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Abstract

Nuclear receptors regulate gene expression in response to environmental cues, but the molecular 

events governing the cell-type specificity of nuclear receptors remain poorly understood. Here we 

outline a role for a non-coding RNA in modulating the cell type-specific actions of LXRs, sterol-

activated nuclear receptors that regulate the expression of genes involved in cholesterol 

homeostasis and that have been causally linked to the pathogenesis of atherosclerosis. We identify 

the lncRNA MeXis as an amplifier of LXR-dependent transcription of the critical cholesterol 

efflux gene Abca1. Mice lacking the MeXis gene show reduced Abca1 expression in a tissue-

selective manner. Furthermore, loss of MeXis in mouse bone marrow cells alters chromosome 

architecture at the Abca1 locus, impairs cellular responses to cholesterol overload, and accelerates 

the development of atherosclerosis. Mechanistic studies reveal that MeXis interacts with and 

guides promoter binding of the transcriptional coactivator DDX17. The identification of MeXis as 

a lncRNA modulator of LXR-dependent gene expression expands our understanding of the 

mechanisms underlying cell-type selective actions of nuclear receptors in physiology and disease.

Introduction

The accumulation of excess cholesterol by macrophages within the arterial wall is a pivotal 

step in the pathogenesis of atherosclerosis. The ability of macrophages to integrate 

metabolic and immune signaling in response to environmental cues and lipid excess is 

therefore an important determinant of disease susceptibility1-23. LXRs are ligand-dependent 

transcription factors that regulate expression of genes involved in macrophage responses to 

cholesterol, and also modulate inflammatory signaling 4,5. Activation of LXRs promotes 

reverse cholesterol transport through induction of a cadre of genes, including Abca1, which 

encodes the plasma membrane transporter ABCA1. This ATP-dependent transporter is 

critical for HDL generation and its function is compromised in Tangier disease, a syndrome 

characterized by both HDL deficiency and accelerated atherosclerosis 67.

LncRNAs have been shown to function through diverse mechanisms, including exerting 

direct transcriptional effects in response to environmental cues 8. A number of lncRNAs 

have been shown to regulate the expression of neighboring genes; however, the mechanisms 

by which noncoding gene activation serve local regulatory functions remain to be fully 

clarified 910. Although a number of lncRNAs have been shown to have sequence-specific 

features, recent work highlights the strong contribution of neighboring promoter activity, 

including the processes of transcriptional initiation and splicing, on gene expression 11. In 

this work we characterize an LXR-responsive lncRNA that affects transcriptional pathways 

linked to macrophage cholesterol efflux and atherosclerosis. Our results suggest that cell-

type selective action of lncRNAs may contribute to the temporal and spatial gene activation 

patterns of nuclear receptors.

Results

Regulation of macrophage lncRNAs in response to cholesterol loading

LXRs influence the expression of a large repertoire of genes linked to lipid metabolism in a 

context-specific fashion. We noted that the gene encoding critical cholesterol efflux mediator 
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ABCA1 was much more highly induced by synthetic LXR in macrophages than in other cell 

types such as hepatocytes and adipocytes (Supplementary Fig. 1a). To gain insight into the 

basis for this cell-type selective LXR response, we performed genome-wide transcriptional 

profiling on mouse peritoneal macrophages treated with or without the synthetic LXR 

agonist GW3965. The expression of canonical protein-coding LXR target genes was 

robustly induced by LXR agonist treatment, as expected (Supplementary Fig. 1b). 

Consistent with established roles of LXR in metabolism, the network of ontology terms for 

GW3965-induced genes showed robust enrichment for lipid regulatory processes and 

macrophage-specific pathways (Supplementary Fig. 1c). Interestingly, we also observed that 

LXR activation induced a limited number of lncRNAs (Supplementary Fig. 1d and 

Supplementary Table 1). Several of these lncRNAs are located in neighboring genomic 

regions to protein-coding genes with established roles in mediating LXR effects on 

metabolism. Gene ontology analysis of protein-coding genes that were nearest to these 

lncRNAs showed enrichment for cholesterol metabolic processes, consistent with the idea 

that a subset of these non-coding RNAs may modulate the activity of adjacent protein-

coding genes (Supplementary Table 2).

From the list of regulated lncRNAs in Supplementary Table 2, one of the most robustly 

induced hit that also showed evidence of LXR binding to its gene regulatory regions by LXR 

ChIP-seq studies 12 was a predicted transcript annotated as AI427809. We named this 

transcript MeXis (Macrophage-expressed LXR-induced sequence). Notably, the MeXis gene 

is located in close proximity to the established LXR target genes Abca1 and LeXis 13 (Fig. 

1a). Analysis of chromatin signatures from ENCODE indicated that MeXis and Abca1 are 

distinct genes with separate promoters (Fig. 1a) 1415. 5’ and 3’ rapid amplification of cDNA 

ends (RACE) experiments defined the MeXis transcript ends (Supplementary Fig. 2). RNA-

copy number analysis showed that MeXis was highly expressed in murine macrophages 

(Supplementary Fig. 3a) and real-time PCR analysis showed that MeXis and Abca1 

expression was induced by LXR (GW3965) and RXR (LG268) agonists in primary 

macrophages in an LXR-dependent manner (Fig. 1b). MeXis expression was also induced in 

macrophages by physiologic lipid signals such as oxidized or acetylated LDL (Fig. 1c). In 

addition, oxysterol agonist of LXR induced MeXis expression in macrophages 

(Supplementary Fig. 3b). Intriguingly, MeXis showed a distinct pattern of LXR-dependent 

regulation compared to the lncRNA LeXis, which is expressed in liver but not macrophages 

(Fig. 1d) 13. MeXis was also expressed in adipose tissue (Supplementary Fig. 3c).

MeXis is an LXR-responsive lncRNA that influences Abca1 expression

We identified an LXR-response element (LXRE) within the MeXis promoter region that was 

bound by LXRs in ChIP-seq analysis (Fig. 1e). In contrast to most of LXR target genes 

which are responsive to both LXRs, the MeXis promoter was bound by LXRβ but not 

LXRα. Consistent with this result, MeXis expression was induced by LXR activation in WT 

and Lxra−/− but not Lxrb−/− peritoneal macrophages, whereas Abca1 expression was 

responsive to both LXRs (Fig. 1f and Supplementary Fig. 3d).To further explore isoform 

specific regulation of MeXis, we treated immortalized LXR DKO bone-marrow-derived 

macrophages (BMDMs), as well as LXR DKO BMDMs stably expressing LXRα, with 

GW3965. Abca1 was induced with LXR activation in LXRα-expressing BMDMs but not in 
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DKO controls, whereas MeXis was not induced in either cell type (Supplementary Fig. 3e). 

These data further suggest that MeXis is an LXRβ-selective target gene.

Computational scores that distinguish protein-coding from non-coding RNAs predicted a 

low-coding potential for the MeXis transcript (Fig. 1g). Although the MeXis transcript does 

contain a number of short potential open-reading frames, we found no evidence of 

translation and production of a protein product from MeXis using a coupled in vitro 

transcription-translation assay (Supplementary Table 3 and Supplementary Fig. 4a). Single 

molecule RNA FISH in immortalized mouse bone-marrow derived macrophages confirmed 

nuclear localization of MeXis (Supplementary Fig. 4b). MeXis was predominantly located 

in the insoluble nuclear pellet enriched for chromatin, whereas the protein-coding 36b4 

mRNA was predominantly present in cytoplasm (Supplementary Fig. 4c). Even when 

exogenously expressed at elevated levels, MeXis was predominantly nuclear (Supplementary 

Fig. 4d). This localization strongly suggests that MeXis most likely acts as a nuclear RNA, 

rather than being translated into a short protein in the cytoplasm.

Since some lncRNAs have been shown to regulate the expression of adjacent genes 1617, we 

hypothesized that loss of MeXis may impact the expression of Abca1. In support of this 

idea, siRNA-mediated knockdown of either MeXis or RXRα/β in mouse peritoneal 

macrophages decreased Abca1 transcript levels (Fig. 2a). An antisense oligonucleotide 

(ASO) targeting MeXis also reduced Abca1 levels (Supplementary Fig. 4e). Reciprocally, 

stable overexpression of MeXis in macrophages enhanced Abca1 expression and cholesterol 

efflux capacity to ApoA-I acceptors (Fig. 2b, 2c, Supplementary Fig. 4f).

MeXis deficiency affects Abca1 expression, cholesterol efflux, and atherogenesis

To better decipher the contributions of MeXis to macrophage metabolism, we generated 

MeXis-knockout mice (Supplementary Fig. 5a). We used a strategy in which FLP excised 

the targeting cassette following homologous recombination, such that no extraneous 

promoter sequences were left behind after recombination. Consistent with our siRNA 

studies, MeXis−/− peritoneal macrophages showed decreased Abca1 transcript levels (Fig. 

2d). Notably, in western-diet fed mice, Abca1 mRNA expression was differentially altered 

across tissues in MeXis−/− as compared to WT mice (Fig. 2d). For example, liver Abca1 was 

not significantly different between groups, whereas heart and kidney Abca1 expression was 

lower in MeXis−/− compared to WT mice (Fig. 2d). We also confirmed that Abca1 protein 

levels were reduced in MeXis−/− compared to WT macrophages (Fig. 2e). These results 

suggest that MeXis augments Abca1 expression in a context-specific manner.

We observed minimal changes in expression of other LXR target genes in response to MeXis 

overexpression, knockdown or knockout (Supplementary Fig. 5b-d), suggesting that MeXis 

does not regulate all LXR target genes equivalently. Unbiased transcriptomic analysis of WT 

and MeXis−/− primary peritoneal macrophages showed enrichment for lipid metabolic 

pathways and inflammatory signaling (Supplementary Table. 4). Consistent with the 

alteration in Abca1 expression in MeXis−/− macrophages, we observed a decrease in ApoA-

I-dependent efflux capacity in peritoneal macrophages from MeXis−/− compared to WT 

mice (Fig. 2f, Supplementary Fig. 4g). By contrast, loss of MeXis in macrophages was not 

associated with a change in cholesterol uptake (Supplementary Fig. 4h). Furthermore, 
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compared to WT macrophages, MeXis−/− peritoneal macrophages showed higher cholesterol 

content in vivo in western-diet fed mice (Fig. 2g). Additionally, morphological “foam cell” 

formation, as assessed by oil-red O staining, was in MeXis−/− peritoneal macrophages (Fig 

2h, Supplementary Fig. 4i). In accordance with the idea that MeXis primarily affects 

macrophage responses, there were no differences in serum cholesterol or triglyceride levels 

between MeXis−/− and WT mice, either when fed chow or western diet (Supplementary Fig. 

6). Taken together, these results suggest that MeXis is required for maximal Abca1 

expression in the face of macrophage cholesterol loading.

To further explore the ability of MeXis to act as an RNA and to confirm its ability to 

modulate Abca1 expression in vivo, we expressed MeXis in mouse liver using an adenoviral 

vector. Notably, we observed an increase in serum cholesterol levels—a hallmark feature of 

enhanced hepatic ABCA1 expression—in mice ectopically expressing MeXis in liver (Fig. 

2i). We also confirmed that MeXis expression in liver induced Abca1 mRNA without 

affecting the expression of other LXR target genes (Fig. 2j). ABCA1 protein levels were 

correspondingly increased by MeXis expression (Fig. 2k).

Cholesterol efflux capacity is an important determinant of atherosclerotic plaque 

development and progression. To examine the impact of MeXis on atherosclerosis, we 

reconstituted the bone marrow of irradiated Ldlr−/− mice with WT or MeXis−/− 

hematopoetic cells (Fig. 3a). Real-time PCR analysis of bone marrow from recipient mice 

collected at the time of sacrifice confirmed engraftment (Supplementary Fig. 7a). We found 

reduced Abca1 expression and enhanced inflammatory gene expression in the bone marrow 

of mice transplanted with MeXis−/− bone marrow (Supplementary Fig. 7a). En face analysis 

of atherosclerotic plaque area after 17 weeks of western diet feeding showed markedly 

increased atherosclerotic burden in mice transplanted with MeXis−/− compared to WT bone 

marrow (Fig. 3a, 3b). No differences in plasma cholesterol or triglyceride levels were 

observed between the two groups (Supplementary Fig. 7b). Consistent results were obtained 

when we assessed atherosclerosis by quantification of oil-red O–stained aortic root sections 

(Fig 3c, 3d). Histological analysis showed larger lesions in MeXis−/− bone marrow-

transplanted compared to WT bone marrow-transplanted mice, as well as increased staining 

for the macrophage-specific marker CD68 (Fig. 3e and Supplementary Fig. 7c). Laser-

capture microdissection of CD68-positive cells revealed decreased expression of Abca1 and 

MeXis in macrophages within atherosclerotic lesions from MeXis−/− bone marrow-

compared to WT bone marrow-transplanted mice (Fig 3f,g). Taken together, these results 

demonstrate that macrophage MeXis expression is a determinant of susceptibility to 

atherosclerosis in mice.

MeXis interacts with DDX17 and modulates Abca1 transcription

eRNA expression can serve as a surrogate marker of enhancer site activity and 

transcriptional activation 18. Enhancer elements surrounding Abca1 in macrophages have 

been defined previously (Supplementary Fig. 8) 19. Interestingly, MeXis−/− macrophages 

showed decreased eRNA expression from Abca1 enhancers in response to LXR activation, 

as compared to WT cells (Fig. 4a). To assess whether MeXis can affect transcription of the 

Abca1 gene in trans, we crossed Abca1Flox/Flox mice with heterozygous MeXis−/+ mice. 
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This strategy enabled us to measure effects of MeXis deficiency specifically on the Abca1 

transcript that is trans to the mutant MeXis allele. We found that a reduction in MeXis 

expression reduced Abca1 expression in trans (Fig. 4b, Supplementary Fig. 9a).

These observations led us to hypothesize that MeXis may influence chromatin dynamics at 

the Abca1 locus, thereby modulating its transcription. Consistent with this idea, ATAC-seq 

performed on peritoneal macrophages showed blunted accessibility at multiple sites within 

the Abca1 gene locus in the setting of MeXis deficiency (Fig. 4c). Quantification of 

accessible sites neighboring the Abca1 promoter revealed decreased accessibility in MeXis
−/− macrophages. By contrast, we found no difference in accessibility at the Tlr4 locus (Fig. 

4d), indicating selectivity of the effect of MeXis deficiency for certain chromatin regions. 

Genome-wide normalization revealed that the LXR target gene activation signature was 

largely preserved in MeXis-deficient macrophages; however, multiple sites within the Abca1 

locus showed differential accessibility between WT and MeXis−/− macrophages (Fig. 4e and 

Supplementary Fig. 9b). By contrast, the accessibility of very few sites was substantially 

altered at other LXR target gene loci (Supplementary Fig. 9c). Unbiased genome-wide 

analysis of differentially-accessible chromatin sites between WT and MeXis−/− macrophages 

showed enrichment for lipid transport and related processes (Supplementary Fig. 9d).

To further investigate the mechanism of MeXis action, we used an unbiased 

lncRNA:chromatin affinity capture technique 20 to pull down MeXis from macrophage 

extracts and identify interacting proteins (Supplementary Fig.10a). Analysis of the MeXis 

interactome by mass spectrometry identified DDX17, an established nuclear receptor 

coactivator21,22, as a potential interacting partner (Supplementary Fig.10b).We confirmed a 

robust interaction between MeXis and DDX17 in RNA immunoprecipitation studies in 

mouse macrophages, either with or without the use of a cross-linking agent (Fig. 5a). The 

prior characterization of DDX17 as a transcriptional coactivator led us to hypothesize that 

DDX17 may serve this function at the Abca1 locus. In line with this idea, ChIP-PCR 

analysis revealed that DDX17 was enriched at LXR binding sites in Abca1 enhancer regions 

in macrophages (Fig 5b). Moreover, DDX17 binding was substantially reduced as a 

consequence of MeXis deletion (Fig. 5b). Interestingly, the pattern of LXR binding was also 

altered as a consequence of loss of MeXis, with reduced occupancy at the Abca1 promoter, 

but enhanced binding at an intronic site (Fig. 5b). These results suggest that MeXis 

facilitates the coactivator actions of DDX17 to enhance LXR-mediated Abca1 expression. 

To definitively determine if MeXis is recruited to the Abca1 gene locus, we used ChIRP-

qPCR. Using this technique, we found that MeXis bound to at a number of sites at Abca1 

that show differential accessibility between MeXis−/− and WT macrophages (Fig. 5c)

To further define the importance of DDX17 in Abca1 regulation, we generated DDX17-

deficient immortalized bone marrow-derived macrophages utilizing CRISPR-Cas editing 

(Supplementary Fig.10c). Deletion of DDX17 using two different excision strategies 

reduced Abca1 levels at baseline and in response to LXR activation (Fig. 5d, e). These 

results strongly suggest that DDX17 is required for maximal Abca1 expression in 

macrophages. To analyze the epistatic relationship between DDX17 and MeXis, we 

generated DDX17/MeXis double-knockout macrophages using CRISPR-Cas. Deletion of 

MeXis in the setting of DDX17 deficiency failed to further reduce Abca1 transcript or 
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protein levels, as compared to DDX17 single knockout (Fig. 5f-g). Taken together, these 

results demonstrate that DDX17 contributes to MeXis-dependent regulation of Abca1.

Finally, we assessed whether the LXR-MeXis-Abca1 pathway is operational in human cells. 

Genome-batch conversion between human and mouse genome builds revealed the genomic 

region surrounding the MeXis/Abca1 locus showed a degree of conservation between 

species (Supplementary Fig.11). A noncoding human RNA transcript in this region, 

identified as TCONS00016111, showed some sequence conservation with MeXis (Fig. 6a 

and Supplementary Fig.11). Intriguingly, TCONS00016111 expression was induced in 

response to LXR activation in human THP-1 macrophages (Fig 6b). Moreover, ASOs 

targeting TCONS00016111 reduced ABCA1 transcript levels and ApoA-I-specific 

cholesterol efflux (Fig. 6c-d). Furthermore, lentiviral transduction of MeXis into MeXis−/− 

or THP-1 macrophages increased ABCA1 expression (Fig. 6e, f).

Finally, GWAS from the CARDIOGRAM Plus consortium23 identified a moderately 

significant association between a SNP overlapping the TCONS00016111 transcript and 

human coronary artery disease (P=4.78E–6) (Fig. 6g). These results support the notion that 

an LXR-lncRNA-Abca1 axis is operational in humans and may have relevance for human 

disease.

Discussion

Previous work has identified important roles for eRNAs in regulating gene expression 

programs 24. Our study expands the repertoire of noncoding RNA-mediated gene activation 

by showing that a lncRNA can help specify nuclear receptor regulatory circuits. Our results 

suggest that induction of MeXis expression in response to activation of LXRs augments 

Abca1 expression and macrophage cholesterol efflux in a context-specific manner. It seems 

likely that MeXis may contribute to cell type-specific regulation of Abca1 expression by 

LXRs. Our work, however, does not exclude the possibility that MeXis may have targets 

other than Abca1.

Our findings are consistent with previous reports that intergenic lncRNAs and their 

genomically-adjacent protein-coding genes tend to exhibit similar spatiotemporal expression 

profiles 2526. Recent work suggests that at least some of the local effects of lncRNAs are the 

results of promoter activity and the act of transcription rather than lncRNA-specific 

features11. Although our results do not exclude the possibility that cis regulatory elements at 

the MeXis locus exert an influence on Abca1 transcription, our data support that transcript-

dependent actions also contribute to Abca1 regulation.

This study also reveals an unexpected to role for a lncRNA in cardiovascular disease. 

Control of macrophage gene expression by the LXR pathway is causally linked to the 

pathogenesis of atherosclerosis. Identification of MeXis fills a gap in our understanding of 

pathways that control cellular responses to cholesterol overload and atherosclerosis.It is 

tempting to speculate that targeting the LXR-MeXis-Abca1 axis may enhance macrophage 

reverse cholesterol transport to treat or prevent atherosclerotic disease while bypassing 

undesirable side effects of LXR activation in other tissues.
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Materials & Methods

Reagents, Plasmids, and Gene Expression

GW3965 was synthesized as previously described27. LG268 was from Ligand 

Pharmaceuticals. Oxysterols were purchased from Sigma and used as described28. 

Simvastatin sodium salt was from Calbiochem. Ligands were dissolved in dimethyl 

sulfoxide before use in cell culture. MeXis was amplified from RNA purified from 

GW3695-treated primary mouse peritoneal macrophages using KOD polymerase 

(Millipore), forward 5’GTCTGAAAAGGAAGTTGAAGAAGA3’ and reverse 5’ 

AAGGAATCTAGTAAATTTTAATACTAA3’ primers. Primers were designed to provide 

flanking attB sequences and a SacI site at the immediate 3’ end. For details of 

oligonucleotide sequences please see supplementary file number 12. The fragments were 

then cloned into pDONR221 using the Gateway system and the minimal SV40 

polyadenylation sequence was inserted at the SacI site. ON-Targetplus siRNAs (Catalog 

number R-050345) were used with Dharmafect 4 reagent per the manufacturer’s 

recommendations for knockdown studies (Dharmacon). For gene expression analysis, RNA 

was isolated using TRIzol reagent (Invitrogen) and analyzed by real-time PCR using an 

Applied Biosystems 7900HT sequence detector or Applied Biosystems Quant Studio 6 Flex. 

Results are normalized to 36B4 or cyclophilin. The following antibodies were used for 

immunohistochemistry: CD68 (MCA1957GA, AbD) 1:400 with secondary antibody biotin-

SP-conjugated AffiniPure goat anti-rat IgG (H+L) (Jackson Laboratories). Details of 

antibodies and full-length blots are provided in supplementary file 13 and 14. In brief, for 

immunoblot analysis, the following antibodies were used: ABCA1 (Novus) 1:1,000, and 

actin (Sigma) 1:10,000.. For ChIP analysis, we used the LXR antibody previously 

described29; DDX17 antibody was generated by Douglas Black, UCLA30. plentiCRISPR v2 

was used for lentivrius production; the guide RNA was inserted into Bsmb1-digested 

plasmid and the plasmid was ligated with T4 DNA ligase. Guide insertions were verified via 

sequencing.For lentiviral overexpression studies, MeXis was cloned into the pSLIK-Zeo 

vector system 31 and modified for lncRNA expression by replacement of the sequence 

between NcoI and MfeI sites in the pEN_TT entry vector with a minimal SV40 

polyadenylation signal. The MeXis sequence was inserted into the NcoI site immediately 

upstream of the polyadenylation signal. Lentiviruses were packaged and purified as 

described 32. For retroviral and adenoviral expression, the MeXis sequence was transferred 

from the pEN-TTpA entry vector to pBABE and pAd/CMV/V5-DEST, respectively, using 

the Gateway cloning system (Invitrogen Life Technologies).

Animals and diets

Mice were housed in a temperature-controlled room under a 12-hour light/12-hour dark 

cycle and under pathogen-free conditions. Experiments used 12 week- old male mice unless 

otherwise specified. Age-matched male Ldlr−/− mice on C57BL/6 background were 

purchased from Jackson Laboratories (catalog number 2207). Mice lacking LXRα and/or 

LXRβ were originally provided by David Mangelsdorf, University of Texas Southwestern 

Medical Center, Dallas, Texas, USA33 and were backcrossed to on C57BL/6 background for 

more than 10 generations. MeXis global knockout mice on a C57BL/6 background were 

generated at UCDavis Knockout Mouse Project (KOMP) using the strategy outlined in 
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supplemental figure 5. Abca1flox/flox mice on a C57BL/6 background were obtained from 

John Parks, Wake Forest University34. Mice were fed a chow diet except as indicated, where 

mice were placed on a Western diet (21 percent fat, 0.21 percent cholesterol; D12079B; 

Research Diets Inc.). We measured cholesterol and triglycerides as previously described13. 

At the time of sacrifice, tissues and blood were collected by cardiac-puncture and 

immediately frozen in liquid nitrogen and stored at – 80°. For adenoviral infections, age-

matched male mice were injected with 2.0 × 109 PFU by tail-vein injection and were 

sacrificed six days later following a six-hour fast. Tissue was processed for isolation of RNA 

as above. All animal experiments were approved by the UCLA Institutional Animal Care 

and Research Advisory Committee and performed in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health.

Cell culture

Primary peritoneal macrophages were isolated four days after thioglycollate injection and 

prepared as described27. Mouse primary hepatocytes were isolated as previously described 

and cultured in William’s E medium with 5 percent FBS27. Peritoneal cells were incubated 

in 0.5-10 percent FBS in DMEM, with or without 5 μM simvastatin and 100 μM mevalonic 

acid (EMD Biosciences). Five to eight hours later, cells were pretreated with DMSO or 

appropriate ligand overnight. The in vitro translation assay was performed using the TnT 

Coupled Transcription/Translation System (PROMEGA) according to the manufacturer’s 

protocol.THP-1 cells from ATCC were treated were treated with custom siRNA from 

Dharmacon (50 nM) and harvested 36 h later. Modified gapmer ASOs were obtained from 

IDT and used with Dharmafect 4 or Attractene transection reagent at a final concentration of 

50 nM. THP-1 cells were differentiated with phorbol 12-myristate 13-acetate (PMA) at 10 

ng/ml followed by GW3965 treatment. Immortalization of bone marrow-derived 

macrophages (iBMDMs)to generate stable cell lines was performed as previously 

described34. These stable cell lines were obtained via puromycin selection of lentrivirus-

treated cells starting from a single clonal population. Gene expression or western blot results 

are shown for a pool of selected cells unless otherwise noted. All cell lines were tested for 

mycoplasma contamination. Subcellular RNA fractions were obtained according to the 

protocol of Bhatt et al.31 and as we previously described 13,35.

Cholesterol efflux and uptake

Assays were performed as previously described 27. Briefly, peritoneal macrophages from 

WT or MeXis−/− mice were labeled with [3H]cholesterol (1.0 μCi/ml) (Perkin Elmer) in the 

presence of acyl-CoA:cholesterol O-acyltransferase inhibitor (2 μg/ml)followed by treatment 

with DMSO or LXR(1 μM GW3965). After equilibration of the cholesterol pools and 

washing, cells were incubated in DMEM containing 0.2% BSA in the absence or presence 

of apoA-I (Meridian Life Sciences) (15 μg/ml) or HDL purchased from Lee Biosolutions 

(Catalog number 361-10-0.01) (50 μg/ml) for 6 h. The data are presented as percent apoA-I- 

or HDL-specific efflux. For uptake assays, resident mouse peritoneal mouse macrophages 

were obtained from age-matched WT and MeXis−/− mice. Peritoneal macrophages were 

suspended in starvation media (1% Lipoprotein Deficient Serum (LPDS), simvastatin, 

mevalonic acid) and incubated at 37° C for 16 hours. Cells were then treated with DiI-
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acetyl-LDL (Invitrogen) at concentrations of 0 μg/ml, 50 μg/ml and 100 μg/ml and incubated 

at 37 ° C for an additional 4 h. After the 4 h incubation period, cells were washed three times 

with PBS containing bovine serum albumin (2mg/ml), harvested, and lysed in RIPA buffer. 

To measure the uptake of DiI-acetyl-LDL by peritoneal macrophages, cell lysates were 

analyzed for fluorescence using a Clario Star plate reader with an excitation of 554 nm and 

an emission of 571 nm. Values for fluorescent intensity were normalized to total protein 

concentration and displayed relative to the untreated group.

Atherosclerosis analysis

Immunohistochemistry of sections and preparation and staining of frozen and paraffin-

embedded sections from aortas were performed as described previously 36. Atherosclerosis 

in the aortic roots and the descending aortas (en face) were quantified by computer-assisted 

image analysis as described 37. Atherosclerotic lesions at the aortic valve were analyzed as 

described 27. Laser capture microdissection was used as previously outlined 38, except that 

an LMD7000 Laser Microdissection System (Leica) was used at the UCLA Advanced 

Microscope CNSI core lab. The Arcturus PicoPure RNA Isolation Kit (Applied Biosystems) 

was used for RNA processing and amplification.

RACE

The 5’ and 3’ ends of the MeXis transcript were defined using mouse peritoneal macrophage 

RNA and the FirstChoice RLM-RACE kit (Ambion) according to manufacturer’s protocol, 

with modifications. Briefly, for 5’ RACE, degraded mRNA 5’ ends were dephosphorylated 

with CIP and then full-length mRNA was decapped with TAP. Following 5’RACE adapter 

ligation, reverse transcription was performed using the SuperScriptIII First-Strand Synthesis 

system (Invitrogen) and MeXis-specific primers. For 3’ RACE, RNA was reverse 

transcribed using SuperScriptIII First-Strand Synthesis system (Invitrogen) and adapter-

linked oligo dTs. The resulting cDNA was amplified by nested PCR across a 55-65 °C 

melting temperature gradient using KOD polymerase (Millipore), with the inner primers 

containing attB sequences. Aliquots of reactions were inspected on 1% agarose gels for 

product size and abundance. Products of selected PCR reactions were purified using the 

NucleoSpin Gel and PCR Cleanup kit (Clontech) and were inserted into pDONR221 by 

Gateway cloning procedures. Cloned fragments were sequenced and then aligned to the 

mouse genome with the BLAST analysis tool. RNA fractionation assays were done as 

previously described 13.

RNA Sequencing

RNA sequencing libraries were constructed with the TruSeq RNA Sample Prep Kits 

(Illumina) on RNA isolated from peritoneal macrophages treated with or without GW3965. 

Samples were indexed with adapters and submitted for paired-end 2 × 100-bp sequencing 

using an Illumina HiSeq2000 instrument. RNA-seq reads were aligned with TopHatv2.0.2 to 

the mouse genome, version mm939. Transcripts were assessed and quantities were 

determined by Cufflinks v2.0.2, using a GTF file based on Ensembl mouse NCBI37. 

Comparisons of expression levels were made using FPKM values using Cuffdiff from the 

Cufflinks package 40. In order to analyze lncRNA expression in more depth, we built a 

comprehensive, non-redundant mouse gene database by merging the Gencode and Noncode 
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annotations. Reads were aligned to the mouse genome (GRC38/mm10 assembly) using 

STAR41. Gene-level count summaries were estimated with HTSeq. We employed a 

comprehensive, non-redundant mm10 genome annotation that incorporates protein and 

lncRNA genes from Gencode and lncRNA annotations from Noncode v4 42. Coding 

potential scores for each transcript in the merged annotation were estimated with CPAT 43. 

In addition, we used CNCI as another method to classify coding potential of sequences of 

interest 44. Gene-level expression estimates in units of FPKMs were computed in-house as 

above. For downstream analysis, the following entries were masked: 1) genes with no 

counts, 2) genes with low (<50bp) nucleotide sequence uniqueness, and 3) Gencode biotypes 

other than protein coding or lncRNA. The final genome annotation we employed for 

downstream analyses comprised 50,608 genes (21098 protein-coding, 29510 lncRNA). 

Expression fold changes after GW treatment were estimated from FPKM ratios. Enrichment 

analyses on the set of up-regulated coding and non-coding genes included pathways analyses 

with MetaScape and cis-regulatory region enrichment with default parameters in GREAT 45.

Lipid analysis

Cellular lipid content was obtained using a Folch extraction. Briefly, chloroform extracts 

were dried under nitrogen and solubilized in water. Tissue and serum cholesterol and 

triglycerides were determined using a commercially available enzymatic kit (Wako). Mice 

were fasted for at least 6 hours prior to blood collection and sacrifice.

ChIP

ChIP studies were performed as described elsewhere 13. Briefly primary mouse peritoneal 

macrophages (approximately 40 million per sample) were cross-linked using a final 

formaldehyde concentration of 1% at room temperature for 10 minutes. The reaction was 

quenched with the addition of glycine. Sonicated chromatin isolated with lysis buffer (50 

mM HEPES-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% 

Triton X-100)was incubated overnight at 4°C with control IgG or 2.5 ug per ml of lysate of 

anti-LXR (previously generated by JaKobsson et al from Karolinska Institute)29, or anti-

DDX17 antibody (gift of Douglas Black, UCLA). Protein A Dynabeads (Invitrogen) were 

added for 4 hours. Washing, reverse crosslinking and sample elution were performed as 

previously outlined 13. Chip-seq for LXR isoforms was done using Flag-tagged LXRα or 

LXRβ in iBMDM cell lines34. Macrophages (12 × 106) were crosslinked using a double 

fixation protocol with 2 mM disuccinimidyl glutarate for 30 min and 1% methanol-free 

ultrapure formaldehyde for 10 min before quenching with 2 M glycine. Cells were lysed 

with RIPA buffer and, after chromatin shearing by sonication using a Bioruptor (Diagenode) 

apparatus, incubated overnight with protein G magnetic Dynabeads (Invitrogen) coupled 

with 3 μg of either anti-FLAG M2 (SIGMA #F3165) or anti-H3K27ac (Abcam #ab4729) 

antibodies. Immunoprecipitated DNA was purified using Qiagen purification kit (Qiagen 

#28144). For high-throughput sequencing, a minimum of 10 ng of DNA was obtained by 

pooling DNA from 10 independent ChIP preparations (for FLAG-LXR sequencing) or 6 

different ChIP preparations (for H3K27ac sequencing). DNA was then used for library 

preparation and subsequent Illumina HiSeq sequencing by the Centre de Regulació 

Genomica (CRG, Barcelona, Spain) genome facility. The primary data have been deposited 

to GEO, accession number GSE104027.
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Fluorescent RNA FISH

Custom design RNAscope probes against MeXis were prepared and obtained from 

Advanced Cell Diagnostics (Catalog number 495011). MeXis was visualized in 

immortalized mouse bone-marrow derived macrophages using an RNAscope assay and the 

Multiplex Fluorescent Reagent Kit V2, following the manufacturer’s recommended protocol 

with use of a HybEZ oven (Advanced Cell Diagnostics); however, we used a protease 

dilution of 1:5 instead of 1:30.

RNA immunoprecipitation

We followed the protocol outlined by Tsai and colleagues46. Briefly cellular extracts from 

native or cross-linked (1% formaldehyde) primary peritoneal macrophages were treated with 

DNASE I followed by incubation with DDX17 antibody or IgG control overnight. 

Complexes were captured using Dynabead Protein G (Life technologies) and RNA was 

eluted using the RNeasy micro kit (Qiagen).

Microarrays

cDNA microarray analysis was performed for primary peritoneal macrophages treated with 

GW3695. Transcriptional profiling was performed at the University of California, Los 

Angeles, TCGB core facility using the Agilent SurePrint G3 Gene Expression array. Data 

were analyzed using GeneSpring software (Agilent Technologies) and DAVID Functional 

Analysis Tools 47. Data available at GSE107977.

ChIRP

Chirp was performed as described20 with a few modifications. First, cross-linking of 

RAW264.7 cells from ATCC treated with GW3965 was done using 3% formaldehyde. 

Second, we used a longer probe design algorithm (~50 bp instead of recommended 20 bp) 

that optimized the signal-to-noise ratio and MeXis retrieval, as determined using pilot 

experiments comparing shorter and longer probe sets performed with RNAase and DNAase 

controls. For ChIRP-MS, the final protein elution was done in a solution of 50 mM triethyl 

ammonium bicarbonate, 12 mM sodium lauryl sarcosine, and 0.5% sodium deoxycholate.

ATAC-Seq

Peritoneal macrophages were isolated and treated for 3 hours with or without GW3965. 

Using four replicates per condition, libraries were prepared using the Nextera Tn5 

Transposase kit (Illumina) as described48 with slight modifications. Libraries were single-

end sequenced (50bp) on an Illumina HiSeq 2000 instrument. Reads were mapped to the 

mouse genome (NCBI37/mm9) using Bowtie2, and were removed from the subsequent 

analysis if they were duplicated, mapped to mitochondrial genome, or aligned to unmapped 

contiguous sequences. Peak calling was performed using MACS2 using parameters callpeak 

--nomodel -g mm --keep-dup all -q .01 --llocal 10000. Overlapping peaks were merged 

together and used as probes for quantifying reads. The reads were converted to reads per 

million (RPKM) by dividing by the total number of reads within a peak divided by the peak 

length per million mapped reads. The average RPKM from four replicates was used to 

quantify the accessibility across all called peaks. Significance was determined by the 
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DESeq2 package in R Bioconductor49. P-values were adjusted using the Benjamini-

Hochberg procedure of multiple hypothesis testing 50.

Statistical analysis

A non-paired student t-test was used to determine statistical significance, defined at P-value 

< 0.05. For multiple group experiments, ANOVA was used followed by multiple group 

analysis. Unless otherwise noted, error bars represent standard deviations. Except as noted in 

figure legends experiments were independently performed twice. Sample size is based on 

statistical analysis of variance and prior experience with similar in vivo studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regulation of the non-coding RNA MeXis by LXR
A. Schematic representation of the MeXis gene locus on the Integrative Genome Viewer 

(IGV) (top) and histone marks from LICR ENCODE data in the immediate region of the 

MeXis gene (bottom). B. Real-time PCR analysis of MeXis and Abca1 expression in 

primary mouse macrophages treated with vehicle (Ctrl), GW3965 (GW, 0.5 μM) and/or the 

RXR ligand LG268 (LG, 50 nM). Results are representative of four independent 

experiments. Values are means ± SD. **** P<0.0001 by Two-way ANOVA followed by 

multiple comparisons test (Dunnett’s). C. Real-time PCR analysis of MeXis expression in 

primary mouse macrophages treated with vehicle (Ctrl), GW3965 (GW, 0.5 μM) , oxidized 

LDL (oxLDL, 50 μg/ml), or acetylated LDL (acLDL, 50 μg/ml). Results are representative 

of four independent experiments. Values are means ± SD. **** P<0.0001 by Two-way 

ANOVA followed by multiple comparisons test (Dunnett’s). D. Real-time PCR analysis of 
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MeXis and LeXis expression in primary mouse macrophages treated with vehicle or 

GW3965 (GW, 0.5 μM) (n = 3/group) or in liver harvested from WT mice treated with 

vehicle or GW3965 (40 mg/kg, by gavage) for 3 consecutive days (n = 8/group). Values are 

means ± SD. E. Chip-Seq analysis of LXR binding at the MeXis gene locus.Chip for LXRα 
and LXRβ in 3xFLAG-LXRα and 3xFLAG-LXRβ expressing immortalized bone marrow 

macrophage cell using FLAG, RXR and H3K27ac antibody. Cells treated with LXR agonist 

(GW3965, 1uM) and antagonist (GW2033, 1uM) shown. Blue shaded bar highlighting 

binding of LXR /RXR at MeXis.F. Real-time PCR analysis of MeXis expression in primary 

mouse macrophages from mice of the indicated genotypes treated with vehicle or GW3965 

(GW, 0.5 μM). N=(4 for WT, αKO, βKO vehicle and 3 for DKO & βKO GW). Experiment 

repeated once with similar results. Values are means ± SEM. * P<0.05 by two-sided 

student’s t-test. G. Prediction of coding potential of the indicated lncRNAs using Coding-

Non-Coding Index (CNCI) software. A negative value indicates low coding potential.
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Figure 2. MeXis regulates Abca1 expression and function
A. Real-time PCR analysis of MeXis and Abca1 expression from primary macrophages 

treated with the indicated siRNAs (50 nM) followed by either vehicle (Ctrl) or a 

combination of GW3965 (GW, 0.5 μM) and the RXR ligand LG268 (LG, 50 nM) for 36 h. 

Results are representative of four independent experiments. Values are means ± SD.**** 

P<0.0001 by Two-way ANOVA followed by multiple comparisons test (Sidak’s). B. Real-

time PCR analysis of MeXis and Abca1 expression 10 days after stable overexpression of 

control vector (Vect) or MeXis in RAW cells treated with vehicle (Ctrl) or GW3965 (GW, 

0.5 μM). Results are representative of three independent experiments. Values are means ± 

SD.*** P < 0.001 by two-sided student’s t-test. C. Cholesterol efflux in the presence of 
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ApoA-I from RAW macrophages loaded with [3H]cholesterol (1.0 μCi/ml) and treated with 

the acyl-CoA:cholesterol O-acyltransferase inhibitor (2 μg/ml) and either with DMSO or 

LXR ligand (1 μM GW3965). ApoA-I-specific efflux represents percent radiolabelled 

cholesterol efflux in the presence of ApoA-I normalized to DMSO. Experiments were 

conducted in triplicate. Data are expressed as mean ± SD.* P<0.05 by two-sided student’s t-

test.D. Real-time PCR analysis of MeXis and Abca1 expression in primary mouse 

macrophages (results are representative of four independent experiments; values are means ± 

SD) and of Abca1 expression in heart, kidney and liver of mice fed a western diet for 3 

weeks (N = 8/group; values are means ± SEM).* P<0.05; ** P < 0.01 by two-sided student’s 

t-test.E. Western blot analysis of Abca1 levels in primary mouse macrophages of WT and 

MeXis−/− mice treated with GW (0.5 μM for 16 hours). Actin was used as a loading control. 

The experiment repeated twice with similar results. F. Cholesterol efflux in the presence of 

ApoA-I or HDL from WT or MeXis−/− macrophages loaded with [3H]cholesterol (1.0 

μCi/ml) and treated with the acyl-CoA:cholesterol O-acyltransferase inhibitor (2 μg/ml) and 

either with DMSO or LXR ligand (1 μM GW3965). Experiments were conducted in 

triplicate. Data are expressed as mean ± SD. * P<0.05 by two-sided student’s t-test.G. 
Cholesterol content measured in peritoneal macrophages isolated from mice on western diet 

for 12 weeks (N = 3/group). ** P < 0.01 by two-sided student’s t-test. H. Oil-red-O staining 

of peritoneal macrophages isolated from WT or MeXis−/− mice and treated with oxidized 

LDL (100 μg/ml) for 72 h.The experiment was repeated 3 times with similar results.Scale 

bars, 50 μm. I. Total serum cholesterol levels in 10-week-old chow-fed male C57BL/6 mice 

transduced with adenoviral vectors encoding GFP control (Ad-GFP) or MeXis (Ad-MeXis) 

for 6 days (n = 8 per group). ** P < 0.01 by two-sided student’s t-test. J. GFP and MeXis 

expression in liver 6 days after transduction of mice with Ad-GFP or Ad-MeXis, 

respectively (n = 8 per group except Abcg1 n=7 per group).* P<0.05; *** P < 0.001 by two-

sided student’s t-test. Data are expressed as mean ± SEM. K. Left, western blot analysis of 

Abca1 levels in liver from the mice in I (n = 4 per group). Right, quantification of protein 

levels normalized to actin. Data expressed as mean ± SD. *** P < 0.001 by two-sided 

student’s t-test.

Sallam et al. Page 19

Nat Med. Author manuscript; available in PMC 2018 August 12.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3. Loss of MeXis impairs macrophage Abca1 expression and accelerates atherosclerosis
Ldlr−/− mice were transplanted with WT or MeXis−/− bone marrow and maintained on a 

Western diet for 17 weeks. A. Percentage of aorta surface area with atherosclerotic plaque 

by en face analysis. Data are mean ± SEM. (N = 16 WT, 15 MeXis). ** P < 0.01 by two-

sided student’s t-test. B. Representative photographs (from 16 WT and 15 MeXis−/−) from 

en face analysis of aortas. Scale bars, 5 mm. C. Quantification of lesion area from oil-red O-

stained aortic root sections. Mean ± SEM. (N = 10/ group). * P<0.05 by two-sided student’s 

t-test. D. Oil Red-O staining of frozen sections from the aortic roots. Representative of 10 

per group. Scale bars, 200 μm. E. Representative histology of the aortic root stained with the 

macrophage marker CD68 and H & E. Representative of 8 per group. Scale bars, 200 μm.F. 
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Representative images of an aortic lesion before and after laser capture microdissection of 

CD68-positive cells from MeXis−/− mice. Scale bar, 200 μm. G. Abca1 and MeXis 

expression in laser capture samples as determined by realtime PCR. Samples taken from 6 

animals WT and 4 MeXis−/−. Number of samples for Abca1expression 7 per group and 

MeXis expression 7WT & 11MeXis−/−. Data are mean ± SEM. * P<0.05 by two-sided 

student’s t-test.
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Figure 4. MeXis alters chromosome architecture at the Abca1 locus
A. Gene expression of enhancer RNAs (short noncoding RNAs transcribed from enhancer 

elements)at the Abca1 locus in primary mouse macrophages of WT or MeXis−/− mice 

treated with GW3965 (1 μM). The x-axis indicates the location at which gene expression 

was measured relative to the Abca1 transcription start site. N= 2WT, 3 MeXis−/−. Mean ± 

SD. B. Expression from the Abca1FL allele in primary macrophages from mice of the 

indicated genotypes (n=3/group). Mean ± SD.** P < 0.01 by two-sided student’s t-test. C. 
Genome browser view of ATAC-seq data from primary mouse macrophages of WT or 

MeXis−/− mice treated with DMSO control or GW3965 (1 μM) for 3 h. Reads were from 4 

individual samples per group. D. ATAC seq analysis showing accessibility at peaks around 

the Abca1 and Tlr4 genepromoters in WT or MeXis−/− macrophages with GW stimulation. 

Peak position arbitrary numbers the accessibility peaks shown in C at the Abca1 locus in 
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relationship to promoter TSS. E. Heat map of accessibility regions in WT and MeXis−/− 

macrophages with or without GW3965 treatment.Top of panel shows genome-wide 

accessibility sites significantly induced by GW3965 in both WT &MeXis−/− macrophages. 

Bottom panel shows accessibility sites significantly induced by GW3965 only WT 

macrophages.
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Figure 5. Identification of DDX17 as a binding partner of MeXis
A. RNA immunoprecipitation analysis of DDX17. Following immunoprecipitation using 

IgG control or DDX17 antibody from mouse peritoneal macrophages that were untreated or 

treated with the cross-linking agent formaldehyde,expression of MeXis, 36B4, cyclophilin 

(cyloph) and Neat1 was determined by qPCR analysis. N=3/group. Data are mean ± SD. B. 
Recruitment of DDX17 and LXR at the Abca1 gene locus in mouse macrophages from WT 

or MeXis−/− mice as determined by ChIP qPCR analysis. Site 1, 2, and 3 are regions 

containing LXR binding elements known to bound LXR from Chip studies. Data are 

expressed as percent input retrieved normalized to an upstream control site (region a). N=4/

group. Data are mean ± SD. * P<0.05; ** P < 0.01; **** P < 0.0001 by two-sided student’s 
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t-test. C. ChIRP-qPCR analysis of a series of ATAC-seq sites at the Abca1 locus. Sites 1-6 

are accessibility sites shown in figure 4e induced with LXR activation in WT but not MeXis
−/− macrophages (n=4/group). Chirp probes designed against LacZ or MeXis. Mean ± SD. * 

P<0.05; ** P < 0.01; *** P < 0.001 by two-sided student’s t-test. D. Western blot analysis of 

DDX17 levels in lentivirus-transduced immortalized iBMDM (pool of selection-positive 

cells). Lentiviruses contained either a GFP control or the indicated guide RNAs targeting the 

DDX17 locus. Actin was used as a loading control.Representative of two independent 

western blots. E. Abca1 expression in iBMDMs transduced with the indicated lentiviruses 

and treated with DMSO (Ctrl) or GW3965 (1 μM) for 12 hours (n= 3 per group). Data are 

mean ± SD. ** P < 0.01; *** P < 0.001 by Two-way ANOVA followed by two-sided 

student’s t-test. F. MeXis or Abca1 expression in iBMDMs (n= 3 per group). Ctrl is GFP, 

DDX is DDX17KO, DDXMeXKO is DDX17/MeXis double knockout. Data are mean ± SD. 

NS= Not significant at P < 0.05 by two-sided student’s t-test. G. Western blot analysis of 

Abca1 and DDX17 levels in iBMDMs from F.Numbers in blot are quantitative Abca1 

protein normalized to control (actin).
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Figure 6. Functional conservation of the LXR-MeXis axis in humans
A. Sequence similarity across species at the MeXis gene locus. B. ABCA1 and 

TCONS00016111 expression in differentiated THP-1 monocytes treated with DMSO (Ctrl) 

or GW3965 (0.5 μM) for 16 hours (N=4 per group). Mean ± SD. * P < 0.05 by two-sided 

student’s t-test. C. ABCA1 and TCONS00016111 expression in differentiated THP-1 cells 

treated with the indicated ASOs (50 nM) and GW3965 (0.5 μM) (N=3 per group). Data are 

mean ± SD. * P < 0.05; ** P < 0.01; *** P < 0.001 by one-way ANOVA followed by 

multiple comparisons test (Dunnett’s).D. Cholesterol efflux in the presence of ApoA-I of 

THP-1 cells treated with the indicated ASO, loaded with [3H]cholesterol (1.0 μCi/ml), and 

treated with acyl-CoA:cholesterol O-acyltransferase inhibitor (2 μg/ml) and with either 

DMSO or LXR ligand (1 μM GW3965) (n=3/group). Data are mean ± SD. * P < 0.05 by 
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two-sided student’s t-test. E. Abca1 gene expression in MeXis−/− BMDM macrophages 

treated with control (antisense MeXis) or MeXis lentivirus (n=3 per group). Data are mean ± 

SD. * P < 0.05 by two-sided student’s t-test. F. Abca1 expression in THP-1 cells treated with 

control or MeXis lentivirus (n=3 per group).Mean ± Two-sided student’s t-test. Not 

significant at P<0.05. 95% Confidence Interval (-0.1025 to 1.338). G. Regional association 

plot of variants at TCONS-0016111 and the risk of coronary artery disease in humans from 

the CARDIoGRAMplusC4D Consortium.
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