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Transcriptional programming and T cell receptor
repertoires distinguish human lung and lymph node
memory T cells
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Antigen-specific memory T cells persist for years after exposure to a pathogen and provide

effective recall responses. Many memory T cell subsets have been identified and differ in

abundance throughout tissues. This study focused on CD4 and CD8 memory T cells from

paired human lung and lung draining lymph node (LDLN) samples and identified substantial

differences in the transcriptional landscape of these subsets, including higher expression of

an array of innate immune receptors in lung T cells which were further validated by flow

cytometry. Using T cell receptor analysis, we determined the clonal overlap between memory

T cell subsets within the lung and within the LDLN, and this was greater than the clonal

overlap observed between memory T cell subsets compared across tissues. Our results

suggest that lung and LDLN memory T cells originate from different precursor pools,

recognize distinct antigens and likely have separate roles in immune responses.
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T
he hallmark of the adaptive immune system is the persis-
tence of antigen-specific and long-lived memory cells
capable of mounting recall responses. A number of CD4

and CD8 memory T cell subsets have been described and are
distinguished by cell phenotypes and responses after peptide:
MHC activation. Memory T cells are typically classified into
effector memory (EM) or central memory (CM) populations. EM
T cells are characterized by the ability to secrete cytokines and the
capacity for cytotoxic activity1,2, whereas CM T cells lack effector
function but rapidly proliferate after stimulation and can activate
other immune cell types and differentiate into EMs. More
recently, tissue resident memory (TRM) T cells have been
recognized as a separate subset that are able to quickly proliferate
outside secondary lymphoid organs, and provide the most
potent recall protection3–5. Thus, an array of responses is
mounted by activation of memory T cell subsets that generate
expanded populations of antigen-specific T cells with specialized
functions.

Memory T cell subsets are also present at varying frequencies
in different anatomical sites. While CMs and EMs are present in
the blood and tissues, TRMs are rare in the blood but constitute
the predominant memory T cell subset in many tissues6,7. Not
surprisingly, T cell subsets also differ in their patterns of circu-
lation with EMs trafficking through tissues, blood and secondary
lymphoid organs, CMs circulating in the blood and secondary
lymphoid organs, and TRMs residing mainly in tissues. However,
it is becoming increasingly clear that memory T cell subsets may
themselves be influenced by their local environment, and it is
possible that phenotypically identical cells at different sites have
independent ontogeny, antigen specificity and functional
capacity.

In this study, we investigated the extent to which human T cell
subsets from the lung and LDLN, two sites in close proximity but
with different cellular compositions, share transcriptional profiles.
Mucosal immunity imparted by T cell memory is particularly
relevant at these sites given the exposure to inhaled pathogens
and other stimuli. We found that a large number of genes are
differentially expressed between phenotypically identical memory
T cell subsets in the lung and LDLN and that there is limited
clonal overlap of T cell receptor (TCR) repertoires between spe-
cific memory subsets in the lung and LDLN. These findings are
consistent with lung and LDLN memory T cells recognizing
different antigens and being poised for distinct responses after
activation.

Results
Phenotypic analysis of lung and LDLN T cell subsets. We first
evaluated the frequency of memory T cells in paired lung and
LDLN T cell subsets from 11 human donors using an 11-color
antibody panel (Supplementary Table 1) and a traditional gating
strategy (Supplementary Fig. 1) that allowed phenotyping of CD4
and CD8 naive, CM, EM and TRM subsets in each tissue. The
relative proportions of these subsets varied between donors
(Fig. 1a). Comparisons between tissues revealed that the fre-
quencies of CD4 TRMs, CD4 EMs and CD8 TRMs were higher in
the lung than in the LDLN (P value= 0.0069, P value= 0.0013
and P value= 0.0018, respectively), and CD4 and CD8 naive cells
were higher in the LDLN than in the lung (P value= 0.0004 and
P value= 0.0283, respectively; Fig. 1a, b and Supplementary
Fig. 2). No differences were observed in tissue-specific frequencies
of CD4 CM, CD8 EM and CD8 CM subsets. The ratio of CD4 to
CD8 T cells was also higher in the LDLN than in the lung
(Supplementary Fig. 2). Because CD4 and CD8 TRMs have been
described as populations of non-circulating T cells with tissue
specific localization4,5, we were surprised to observe appreciable

numbers of cells with CD4 and CD8 TRM phenotypes in LDLNs
(Fig. 1a, b).

To further characterize the phenotypic landscape of lung and
LDLN T cells and identify discrete clusters of cells, we applied t-
distributed stochastic neighbor embedding (t-SNE) to the multi-
parameter cytometry data. The majority of clusters were
comprised of cells from all donors, indicating that most T cell
subsets are shared between individuals (Fig. 1c). In contrast, each
cluster was composed predominantly of cells from either the lung
or LDLN, although cells from the non-dominant tissue were
interspersed in every cluster (Fig. 1d). Cells in each cluster were
also overwhelmingly either of naive or memory phenotypes based
on expression levels of the cell surface markers CD45RA and
CD45RO, respectively (Fig. 1e). Additionally, clusters were
separated into those with cells expressing either CD4 or CD8
(Fig. 1f, g). Expression of CD69, a marker of TRMs, as well as
other cell markers used for phenotyping (CCR7, CD11a, CD11b,
CD103, and CD169), had more variable patterns (Fig. 1h and
Supplementary Fig. 3). In summary, our analyses identified
phenotypically identical memory T cell subsets in the lung tissue
and the LDLNs using both a traditional gating strategy and an
unsupervised approach.

Transcriptional programs in lung and LDLN T cell subsets.
The presence of memory CD4 and CD8 subsets in both the LDLN
and lung raised the question of whether memory subsets have
identical transcriptional programming between these two sites.
To address this question, we sorted CD4 and CD8 EM, CM and
TRM T cell subsets from paired lung and LDLN for RNA
sequencing (Supplementary Table 2, Supplementary Data 1 and
Supplementary Fig. 1). 128 samples that passed QC (see Meth-
ods) were analyzed. As expected, CD4 and CD8 T cells at each
site expressed high levels of either CD4 or CD8A, respectively
(Supplementary Fig. 4). At a false discovery rate (FDR) of 5%, 128
genes were differentially expressed between lung CD4 TRMs and
lung CD8 TRMs and 805 genes were differentially expressed
between LDLN CD4 TRMs and LDLN CD8 TRMs. As expected,
CD4, CD8A, and CD8B were the most differentially expressed
genes between these two cell types from each site (Fig. 2).

Principal component analysis of the RNA sequences was
performed to assess patterns of gene expression between tissues
and samples. Surprisingly, however, the primary clustering along
principal component 1 was based on tissue of origin and not by T
cell type, subset or donor (Fig. 3 and Supplementary Fig. 5).
Consistent with this clustering, we observed a large number of
genes that were differentially expressed between phenotypically
identical T cell subsets residing in the lung compared to the
LDLN: 418 genes were differentially expressed between lung CD4
TRMs and LDLN CD4 TRMs, and 1,363 genes were differentially
expressed between lung CD8 TRMs and LDLN CD8 TRMs
(Table 1, Fig. 4a, b). In fact, differences in gene expression
between lung and LDLN memory T cells were present in all
memory subsets (Fig. 4c, d, Supplementary Fig. 6 and
Supplementary Data 2–6). To more formally assess the effects
of tissue and cell phenotype on gene expression, we compared the
number of genes differentially expressed between tissues to the
number of genes differentially expressed within tissues for 5
memory T cell subsets. Phenotypically identical subsets between
tissues had a higher number of genes differentially expressed
compared to subsets in the same tissue (Wilcoxon rank-sum test
P value < 0.01). These findings demonstrate that not only do lung
and LDLNs have different proportions of memory T cell subsets,
as previously shown7, but phenotypically identical memory
T cells from the lung and LDLN have different transcriptional
programming.
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Fig. 1 T cell phenotypes from human lung and LDLNs. a Cell proportions of CD4 memory, CM, EM and TRM T cells in paired lung (blue) and LDLN (red)

samples (n= 11, paired samples from the same donor are connected by a black line) using a standard gating strategy. Proportions are relative to CD4 gated

events. P values are from a paired t-test. Horizontal lines in the boxplot indicate median values and 25th and 75th percentile of values. b Cell proportions of

CD8 T cell subsets as described in a. c t-SNE projection generated using cell phenotype data after random downsampling to 2500 cells for each sample

with cells colored according to donor. d t-SNE projection with cells colored according to tissue site (lung in blue and LDLN in red). e Cells in t-SNE plot are

colored according to the difference in the levels of CD45RA and CD45RO. t-SNE projections for levels of CD4 (f), CD8 (g) and CD69 (h)
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The majority of genes that are differentially expressed between
memory T cell subsets from the lung and LDLN are not shared by
other T cell subsets. Only 78 out of 801 genes that were
differentially expressed by CD4 memory subsets were shared by
CM, EM and TRM subsets, and CD8 EM and TRM subsets
shared 127 of 1582 genes that were differentially expressed
between lung and LDLN subsets (Fig. 5). Similarly, 168 out of
1813 differentially expressed genes were shared between CD4
TRM and CD8 TRM subsets. Specific examples of differentially
expressed genes include higher expression of IL2, IL10, XCL2,
GZMA, and GZMB in lung CD4 TRMs compared with lung CD4
EM, whereas none of these genes were differentially expressed in
LDLN CD4 TRMs and EMs. Instead, the expression of other
genes was higher in LDLN CD4 TRMs compared to LDLN EMs,
including CXCL13 (Fig. 4e). Similarly, lung, CD8 EMs had higher
expression of SELL and S1PR5 compared with lung CD8 TRMs,
while LDLN, CD8 TRMs had higher expression S1PR1 compared
to CD8 EMs (Fig. 4d). Thus, the overwhelming majority of tissue
associated gene expression differences are subset specific.

Validation of gene expression results. We next asked whether
the gene expression differences between lung and LDLN cells
resulted in differences in protein levels that could be detected by
flow cytometry. We tested 5 surface markers whose genes were
differentially expressed between the tissues: FCGR3A (CD16) had
higher gene expression in the lung for all CD4 and CD8 memory
subsets; CD79 and CD9 had higher gene expression for all lung
CD4 memory subsets; CXCR5 had higher gene expression in the
LDLN for all CD4 memory subsets, especially in LDLN CD4
TRMs (Fig. 3a); and CD200 had higher gene expression in the
LDLN for CD4 TRMs. Flow cytometry on paired lung and LDLN
samples from the same 5 donors confirmed that the effect of
tissue origin on gene expression is mirrored with cell mean
fluorescence intensity (MFI) for FCGR3A (CD16), CD79, CD9,
and CD200 (Fig. 6). The proportion of cells positive for each of
these markers mirrored results with gene expression data for
most of these markers (Supplementary Fig 7). Therefore,
including these additional markers to the established memory cell
surface markers will allow further classification of T cell subsets
that reflects lung or LDLN localization.

Gene ontogeny of differentially expressed genes. Gene ontogeny
(GO) analyses were performed on sets of genes with differential
expression shared by certain T cell subsets. Among the 78 genes
differentially expressed between tissues by all CD4 memory T cell
subsets, GO identified enrichment for a number of processes, and
the top processes related to immune response, immune effector
processes, cellular activation and leukocyte migration (Supple-
mentary Data 7). Similarly, the 127 genes shared by CD8 EM and
CD8 TRM subsets were enriched for leukocyte immunity, leu-
kocyte activation and immune effector process (Supplementary
Data 8). Gene ontogeny analysis of genes that were differentially
expressed between tissues by both CD4 TRM and CD8 TRM
subsets identified highly enriched pathways that were also related
to immune responses, immune effector responses, immune reg-
ulation and leukocyte degranulation (Supplementary Data 9).
Collectively, this GO analysis highlights that gene expression
differences between lung and LDLN that are shared by memory T
cell subsets result in differences in activation status, effector
capacity and migration.

Differences between lung and LDLN TRM T cells. We focused
subsequent analyses on TRMs because these cells are non-circu-
lating, reside in the tissue and have been shown to have unique
responses in a number of tissues5,7,8. We first defined genes with
tissue-specific expression as those that were differentially
expressed between the lung and LDLN for CD4 and CD8 subsets
at a 5% FDR. We then performed pathway analysis separately on
the 241, 177, 899, and 464 genes with tissue-specific expression in
TRM subsets in the lung and LDLNs (lung CD4, LDLN CD4,
lung CD8, LDLN CD8 TRMs, respectively). Genes with higher
expression in lung CD4 TRMs compared to LDLN CD4 TRMs
were enriched in pathways regulated by cytokines such as IFNG,
TGFB1, TNF and IL-4 (Supplementary Data 10), which were also
highly connected in gene networks (Fig. 7 and Supplementary
Fig. 8). These networks connected genes involved in specific
immune pathways such antibody binding Fc receptor family
(FCGR2A, FCGR3A, FCGR3B and FCER1G), a complement
receptor gene (C5AR1), as well as cytokines and chemokines
(IL17A, IL1B, IL1G, CCL20, CXCL2, and CXCL3). Therefore,
these genes and pathways distinguish lung CD4 TRMs from
LDLN CD4 TRMs. Among the genes with lung-specific

Fig. 2 Gene expression differences between CD4 TRMs and CD8 TRMs. a Volcano plot comparing the gene expression between sorted LDLN CD4 TRM

and LDLN CD8 TRM subsets. b Gene expression differences between lung CD4 TRM and lung CD8 TRM subsets. Genes with a P value higher than the

FDR threshold of 0.05 are colored gray
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expression in CD8 TRMs, IFNG, TNF, IL13, TCL1A, and TGFB1
were the most promising upstream regulators. These genes
formed several highly connected networks, including one with
TLR4 and MYD88 as hubs (Fig. 7, Supplementary Fig. 7 and
Supplementary Data 11). Innate sensing and signaling appears to
be a prominent feature in lung CD8 TRMs, and these molecules
coordinate with other differentially expressed genes, including
chemokines, cytokines and IRF3, a transcriptional regulator of

interferon genes. Differential expression of TLR4 and MyD88 is
not associated with classical T cell subsets, however, we also
observe higher expression of one or both of these genes in lung
CD4 CMs and lung CD4 EMs compared with these populations
in the LDLN (Supplementary Data 3 and 4). Overall, the tran-
scriptional profiles of lung CD4 TRMs and lung CD8 TRMs
revealed higher expression of genes involved in innate immune
processes in the lung compared to phenotypically similar cells in
the LDLN. These genes were also enriched for inflammatory,
infectious and hematologic diseases, as well as respiratory con-
ditions, including “inflammation of the lung”, “damage of lung”,
“infection of respiratory tract”, “severe acute respiratory distress
syndrome”, “fibrosis of the lung” and “lung injury” (all P value <
1 × 10–8, Supplementary Data 12). Therefore, focusing on lung T
cell subsets revealed their important relationship with lung
pathologies and innate immune processes.

To assess for tissue-specific processes relevant to lung TRM
subsets, we analyzed the ontogeny of genes that were differentially
expressed between the lung and LDLN in CD4 TRMs but not
differentially expressed in other CD4 memory subsets. The top
processes associated with the 255 CD4 TRM-specific genes were

Fig. 3 Principal component analysis of RNA sequencing data after correcting for covariates. a Samples are colored according to the tissue. b Samples are

colored according to donor. c Samples are colored according to whether they were CD4 or CD8 subsets. d Samples are colored according to T cell subset

Table 1 Number of differentially expressed genes between

lung and LDLN (5% FDR)

Total Higher expression

in lung

Higher expression

in LDLN

CD4 TRM 418 241 177

CD4 CM 235 197 38

CD4 EM 346 304 42

CD8 TRM 1363 899 464

CD8 EM 106 85 21
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“regulation” functions related to stress, defense, cellular processes
and signaling responses (Supplementary Data 13), which
contrasts from the more immune-related GO processes described
above for the set of genes with differential expression shared by

all memory CD4 subsets. This is consistent with CD4 TRMs
playing a pivotal role in coordinating immune and inflammatory
responses in a tissue-specific manner. When CD8 TRMs were
similarly analyzed, the most promising GO terms were broader,

Fig. 4 Gene expression differences between T cell subsets. a Comparison of gene expression between lung CD4 TRM and LDLN CD4 TRM subsets and

lung CD4 CM and LDLN CD4 CM subsets. b Comparison of gene expression between lung CD8 TRM and LDLN CD8 TRM subsets and lung CD8 EM and

LDLN CD8 EM subsets. c Comparison of gene expression between lung CD4 TRM and lung CD4 CM subsets and LDLN CD4 TRM and LDLN CD4 CM

subsets. d Comparison of gene expression between lung CD8 TRM and lung CD8 EM subsets and LDLN CD8 TRM and LDLN CD8 EM subsets. See

Supplementary Fig. 6 for comparison of lung CD4 EM and LDLN CD4 EM

Fig. 5 Overlap of genes differentially expressed between the tissues by memory T cell subset. Venn diagram for CD4 memory T cell subsets (a), CD8

memory T cell subsets (b) and CD4 and CD8 TRM subsets (c). Numbers indicate the number of genes in each section that were differentially expressed

when compared between the lung and LDLN
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including “cellular processes”, “biological process”, “cell activa-
tion” and “metabolic process” (Supplementary Data 14), possibly
indicating that CD4 TRMs and CD8 TRMs modulate immune
responses by distinct mechanisms.

TCR repertoires of lung and LDLN memory T cell subsets. T
cell receptor specificity is determined by the recombination of
TCR V, D and J gene segments that results in a vast TCR
repertoire. While the TCR repertoires of memory T cell subsets
are derived from the naive TCR repertoire, memory TCR
repertoires are also shaped by antigen recognition and clonal
proliferation resulting in a less diverse TCR repertoire memory
subsets. To characterize the TCR repertoires in the sorted T cells
from the lung and LDLNs, we aligned RNA sequencing reads to
the TCR β chain CDR3 gene sequence. This yielded 1.12 × 106

functional (in-frame) TCR β CDR3 sequences, which was used to
assess the extent of clonality within a given sample. In addition,
comparisons were made of the clonal overlap between memory
subsets in the lung and LDLN, and independent of clonality,
whether particular V gene segments were more commonly used
than others.

Our sample included 110,123 unique TCR clones. Rarefaction
analysis indicated that we captured a large majority of the
repertoire for nearly all samples (Supplementary Fig. 9). TCR
repertoire diversity differed between samples (Supplementary

Fig. 10), but only 5.3% of the 110,123 unique clones were
identified in more than one sample. We focused our analysis on
the 6 of 11 donors with TCR repertoire data in at least 3
CD4 subsets from both the lung and LDLN and with more than
150 clones present in more than one subset. None of CD8
datasets from any donor met these criteria, and therefore,
CD8 subsets were not analyzed (Supplementary Data 1). We first
assessed the clonal overlap of CD4 memory T cell subsets from
the lung and LDLN separately for each donor using clones that
showed the most overlap between subsets (Fig. 8a and
Supplementary Fig. 11). While several patterns of clonal overlap
were observed, phenotypically identical subsets from the lung and
LDLN had lower overlap than overlap of subsets within the lung
or LDLN, and the most clonal overlap was between lung subsets,
as indicated by more sharing of clones on the right side of the
heatmaps in Fig. 8a and Supplementary Fig. 11. Next, we
performed hierarchical clustering using the repertoire data from
CD4 subsets for these same 6 individuals and observed clustering
of subsets by tissue of origin and not CD4 subset membership
(Fig. 8b and Supplementary Fig. 12). Indeed, we did not observe
any instances where memory subset pairs across tissues were
most closely related, and among all 6 donors, 32 of 35 memory
subsets clustered according to tissue (binomial test P value=
4.2 × 10-7, Fig. 8b and Supplementary Fig. 12). To further
investigate clonal relationships, we applied multidimensional
scaling (MDS) to the combined dataset of all subsets and all

Fig. 6 Validation of gene expression results by flow cytometry. Flow cytometry MFI for paired lung and LDLN samples from 5 donors is shown for four

markers, whose genes were differentially expressed by tissue site by RNA sequencing. P values were calculated using Wilcoxon signed rank test for paired

samples. a The expression of CD16, CD74 and CD9 was higher in the lung relative to the LDLN for all CD4 memory T cell subsets. The MFI is shown after

gating on all CD4 memory T cells. b The expression levels of CXCR5 and CD200 were higher in the LDLN relative to the lung. CXCR5 gated on all memory

CD4 subsets and CD4 TRMs, and for CD200 only in CD4 TRMs (gated on CD4 TRMs). MFI is shown after gating on the cells shown in each panel
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donors (Supplementary Fig. 13). The advantage of using MDS is
that distance measurements are scaled and can be quantitatively
compared between all samples and individuals. Comparisons of
the average pairwise distances between CD4 subsets within and
between tissues, revealed low overlap (small MDS distance)
between naive and memory TCR repertoires but significantly
larger overlap (large MDS distance) of the TCR repertoire of
memory populations in the LDLN and in the lung (Wilcoxon
rank-sum test P value= 0.000175 and 0.0421, respectively,
Fig. 8c). While the TCR repertoire overlap between phenotypi-
cally identical T cell subsets from the LDLN and lung was larger
than the overlap of naive and memory CD4 subsets (Wilcoxon
rank-sum test P value= 0.00354), it was not larger than the
overlap of different memory T cell subsets within the LDLN or
lung (Wilcoxon rank-sum test P value= 0.116 and 0.879,
respectively, Fig. 8c). These results show that clonal overlap of
CD4 memory T cell subsets within the lung or within the LDLN
is greater than the clonal overlap between phenotypically identical
subsets in the lung and LDLN. Therefore, memory subsets in each
of these tissues are each derived from a separate pool of
progenitors with little overlap, as reflected in the modest sharing
between the tissues.

We next asked whether there were particular patterns of V
gene segment and J gene segment usage that occur for reasons
other than clonal expansion, such as differences in V and J gene
segment recombination frequencies. For this analysis, we counted
each clone as a single count regardless of its frequency. Complex
patterns of V gene segment and J gene segment usage were
observed (shown for CD4 subsets from two individuals in
Supplementary Fig. 14), but there were no prominent donor-
specific patterns (Supplementary Fig. 15). We therefore pooled
data from all individuals and evaluated over- or under-
represented V gene or V-J gene combinations in each T cell
subset. In all memory CD4 and CD8 subsets, unequal V gene
usage was apparent (Fig. 9, Supplementary Fig. 15 and
Supplementary Fig. 16). For example, in CD4 memory subsets
from both the lung and LDLN, V5–1, V7–2, and V20–1 were
over-represented (Fig. 9a, b, Supplementary Fig. 15 and
Supplementary Fig. 16). These same V gene segments were
overrepresented in CD8 T cell subsets from both lung and LDLN
(Fig. 9c, d). Conversely, we observed that some V gene segments,
including V5–2, V22–2, and V26, were rarely used in CD4
or CD8 T cells. Over and under-representation of particular V
genes in memory subsets could be due to antigen selection,

Fig. 7 Networks of differentially expressed genes between lung and LDLN TRM subsets. a Network of subset of genes that had increased expression in lung

CD4 TRMs compared with LDLN CD4 TRMs (IPA network score of 54). b Network of subset of genes that had increased expression in LDLN CD4 TRMs

compared with lung CD4 TRM (network score of 21). c Network of subset of genes that had increased expression in lung CD8 TRM compared with LDLN

CD8 TRM (network score of 37). d Network of subset of genes that had increased expression in LDLN CD8 TRM compared with lung CD8 TRM (network

score of 57). All molecules colored (red or blue) indicate genes that were differentially expressed. Molecules without color were added to the network by

the IPA software
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although we observed the same patterns in naive CD4 and
CD8 subsets (Fig. 9). Taken together, these observations suggest
that mechanisms biasing V gene usage occur before antigen
encounter and influence CD4 and CD8 T cells equivalently in the
lung and LDLN.

Discussion
In this study, we investigated the relationship between memory T
cell subsets from human lungs and LDLNs and demonstrated
how they differ with regard to cellular frequency, transcriptional
programming, cell surface marker expression, and clonality. Our
results established that memory T cell subsets are distinct
between these two sites, despite the close proximity of lung tissue
and LDLNs and the fact that both antigen and lung T cells drain
into the LDLN. Therefore, differences between cells that are
phenotypically identical using classical markers from these tissues
likely result from independent roles during immune responses.

Although it is well known that lymphocyte proportions vary
between tissues and typically do not reflect cell proportions in the

blood, the majority of studies on human immune cell types have
been conducted on whole blood or cells isolated from blood.
Non-circulating memory T cell subsets, and in particular TRMs,
have been reported to have tissue-specific responses and be
abundant in human tissues, including the skin, gastrointestinal
tract and lung7–9. While all of these tissues have highly specialized
function, the lung’s dedicated role in gas exchange necessarily
juxtaposes a highly vascular pulmonary circulation with the
environment. This constant exposure to the inhaled environment
results in regular encounters and re-encounter with pathogens
and other stimuli. In mouse models, specific lung memory T cell
subsets are essential for recall responses to specific pathogens,
and they are presumed to play crucial roles in humans as
well10–12. As such, the biology of lung memory T cell subsets is
highly relevant to vaccine responses and likely an array of
respiratory diseases such as asthma, acute lung injury and cystic
fibrosis. We have now determined that differentially expressed
genes in lung memory T cell subsets are enriched in a number of
inflammatory and fibrotic lung diseases as well as innate immune
processes.

Fig. 8 T cell receptor repertoires in lung and LDLN CD4 T cell subsets. a Heatmap of clonal overlap between memory CD4 T cell subsets for 2 donors. The

75 clones with the highest frequency of clonal overlap for each donor were included for this analysis. Heatmaps for other donors are shown in

Supplementary Fig. 11. b Hierarchical clustering of CD4 subsets based on clones present in more than one subset. Clustering from two donors is shown and

representative of clustering observed in other donors (shown in Supplementary Fig. 12). c Multidimentional scaling distance between CD4 T cell subsets

for each individual is shown relative to subsets and tissue. First boxplot, distance between naive CD4 and the average of memory CD4 subsets was

calculated separately for lung (blue) and LDLN (red) for each donor. Second boxplot, average of the distance between memory CD4 subsets in LDLN. Third

boxplot, average of the distance between memory CD4 subsets in lung. Fourth boxplot, average of the distance between lung and LDLN memory of

phenotypically identical CD4 memory subsets. Green indicates comparisons between tissues. Wilcoxon rank-sum test P values between groups are shown.

Horizontal lines in the boxplot indicate median values and 25th and 75th percentile of values
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Fig. 9 Biased V-J gene usage across subsets. Dotplots of the number of clones with a given V-J gene combination. J-gene segments are shown on the x-axis

and V gene segments on the y-axis. The size of the dot is proportional to the number of clones observed with a given V-J gene recombination. V-J gene

usage by CD4 T cell subset from the LDLN (a) and lung (b). CD8 naive and TRM V-J gene usage in T cells from the LDLN (c) and lung (d). Data are pooled

from all 11 donors. Un-pooled data from two donors are shown in Supplementary Fig. 15
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Our observations of greater proportions of CD4 and CD8
TRMs in the lung compared to the LDLN and the lower pro-
portions of lung CMs, and particularly CD8 CMs, is consistent
with previous reports7,13. The gene expression data described
here is also consistent with other studies of CD4 and CD8
memory T cell subsets in humans. For example, IL2 expression is
higher in lung CD4 TRMs compared with lung CD4 CMs in our
study, and previous studies have demonstrated high IL2 expres-
sion in human lung and liver TRMs14,15. One previous study
showed gene expression differences between human CD69+ and
CD69- CD4 and CD8 TRM subsets, but this study was limited to
analysis of three donors and to a combined analysis of blood,
spleen and lung samples14. Another group reported gene
expression differences between blood and lung CD4+ cells with
the TRM phenotype16. Another study identified lymphoid tissue
memory CD8 T cells with similar phenotypic and gene expression
patterns as CD8 TRMs and these may be particularly relevant for
protection against HIV17. In mice, gene expression differences
have been reported between TRMs isolated from the spleen and
TRMs isolated from the female reproductive tract after viral
infection18. In contrast to these earlier studies, our work revealed
large differences in transcriptional programs between T cells that
are identical using classical phenotypes from two different sites in
humans.

We confirmed that at least some of the observed transcriptional
differences are biologically meaningful as all 5 of the genes we
selected for further studies showed similar protein expression
differences between the lung and LDLN by flow cytometry. CD9
is a tetraspanin protein that is present on many immune cells and
has recently been reported to be present on memory and CD4
TRMs in the skin19. Increased levels of CD200 (also called OX40)
on LDLN memory CD4 T TRMs plays a crucial role in costi-
mulation of T cells. We also confirmed by flow cytometry that
lung memory T cells have higher levels of proteins involved in
antigen presentation, including the low-affinity Fc receptor,
CD16, and the MHC class II invariant chain, CD74. Although
T cells are not considered classical antigen presenting cells,
induced expression of these antigen presenting surface markers in
T cell subsets has been reported previously20,21. To our knowl-
edge, this is the first demonstration of antigen presenting cell
surface markers in human lung memory T cells.

Pathway and network analyses of genes more highly expressed
in lung CD4 TRMs compared with LDLN CD4 TRMs suggest
that inflammatory and regulatory cytokines are differentially
expressed between these tissues, including IL1B, IL10, IL17A,
IFNG, and TGFB. Compared with LDLN CD8 TRMs, lung CD8
TRMs also had higher expression of cytokine genes such as IL10,
IL6, IL17A. Interestingly, CD8+ T cell subsets present in blood
and several tissues express IL17A, and IL-17 secreting cells have
been associated with tissue infiltration and inflammation22. We
also observed higher expression of receptors typically associated
with innate immune responses. As an example, CD14, MYD88
and other toll like receptor genes were expressed at higher levels
in lung CD8 TRMs than LDLN TRMs, and a number of innate
receptors were present in lung CD4 memory subsets. While
innate function is not typically attributed to classical T cell sub-
sets, human T cells have been reported to express these genes23,
suggesting that innate sensing in the tissue may be highly relevant
to these memory subsets. Our observation that gene expression of
both cytokine and innate receptor genes differ between lung and
LDLN subsets suggests either that these tissue-specific subsets
have tremendous plasticity that is influenced by the tissue
environment or that these populations are more diverse than
suggested by current phenotyping by cell surface markers.

Taken together, the results of our study raise the question of
whether differences in gene expression are induced in T cells by

exposure to the lung and LDLN environments or whether the
expression of specific genes in T cells contributes to their homing
to a specific location. For example, it may be that the lung
environment drives cellular characteristics of T cells. Alter-
natively, specific subsets may express genes and receptors that
promote preferential residence in the lung. A limitation of the
current study is that we cannot differentiate between these two
possibilities.

We sequenced over 1 million TCRB CDR3 regions, revealing
several insights about the TCR repertoires in the lung and LDLN.
First, particular TCRB V gene segments are overrepresented and
others are underrepresented across all T cell subsets, consistent
with previous reports in other T cell subsets24–26. Because biased
TCRB V gene usage occurred independent of clonal selection, it
must be influenced by factors that affect individual V gene seg-
ment recombination and/or selection of particular gene segments
during development; several of these mechanisms have been
described previously27–29. Here, we show that the factors that
globally influence V gene usage persist across a number of lung
and LDLN T cell subsets, even after antigen selection into the
memory pool.

Comparison of CD4 TCR repertoires revealed sharing of
antigen specificity across memory CD4 T cell subsets in the lung,
and the same was true of TCR repertoires of memory CD4 T cell
subsets in the LDLN. It was previously demonstrated in mice that
the same clone can be found in both skin TRMs and LN CMs
following skin immunization30. However, to our knowledge, the
extent of clonal overlap of human memory CD4 T cell subsets
within the same tissue, and in particular between the lung and
LDLN, has not been previously recognized.

While features of TCR repertoires in CD8 T cell subsets were
similar to CD4 T cell subsets, we focused only on evaluating
clonal overlap in CD4 T cells because some CD8 subsets were not
available from most of the donors. Therefore, while it is likely that
clonal overlap of CD8 T cell subsets mirrors that of CD4 T cell
subsets, we did not assess this directly. A second limitation of our
TCR repertoire analysis is that while we optimized our experi-
mental strategy to recover as many cells as possible from each T
cell subset, we sampled only a fraction of the overall T cells in
each subset. Therefore, our analysis, while powered to identify
clonal overlap between T cell subsets, does not comprehensively
capture the entire TCR repertoire of each of these subsets.
Additional clones are likely present in each of the subsets, and it
is also possible that some of the unique clones are actually shared
at low frequencies between other subset(s). Our accounting of
clones also assumes that identical CDR3 nucleotide sequences
arise due to clonal expansion rather than independent TRB
rearrangement events. This assumption is reasonable and sup-
ported by our observation of lower clonality in naive compared
with memory T cell subsets and that there is a low probability of
independent TRB rearrangements generating identical CDR3
nucleotide sequences.

Models of memory T cell subset formation propose that the
duration of antigen exposure and recognition drives differentia-
tion from the naive T cell pool, with CM progeny emerging prior
to the development of EM progeny31,32. More recently, it has
been proposed that human CD8 T cell memory after yellow fever
virus vaccination is maintained by quiescent cells, challenging a
strictly linear differentiation33. In linear models of differentiation,
clonal fate is determined predominantly by the antigen and TCR
recognition, implying that repertoires of T cell subsets are inde-
pendent. In these models, clonal overlap between T cell subsets
would be low. However, we find that overlapping clones were
typically shared between memory subsets in the same tissue, and
therefore, a strict linear model of memory T cell differentiation
does not fit with our observations. Rather, our results are
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consistent with a model whereby clonal progenitors can differ-
entiate into multiple memory T cell phenotypes, and possibly
whereby residence in the lung or LDLN is imparted based on
TCR specificity. The TCR repertoire findings support the
observed gene expression patterns in our study, namely, that
phenotypically identical T cell subsets in the lung and LDLN are
independent populations.

We studied 8 different T cell subsets in human lungs and
LDLN and the principal difference we identified was not whether
cells were CD4 or CD8 or a particular memory subset, but rather,
whether they resided in the lung or the LDLNs. This was con-
sistent across phenotypic, transcriptional and TCR repertoire
analyses. While memory T cell subsets are known to have distinct
roles during immune responses, our results suggest that T cell
location may be more relevant, underscoring the need for further
studies of human lung T cells.

Methods
Human tissue procurement. Human lung samples were obtained from organ
donors whose lungs were not used for transplantation through the Gift of Hope
Regional Organ Bank of Illinois. Donors with >10 pack-years of tobacco use were
excluded from this study. Because samples from this study were from deceased
donors, they do not qualify as “human subjects” (confirmed by the Institutional
Review Board at the University of Chicago).

Leukocyte isolation. Cells were processed as previously described34. Briefly, lung
tissue was perfused with sterile fetal bovine serum and phosphate-buffered saline.
Paratracheal, hilar, interlobular and palpable interlobar LNs were dissected and
pooled. LDLNs were mechanically dissociated into a single cell suspension and
cryopreserved. The right lower lobe was minced and digested. Separately, LDLN
and lung tissue mononuclear cells were enriched using density gradient cen-
trifugation and cryopreserved.

Cell staining and sorting. A panel of 11 antibodies was established to discriminate
leukocyte and specific T cell subsets and stained according to manufactures’
recommendations. Antibody details are in Supplementary Table 1. Each paired
sample (lung leukocytes and LN leukocytes from the same individual) was pro-
cessed and sorted on the same day, and a minimum of two individuals had samples
processed on a given day. Cells were sorted using a FACSAria Fusion (Becton
Dickinson, Franklin Lakes, NJ) at the University of Chicago with the same sort
template. Purity checks were performed on at least one sorted population during
each day of sorting, and rarely, minor changes in compensation were made to
maintain a sort purity > 98%. Cells were sorted directly into lysis buffer, immedi-
ately frozen on dry ice and stored at −80 °C.

Flow cytometry analysis. Flow cytometric data was analyzed using BD FACSDiva
software (BD Biosciences) to determine the frequency of defined populations.
Additionally, the flow cytometric data was randomly down-sampled to 2,500
CD45+ CD3+ events for each donor and analyzed using t-distributed stochastic
neighbor embedding (t-SNE)35 with the Rtsne package36.

Flow cytometry validation of gene expression. Based on the results of RNA
sequencing, 5 cell surface markers, CD16, CXCR5, CD9, CD74 and CD200, were
chosen to be tested by flow cytometry (details on the antibodies used are shown in
Supplementary Table 1). Paired lung and LDLN samples from same 5 donors used
for gene expression studies were stained according to the manufacture’s recom-
mendations. Samples were run on a Fortessa X20 cytometer (Becton Dickinson).
The results were analyzed using FlowJo software (Becton Dickinson) to calculate
the MFI and percent of cells that were positive with gates set according to
florescent-minus one controls. Memory CD4 T cells were defined as the population
that was CD3+CD11b-CD4+CD8-CD45RO+CD45RA-, and similarly, memory
CD8 T cells were defined as the population that was CD3+CD11b-CD8+CD4-
CD45RO+CD45RA-.

RNA sequencing. Samples were randomized by individual, T cell subset and
source (lung versus lymph node) prior to RNA extraction. RNA was extracted
using All Prep DNA/RNA Mini Preparation Kit (Qiagen, Hilden, Germany). RNA
quality, concentration and RNA integrity number (RIN) was assayed using an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). cDNA was
synthesized using the SMART-Seq v4 Ultra Low Input RNA Kit (Takara Bio
Company, Mountain View, CA) and libraries generated using Nextera XT DNA
Library Preparation Kit (Illumina, San Diego, CA). Individual libraries were pooled
and sequenced at the University of Chicago using a HiSeq 4000 (Illumina, San
Diego, CA) with 100 base-pair paired-end reads. Reads were aligned to Genome

Reference Consortium Human Build 38 and gene counts were calculated using
STAR 2.5.037. Samples with less than 10 million mapped reads were removed.
Analysis of CD8 CM subsets was not performed because fewer than 4 samples from
each tissue met this threshold. Genes were filtered for those with more than one
count per million in at least 10 samples, which included 14,820 genes. Principal
component analysis was used to identify technical covariates.

Statistics and reproducibility. All statistical analyses were performed using R
(version 3.3.3). Differentially expressed genes were identified using linear regres-
sion with the Limma package;38 each donor was included as a random variable39

while amplification cycles, age, gender and race were included as fixed variables.
We controlled the false discovery rate according to the Benjamini and Hochberg
method40 with a threshold of 5%.

Gene networks and regulators. Ingenuity Pathway Analysis (IPA) was used to
identify gene networks and regulators of genes differentially expressed in the lung
and LDLN for CD4 TRM and CD9 TRM subsets. Analysis was performed using
databases that included all leukocyte types, immune cell lines, bone marrow,
spleen, lymph node and lung tissues.

Gene ontology. Gene lists were tested for enrichment in GO pathways using
PANTHER version 14.2 (release 04–2018)41,42. The “Statistical overrepresentation
test” was performed using default settings. Enrichment in the GO biological pro-
cess complete annotation data set was tested using Fisher’s exact test and an FDR
p-value threshold of 0.05 was used.

T cell receptor repertoire analysis. RNA sequencing reads described above were
aligned to TCR genes using MiXCR43. Sequences aligning to TCR β CDR3 regions
that were productively rearranged (without stop codons) were included in further
analysis. Clones were determined based on nucleotide sequence. Multi-dimensional
scaling was calculated for all samples using clones that were present in two or more
samples. For most individuals, at least one CD4 memory T cell subset was not
available or did not pass quality control for sequencing. Therefore, MDS distances
between memory subsets from the same individual were averaged to allow for
comparison between tissues and between naive and memory subsets (Fig. 8c). For
hierarchical clustering of CD4 subsets, Euclidean distances of clones present in
more than one subset was calculated separately for each donor. Donors with less
than 150 shared clones were excluded in this analysis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA sequences generated and analyzed in the current study are available in Gene

Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) with an accession number

GSE137967. Source data are presented in Supplementary Data.
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