 

potential regulators of the transcriptional modules. Addi-

tionally, other potential regulators of gene expression like 

miRNAs are not currently included in our TRN model. 

Finally, the experimental validation of de novo detected 

GREs and predicted TF to transcriptional module interac-

tions would produce a more accurate picture of the func-

tional interactions recapitulated by our TRN.

We foresee two main future directions of this study: 

first, the expansion of the TRN model with expression 

data from other phenotypic transitions, e.g., starvation 

on other nutrients, different growing conditions (light, 
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trophic conditions, CO2 levels, etc.), and different mutant 

strains. A second direction would be to refine the accu-

racy and specificity of the transcriptional regulatory 

influences with the integration of quantitative data that 

includes additional influencers, like miRNAs [91–95] 

or post-translational modifications [96]. Moreover, a 

genome-wide chromatin state map would constitute a 

resourceful informational tool for detecting and asso-

ciating GREs to the transcriptional response [97, 98]. 

Recent experimental evolution work with C. reinhardtii 

[99–101] has shown the adaptive plasticity of this organ-

ism to quickly generate new phenotypes with increased 

fitness to novel environments. Experimental evolution 

approaches and gene editing [102] would be comple-

mentary and a good synergistic combination to TRN 

modeling to better understand the process of lipid accu-

mulation in microalgae, with the ultimate goal of engi-

neering new strains with desired phenotypes.

Given the complexity underlying the phenotypic tran-

sitions in C. reinhardtii, we are confident that the con-

structed TRN model presented here represents a relevant 

predictive tool that would uniquely guide the rational 

selection of candidate gene targets for improved biofuel 

production. �e dissemination of the TRN through the 

Chlamy Network Portal platform will especially ensure 

an efficient broadcast of the model to the growing biofuel 

research community.

Methods
Expression data

Raw RNA-Seq expression data obtained from a N starva-

tion time course experiment on C. reinhardtii wild type 

CC-3269 [14] was aligned with STAR [103] to the current 

genome annotation (version 5.5 from Phytozome [49]). 

Next, using cuffdiff [104], we computed for each tran-

script i at each time point t, the log2 expression ratio, rt
i
,

where xt
i
 represents the expression in fragments per kilo-

base of transcript per million mapped reads (FPKM) of 

transcript i at time t. We filtered out unchanging tran-

scripts and noisy expression measurements by selecting 

any transcript that complied with any of the following 

two rules: (1) rt
i

> abs(1) during the lipid accumulation 

time points, i.e., at time points 8 h, 12 h, 24 h and 48 h 

after N starvation [14] or (2) rt
i

> abs(1) consistent for a 

single period of at least 30 min.

TRN inference

We used cMonkey [32] version 4.9.11 to build the TRN 

model. We set the searching and scanning window as 

(−10,2000) base pairs upstream from the transcriptional 

(1)r
t
i = log2

(

(xti + 1)/(xt=0
i + 1)

)

start site of common cis-acting gene regulatory ele-

ments (GREs). We obtained the TRs annotation from 

Schmollinger et  al. [21], which contained 491 unique 

transcriptional regulator genes for the current version 

of C. reinhardtii annotation. Protein–protein functional 

interaction network was retrieved from STRING [50], 

version v9.05.

Inference of transcriptional regulators in�uences

Transcript expression trajectories were first smoothed 

with the csaps routine from MATLAB. Smoothed data 

was then divided by its maximum absolute value to 

account for non-linear relationships between transcrip-

tional regulators and transcriptional modules. A matrix 

of distances between TRs and transcriptional mod-

ules was calculated allowing for a defined best time lag 

between the expression of the TR and the correspond-

ing transcriptional module. For eukaryotic genes, it can 

take from several minutes up to several hours since the 

expression of a TF changes, to transcriptional changes 

on its target genes [105]. We used a time window of 

15–90  min as time lag, based on reported values in lit-

erature [106]. Specifically, we allowed first for 5–20 min 

for the nuclear phase: transcription, transport and export 

(Ref. [107] and Bionumbers BNID:105650). As for the 

transcription time, we allowed 3–8 min; such time win-

dow is supported by the ~3  min mean translation time 

previously reported in yeast [108] in conjunction with 

additional data about translation rates of 5 to 11 aa/sec 

(Bionumbers BNID:104598 and BNID:109527, respec-

tively [109, 110]). �en, we included 10 additional min 

into the time lag for protein translocation to the nucleus 

and binding to promoter sequences (BNID:109955), 

which sets our time lag ideally into the expected range 

of 18–38  min. Still, we searched for TR to transcrip-

tional module interactions as late as 90 min, allowing for 

the effect of other factors like long sequences, protein 

maturation and other post-transcriptional regulatory 

mechanisms. We predicted as true TR to transcriptional 

module influences those whose best distance was smaller 

than the first fifth percentile of all the distances and 

also had a time delay within the defined time window of 

15–90 min.

Metabolic analysis of genome-scale metabolic model

We used the genome-scale metabolic reconstruction 

iRC1080, the hitherto most comprehensive metabolic 

model of C. reinhardtii [47]. We simulated mixotrophic 

growth by allowing for the uptake of acetate as well as 

light via warm and cool fluorescent light sources (reac-

tions  4 and 5 of the model) to mimic the experimental 

setup of Boyle et al. [14]. N is available only via ammo-

nium uptake, whereas starch uptake was prohibited. 
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Consequently, the lower bounds of the respective 

exchange reactions were either left at their published val-

ues or set to zero (to prohibit uptake). To separate TAG 

production from the biomass production, we subtracted 

all TAG producing compounds from the mixotrophic 

biomass definition and created a separate exchange reac-

tion EX_TAG with the same TAG composition as in the 

biomass definition and a new biomass reaction BM_TAG. 

Without further flux bound perturbations we termed this 

model iRC1080WT. We conducted multiple Flux Balance 

Analysis (FBA) [39] runs to investigate the influence of 

reaction or module perturbation on TAG production in 

a dimensionless form. We first computed the FBA with 

BM_TAG as objective function from iRC1080_WT to 

derive the unperturbed biomass flux BM_TAG_WT. 

To avoid numerical problems, we considered a KD as a 

reduction of the flux to at least 1/16th of the original flux. 

based on the particular reaction flux from the flux dis-

tribution that generates BM_TAG_WT. Cell viability was 

ascertained by requiring at least 10  % biomass produc-

tion with respect to the original wild type predictions. 

We again conducted an FBA to derive the BM_TAG_pert 

from the perturbed network iRC1080_pert. �e ratio 

BM_TAG_pert/BM_TAG_WT provides then the relative 

change of BM_TAG flux. Next, we computed two further 

FBAs, this time with EX_TAG as objective function for 

iRC1080_WT and iRC1080_pert to derive TAG_WT and 

TAG_pert, respectively. �e ratio TAG_pert/TAG_WT 

consequently provides the relative change in TAG pro-

duction upon gene and affected reaction perturbation 

(taking the value of one for no change). Finally, we com-

puted a ratio of these ratios in the following form:

�e interpretation of Eq.  2 is thus straightforward: if 

ρ > 1 the model perturbation affects the biomass produc-

tion more severely and causes, thus, more TAG content 

per biomass. Consequently, a value smaller than one 

relates to a perturbation that causes less TAG per bio-

mass content. Note that Eq. 2 is dimensionless, because 

units cancel out in the TAG and BM ratios.

(2)ρ = (TAG_pert/TAG_WT)/(BM_TAG_pert/BM_TAG_WT)
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