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Abstract The regeneration-capable flatworm Macrostomum lignano is a powerful model

organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it

complements the historically used planarian flatworm models, such as Schmidtea mediterranea.

However, information on the transcriptome and markers of stem cells in M. lignano is limited. We

generated a de novo transcriptome assembly and performed the first comprehensive

characterization of gene expression in the proliferating cells of M. lignano, represented by somatic

stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes,

including Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a, confirmed their crucial role

for the functionality of somatic neoblasts during homeostasis and regeneration. The generated M.

lignano transcriptome assembly and gene expression signatures of somatic neoblasts and germline

cells will be a valuable resource for future molecular studies in M. lignano.

DOI: 10.7554/eLife.20607.001

Introduction
Flatworms are increasingly attractive models for studying biology of stem cells in vivo. These animals

have an abundant population of proliferating cells, called neoblasts. Histologically, the neoblasts

form a homogeneous population of small, round cells with a high nuclear/cytoplasmic ratio, which

are located in the mesenchyme (Ladurner et al., 2000; Baguñà, 2012; Rink, 2013). The recent

molecular characterization of neoblasts, however, has demonstrated that the population is heteroge-

neous and includes different types of progenitors and pluripotent stem cells (Wagner et al., 2011;

van Wolfswinkel et al., 2014; Tu et al., 2015). Furthermore, it has been shown that neoblasts are

the only proliferating somatic cells which are able to produce all cell types of the worm (Morita and

Best, 1974; Ladurner et al., 2000; Wagner et al., 2011; Baguñà, 2012; Rink, 2013). Therefore,

neoblasts drive a continuous cell renewal during homeostasis and produce new cells during growth

and regeneration (Ladurner et al., 2000; Oviedo et al., 2003; Takeda et al., 2009; González-

Estévez et al., 2012).

The most frequently used models for research on all aspects of neoblast biology are the planar-

ians Schmidtea mediterranea and Dugesia japonica (Reddien and Sánchez Alvarado, 2004;

Shibata et al., 2010; Rink, 2013). Phylogenetic relations within flatworms (Laumer et al., 2015) and

with Xenacoelomorpha – the early-branching bilaterians that also have regenerative capacity

(Cannon et al., 2016; Hejnol and Pang, 2016), are now well understood, paving way for studies on

the neoblast origin and evolution of regeneration (Srivastava et al., 2014; Gehrke and Srivastava,
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2016). These comparative studies will benefit from additional non-planarian flatworm models, and a

basal flatworm Macrostomum lignano (Macrostomorpha), a marine, non-self-fertilizing hermaphro-

dite (Figure 1A) is being developed as one of such models (Ladurner et al., 2005). The animals are

small, about 1 mm long, transparent, and easy to culture, as adults lay about one single-cell egg

each day when cultured at 20˚C. Worms are able to regenerate missing body parts anteriorly, poste-

riorly, and laterally, although the presence of the brain and pharynx is obligatory (Egger et al.,

2006). The neoblasts are located in two lateral bands, starting from the region of the eyes and

merging in the tail plate (Figure 1A). Besides the somatic neoblasts, proliferating cells are also pres-

ent in the gonads (Ladurner et al., 2000). Several techniques are developed for Macrostomum,

including antibody labeling, in situ hybridization (ISH), RNA interference (RNAi), and gene expression

analysis (Ladurner et al., 2000, 2005; Pfister et al., 2007; De Mulder et al., 2009; Arbore et al.,

2015; Plusquin et al., 2016). Recently, the first genome and transcriptome assemblies were

Figure 1. Macrostomum lignano as model organism and experimental set up. (A) Schematic representation, bright field image, and confocal projection

of BrdU and phospho-histone H3 immunostaining (green: S-phase cells, red: mitotic cells) of an adult M. lignano. (B) Schematic representation of the

experimental setup. Scale bar 100 mm.

DOI: 10.7554/eLife.20607.002

The following source data and figure supplements are available for figure 1:

Source data 1. TransRate contigs scores for MLRNA150904 transcriptome assembly.

DOI: 10.7554/eLife.20607.003

Source data 2. Gene counts, fold changes and FDR for various gene expression comparisons, and classification of genes into categories.

DOI: 10.7554/eLife.20607.004

Source data 3. GO term enrichment analysis in various gene lists.

DOI: 10.7554/eLife.20607.005

Source data 4. Enrichment of S. mediterranea and human markers in various transcript sets.

DOI: 10.7554/eLife.20607.006

Figure supplement 1. Approach used to generate the Macrostomum lignano de novo transcriptome assembly MLRNA150904.

DOI: 10.7554/eLife.20607.007

Figure supplement 2. Characteristics of MLRNA150904 transcriptome assembly.

DOI: 10.7554/eLife.20607.008

Figure supplement 3. Effects of g-irradiation on Macrostomum lignano.

DOI: 10.7554/eLife.20607.009

Figure supplement 4. Isolation of M. lignano proliferating cell by fluorescence activated cell sorting (FACS).

DOI: 10.7554/eLife.20607.010

Figure supplement 5. Classifications of overlaps between M. lignano genes and S. mediterranea and human homologs.

DOI: 10.7554/eLife.20607.011
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published (Wasik et al., 2015), and transgenesis utility was demonstrated (Marie-Orleach et al.,

2014, 2016). Despite this available toolbox, the described molecular markers for proliferating cells

in M. lignano are still limited to piwi and vasa, which are expressed in both somatic neoblasts and

proliferating germline cells (Pfister et al., 2007, 2008; De Mulder et al., 2009; Zhou et al., 2015).

Consequently, there is an urgent need to identify more useful neoblast markers to develop this ani-

mal as a model for in vivo stem cell biology.

In this paper, we present a molecular characterization of the proliferating cells of M. lignano. We

first generated a de novo transcriptome assembly of M. lignano. Next, we used two approaches to

identify genes specifically expressed in proliferating cells: (i) comparisons of gene expression in irra-

diated worms, devoid of proliferating cells, and control worms, and (ii) in FACS-isolated differenti-

ated and proliferating cells (Figure 1B). Moreover, by isolating cells from adult animals, juveniles

and from amputated heads, which lack germline, we could distinguish the enrichment of transcripts

in the gonads and in the somatic neoblasts. As a last step, we performed an RNAi screen, revealing

five conserved genes crucial for the functionality of somatic neoblasts during homeostasis and

regeneration.

Results

De novo transcriptome assembly
To produce a comprehensive de novo transcriptome assembly of M. lignano, we made 22 RNA

sequencing libraries using different approaches, and generated in total more than one billion

sequencing reads. The data included normalized 454 library, strand-specific polyA-enriched and

RiboMinus-depleted Illumina libraries, 5’-enriched RAMPAGE libraries (Batut et al., 2013), and 3’-

specific CEL-seq libraries (Hashimshony et al., 2012) sequenced using the T-fill method

(Wilkening et al., 2013), which allows exact mapping of mRNA polyadenylation sites. In order to

maximize the chances of reconstructing full-length transcripts, the data were assembled using four

different de novo transcriptome assemblers, results merged and re-assembled with CAP3, requiring

consistent positioning of paired reads (Figure 1—figure supplement 1). The set of 60,180 primary

transcripts, which can explain more than 90% of all sequencing reads, was designated as

MLRNA150904 transcriptome assembly and used in the subsequent analyses in this study.

To assess the quality of the transcriptome assembly, we used TransRate – a recently developed

reference-free approach that can detect common transcriptome assembly artefacts, such as chimeras

and incomplete assembly, and provide individual transcript and overall assembly scores (Smith-

Table 1. Properties of MLRNA150904 transcriptome assembly.

Number of transcripts 60,180

Total length, nt 95,589,662

Average transcript length, nt 1588

Shortest transcript, nt 100

Longest transcript, nt 29,807

CEG homologs* 247 out of 248

Transspliced transcripts 6167

TransRate score† 0.4367

Good TransRate transcripts 86%

Human homolog genes 8458

PFAM domains 3503

S. mediterranea cell type-specific gene homologs‡ 1697

*Core Eukaryotic genes according Parra et al. (2009).
†Assembly quality score according to Smith-Unna et al. (2016).
‡Cell-type-specific genes from Wurtzel et al. (2015).

DOI: 10.7554/eLife.20607.012
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Unna et al., 2016). The TransRate assembly score for the MLRNA150904 assembly is 0.4367

(Table 1, Figure 1—figure supplement 2A), which ranks it as the seventh highest scoring de novo

transcriptome assembly out of 155 publicly available transcriptomes analyzed in Smith-Unna et al.

(2016) and puts it into the top 5% of transcriptome assemblies by the overall assembly quality score.

On the individual level, 51,990 out of 60,180 transcripts, or 86%, are classified by TransRate as

‘good’ (Table 1, Figure 1—figure supplement 2A, Figure 1—source data 1). The remaining 8190

transcripts might have assembly errors, but we decided to keep them in the assembly, since some

genuine low-expressed transcripts might fall into this category. TransRate contig scores (Figure 1—

source data 1) are included in the transcriptome annotation to facilitate transcript filtering as

needed.

The assembly appears to be complete in terms of genes space, with 247 out of 248 core eukary-

otic genes (Parra et al., 2009) present (Table 1). Benchmarking Universal Single-Copy Orthologs

(BUSCO) assessment of the transcriptome (Simão et al., 2015) using 303 Euakaryotic dataset genes

reveals 296 complete, one fragmented and six missing gene models (Figure 1—figure supplement

2B). This BUSCO distribution is very similar to the assessment of the Schmidtea mediterranea tran-

scriptome assembly Smed_dd_v6 (Figure 1—figure supplement 2B), which is commonly used in the

planarian field (Liu et al., 2013; Wurtzel et al., 2015; Solana et al., 2016). However, in contrast to

the S. mediterranea transcriptome assembly, more than half of the complete gene models are not

single-copy but duplicated in the M. lignano transcriptome (Figure 1—figure supplement 2B). The

presence of multiple copies of the genes that usually are single-copy in other organisms can be

explained by the observation that M. lignano DV1 line used for the transcriptome assembly has a

duplicated large chromosome, and hence a likely recent partial genome duplication

(Zadesenets et al., 2016).

Furthermore, MLRNA150904 transcriptome assembly has 3503 different PFAM domain annota-

tions, 8458 identifiable homologs of human genes, and 1697 homologs of S. mediterranea cell-type-

specific genes (Wurtzel et al., 2015). More than 10% of the transcripts appeared to be trans-spliced

(Table 1).

Since the alternatively spliced transcripts in the de novo assembly can be difficult to assign cor-

rectly to the genes, we found it helpful in gene expression studies to use the Corset tool

(Davidson and Oshlack, 2014), which performs hierarchical clustering of transcripts based on

mapped reads and generates clusters of transcripts (a proxy to genes) and gene-level counts.

Transcriptome of proliferating cells: irradiation approach
Worms were irradiated with three doses of 70 Gy within 1 day. As this protocol differs from the pre-

viously published approach (De Mulder et al., 2010), we re-examined morphology, survival, mitotic

activity, and gene expression after irradiation to confirm the elimination of all proliferating cells.

At the morphological level, irradiation induced several changes. Immediately after the third irradi-

ation pulse, gonads could not be observed. Other defects appeared after 14 days post irradiation:

worms shrunk, deformations such as blisters and bulges appeared, and eventually worms disinte-

grated into pieces (Figure 1—figure supplement 3A). From 14 days after irradiation, survival

decreased, with 100% mortality reached after 35 days (Figure 1—figure supplement 3B). The effect

of g-irradiation on the number of mitotic cells was examined at three time points. At 12 and 24 hr

post irradiation, no mitotic activity was detected. At 72 hr, a few labeled cells were observed (Fig-

ure 1—figure supplement 3C).

To establish at which time point the proliferating cells are eliminated, we determined which genes

have a significant diminished expression between 0 hr and 12 hr, 12 hr and 24 hr, and between 24 hr

and 72 hr after irradiation (Figure 1—source data 2). The largest effect was observed at 12 hr post-

irradiation, with 8929 downregulated transcript clusters (FDR < 0.05), of which 3548 were downregu-

lated by more than twofold (Figure 2A). Substantially smaller changes were observed at subsequent

time points, with 3870 and 1732 downregulated transcript clusters between 12 hr and 24 hr and 24

hr and 72 hr, respectively (Figure 2A). GO term analysis of the transcripts depleted at the 12 hr time

point revealed enrichment for several processes known to be associated with neoblast genes

(Rossi et al., 2007; Rink, 2013), such as RNA metabolism, DNA replication, cell cycle, and chromatin

modification (Figure 1—source data 3). Notably, this GO-term enrichment was not present in the

later time points. Moreover, analysis of the distribution of homologs of S. mediterranea cell type

markers from Wurtzel et al. (2015) revealed 105 out of 157 ‘Neoblast’ markers among transcripts
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depleted at the 12 hr time point (Figure 2A), which is a 3.3-fold enrichment relative to the expected

from random distribution (p<10�15, Pearson’s Chi-squared test with Yates’ continuity correction).

‘Neoblast’ was the only cell type enriched among down-regulated transcripts at the 12 hr time point,

and no further enrichments were observed at later time points (Figure 1—source data 4). Taken

together, the data shows that three pulses of 70 Gy within 1 day is a lethal dose killing the proliferat-

ing cells, including neoblasts, within 12 hr after irradiation.

As proliferating cells are killed between 0 hr and 12 hr after irradiation, genes specifically

expressed in them should be permanently downregulated from 12 hr post-irradiation onwards.

Indeed, the number of significantly downregulated genes between 0 hr and 12 hr, and 0 hr and 24

hr, and 0 hr and 72 hr was similar, with an increase at the 72 hr time point (Figure 2A,B), and the

genes largely overlapped, with 7277 transcript clusters downregulated at all three time points

(Figure 2C and Figure 1—source data 2). Similarly, the only significantly enriched Schmidtea cell

type in this dataset was ‘Neoblast’ (3.78-fold enrichment, p<10�15) (Figure 1—source data 4), and

the enriched GO-terms included nucleic acid metabolic processes, cell cycle, DNA replication and

chromosome organization (Figure 1—source data 3). While this gene set is characteristic for prolif-

erating cells in M. lignano, it does not allow distinguishing between proliferating neoblasts and

germ line cells, and therefore, another approach was required for this purpose.

Transcriptome of proliferating cells: FACS approach
A multistep gating strategy based on a live cell Hoechst staining was developed to sort a population

of differentiated cells with a 2C DNA content, and a population of proliferating cells in late S, G2,

and M-phases with a 4C DNA content (Figure 1—figure supplement 4A). Irradiation of animals

before sorting resulted in a six-fold decrease of the fraction of cells in the 4C gate (Figure 1—figure

Figure 2. Identification of differentially expressed genes based on g-irradiation approach. (A) Temporal profile of

differentially expressed genes between all three time points. (B) Genes differentially expressed between 0 hr and

24 hr and 0 hr and 72 hr. Classification of genes as ‘Neoblast’ and ‘Tissue’ in A and B is based on homology to S.

mediterranea genes from Wurtzel et al. (2015). (C) Venn diagram representation of the number of genes

enriched in proliferating cells (indicated in red).

DOI: 10.7554/eLife.20607.013
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supplement 4B), confirming that this gate represents proliferating cells and not contamination of

e.g. doublets of differentiated cells.

By comparing gene expression of the 2C and 4C cell populations of intact adult worms, we estab-

lished a list of 7124 transcript clusters significantly enriched in proliferating cells (S/G2/M cells), of

which 5264 were upregulated by more than twofold (Figure 3A and Figure 1—source data 2). Of

those, 3374 transcript clusters were also identified with the irradiation method. Similar to the irradia-

tion experiments, the enriched GO terms in this list of genes include nucleic acid metabolic process,

RNA processing, DNA replication, chromosome organization, and cell cycle processes (Figure 1—

source data 3). Moreover, the Schmidtea ‘Neoblast’ cell type is again the only significantly enriched

Figure 3. Identification of differentially expressed genes based on FACS approach. (A) Genes differentially expressed between differentiated (G1 phase

of cell cycle, 2C DNA content) and proliferating (G2/M phase of cell cycle, 4C DNA content) cells of intact worms. (B) Genes differentially expressed

between proliferating cells of juvenile and intact worms. (C) Genes differentially expressed between proliferating cells of cut and intact worms. (D) Venn

diagram representation of the number of genes enriched in the germline (indicated in red). (E) Genes differentially expressed between differentiated

and proliferating cells of juvenile worms. (F) Genes differentially expressed between differentiated and proliferating cells of cut worms. (G) Venn

diagram representation of the number of genes enriched in somatic neoblasts (indicated in red). (H) Venn diagram representation of the number of

genes enriched in somatic neoblasts based on both approaches: irradiation and FACS (indicated in red). Classification of genes as ‘Neoblast’ and

‘Tissue’ in A, B, C, E, and F is based on homology to S. mediterranea genes from Wurtzel et al. (2015).

DOI: 10.7554/eLife.20607.014

The following source data and figure supplements are available for figure 3:

Source data 1. Germline candidate genes, in situ hybridization and RNAi results.

DOI: 10.7554/eLife.20607.015

Source data 2. Stringent neoblast candidate genes and RNAi results.

DOI: 10.7554/eLife.20607.016

Figure supplement 1. Gene expression patterns for genes enriched in the germline.

DOI: 10.7554/eLife.20607.017

Figure supplement 2. Mlig-cpeb1 and Mlig-ddx6 RNAi-phenotypes and ISH.

DOI: 10.7554/eLife.20607.018
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type in S/G2/M cells (2.68-fold enrichment, p<10�15), whereas other tissue markers are enriched

among transcripts specific for the G1 cell population (Figure 3A and Figure 1—source data 4).

Distinguishing proliferating cells in the soma and germline
As M. lignano is a hermaphrodite, its proliferating cells include both germline (stem) cells and

somatic neoblasts. For further studies and development of markers, it is important to determine

which genes are enriched in the proliferating cells of the germline or of the soma. For this purpose,

genes expressed in late-S/G2/M cells of intact worms (Figure 3A) were compared to genes

expressed in late-S/G2/M cells of hatchlings (Figure 3B) and amputated heads (Figure 3C). Since

the latter two conditions do not contain gonads, this allows distinguishing proliferating cells of germ-

line and soma, and 2739 transcript clusters enriched in the germline were identified (Figure 3D and

Figure 1—source data 2). Only 492 of those transcript clusters do not have a down-regulated

expression after irradiation (Figure 3H). The list includes known germline-specific genes, such as

macboule, melav (Sekii et al., 2009; Kuales et al., 2011), and several genes identified in the posi-

tional RNA-Seq dataset of M. lignano (Arbore et al., 2015) as gonad-specific (e.g. RNA815_7008,

RNA815_9973.1, RNA815_1618.1, RNA815_2640, RNA815_7725.2, RNA815_12337.1). Investigation

of expression patterns of 27 candidate genes by in situ hybridization confirmed in all cases their

expression in gonads, either in testes or in both testes and ovaries (Figure 3—figure supplement 1,

Figure 3–figure supplement 2 and Figure 3—source data 1). We knocked down 17 of these gonad

genes by RNAi (Figure 3—source data 1), and screened for obvious changes in gonad morphology

within 3 weeks. This resulted in phenotypes for two genes: Mlig-cpeb1 and Mlig-ddx6. In case of

Mlig-cpeb1, the testes were enlarged, ovaries often became less distinct, and developing eggs were

absent. Amputated tails could regenerate. In case of Mlig-ddx6, both testes and ovaries disap-

peared, and worms obtained a wrinkled appearance. When tails were amputated at the eighth day

of treatment, no blastema was formed, resulting in the lack of regeneration (Figure 3—figure sup-

plement 2).

To elucidate genes enriched in somatic neoblasts, transcripts enriched in sorted proliferating cells

of intact worms (Figure 3A), hatchlings (Figure 3E), and amputated heads (Figure 3F) were over-

lapped, resulting in 956 transcript clusters (Figure 3G). We further filtered this list by excluding

germline enriched transcripts (Figure 3D), even though the overlap was minimal and 924 out of 956

transcript clusters remained and were classified as enriched in somatic neoblasts (Figure 3H and Fig-

ure 1—source data 2) Indeed, this list contains 26 S. mediterranea ‘Neoblast’ marker homologs out

of the 157 annotated in the transcriptome (Figure 1—source data 2), which is a 7.9-fold enrichment

(p<10�15) relative to the random distribution (Figure 1—source data 4).

To further narrow the list of genes enriched in somatic neoblasts, we overlapped transcript clus-

ters identified as somatic neoblasts by the FACS approach (Figure 3H) with the irradiation-derived

list of transcript clusters enriched in proliferating cells (Figure 2C). This resulted in 357 transcript

clusters enriched in somatic neoblasts (Figure 3H), which we termed Stringent Neoblast candidate

genes (Figure 1—source data 2 and Figure 3—source data 2). The previously mentioned GO term

enrichments characteristic of neoblast remained in this narrowed down list (Figure 1—source data

1), and, the Schmidtea ‘Neoblast’ cell type is highly enriched and contains 22 out of the 157 ‘Neo-

blast’-annotated transcripts (17.3-fold enrichment, p<10�15, Figure 1—source data 4). Furthermore,

211 out of the 357 Stringent Neoblast transcript clusters have identifiable human homologs repre-

senting 159 different human genes (Figure 1—source data 2).

Identifying genes essential for somatic neoblast functionality in
Macrostomum lignano
To validate the generated list of Stringent Neoblast candidate genes and investigate their role in

neoblast biology, we performed RNAi knockdown experiments on a selected set of transcripts with

identifiable human homolog genes (Figure 3—source data 2). These included genes known to be

involved in cell cycle processes, as well as candidates that were previously not studied in the context

of stem cell functionality and regeneration. During the screen, we focused on genes giving fast and

robust phenotypes. In other words, phenotypes, which were observed within 3 weeks, in all treated

worms, based on morphology. Out of the 14 genes tested, 5 gave the fast phenotype: Mlig-ddx39,

Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a (Figure 4A and Figure 3—source data 2). In
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addition, the previously described phenotype for Mlig-piwi (De Mulder et al., 2009) was confirmed,

and two less severe phenotypes were found: Mlig-pcna and Mlig-cdc20 (Figure 4—figure supple-

ment 1).

Homologues of ribonucleotide reductase M1 (RRM1), replication protein A3 (RPA3), cyclin-depen-

dent kinase 1 (CDK1), proliferating cell nuclear antigen (PCNA), and cell division cycle protein 20

(CDC20) are encoding proteins previously linked to cell cycle processes (Lee and Nurse, 1987;

Travali et al., 1989; Henricksen et al., 1994; Parker et al., 1995; Weinstein, 1997). Histone family

member A (H2A) was shown to be important for packaging DNA into chromatin and is consequently

involved in gene expression regulation (Mariño-Ramı́rez et al., 2006). To our knowledge, DEAD

box polypeptide 39 (DDX39) was not previously studied in the context of in vivo stem cell functional-

ity. All five robust phenotypes suggest problems with cell turnover during both homeostasis and

regeneration. During homeostasis, the body cannot be maintained as the gonads disintegrate,

worms often shrink, and wrinkles and bulges appear. After amputation of the tail, the regeneration

capacity is completely lost as a blastema cannot be formed. As a result, the wound is closed but

amputated structures are not regenerated. In case of the DDX39 homologue, all treated worms died

within 3 weeks. For the other genes, most worms were still alive after 3 weeks of RNAi-treatment.

Knocking down the gene encoding piwi like-1 protein (PIWI1), which was previously used as a neo-

blast marker in M. lignano, resulted in a similar phenotype (Figure 4A). The regeneration phenotype

is, however, less severe than that of the other five genes, as a small blastema can be observed in

several worms. This blastema stays small and does not differentiate, resulting in the lack of regenera-

tion of the lost body parts. The Mlig-pcna phenotype is characterized by regeneration after amputa-

tion of a small ventrally oriented tail. During homeostasis, gonads disintegrate and a wrinkled

Figure 4. RNA interference screen. (A) Effects of gene knockdown on homeostasis and regeneration capacity. Phenotypes often include: shrinkage of

the worms, appearance of bulges, disappearance of the gonads, and the lack of regeneration after amputation of the tail. Scale bar 100 mm. (B) Effects

of RNAi on the number of mitotic cells during homeostasis and regeneration. Each dot represents one animal. In the Homeostasis group, stars

represent significant differences compared to gfp(RNAi) homeostasis animals. In the Regeneration group, stars represent significant differences

compared to gfp(RNAi) regenerating animals. Lines represent significant differences between cut ant intact worms. *p<0.05, **p<0.001 (two sample t-

test).

DOI: 10.7554/eLife.20607.019

The following figure supplement is available for figure 4:

Figure supplement 1. Mlig-pcna and Mlig-cdc20 RNAi-phenotypes.

DOI: 10.7554/eLife.20607.020
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appearance of the body can be observed. An additional treatment, during which the tail was ampu-

tated after 3 weeks of treatments, resulted in the complete lack of regeneration. The Mlig-cdc20

(RNAi) phenotype is limited within the first 3 weeks of treatment as the only effect is the disintegra-

tion of gonads, and defects in regeneration are not observed (Figure 4—figure supplement 1).

To investigate whether the five robust and Mlig-piwi phenotypes can be related to changes in the

proliferation rate of neoblasts, the number of mitotic cells was determined at the 10th day of RNAi in

both cut and intact worms (Figure 4B). Compared to the gfp(RNAi) control intact animals, the num-

ber of mitotic cells in intact worms is significantly decreased during RNAi of Mlig-ddx39 (p<0.001, t-

test), Mlig-rrm1 (p=0.001, t-test), and Mlig-rpa3 (p=0.048, t-test). Amputation of the tail increased

the effect of knockdown on the number of mitotic cells. Compared to the gfp(RNAi) control cut

worms, there are significantly less mitotic cells for RNAi of Mlig-ddx39 (p<0.001, t-test), Mlig-rrm1

(p<0.001, t-test), Mlig-rpa3 (p<0.001, t-test), Mlig-cdk1 (p<0.001, t-test), and Mlig-h2a (p=0.027). In

addition, it is interesting to compare the amount of mitotic cells between intact and cut worms as it

has been shown that amputation of the tail results in a significant increase of mitotic cells 48 hr after

amputation (Nimeth et al., 2002). In case of Mlig-ddx39, less than five mitotic cells per worm are

observed in both intact and cut individuals. Consequently, the number of mitotic cells does not

increase after tail-amputation (p=0.862, t-test). RNAi of Mlig-rrm1 even results in a significant

decrease of mitotic cells after tail amputation (p=0.008, t-test). A non-significant decrease after tail

amputation is observed during knockdown of Mlig-rpa3 (p=0.771, t-test) and Mlig-cdk1 (p=0.112, t-

test). In the case of Mlig-h2a(RNAi) and Mlig-piwi(RNAi), amputation of the tail still results in a signif-

icantly increased amount of mitotic neoblasts (Mlig-h2a: p=0.001, t-test; Mlig-piwi: p<0.001, t-test).

DDX39 as a novel marker for proliferating cells
Knockdown of Mlig-ddx39 gene proved to be the most severe phenotype of all screened candi-

dates. In situ hybridization performed on adults and juveniles revealed the typical expression pattern

of a gene enriched in proliferating cells (Figure 5A), known from the published expression of piwi

(De Mulder et al., 2009). Both genes are expressed in the testes, ovaries, developing eggs and the

somatic neoblasts, visualized by bilateral bands (Figure 5A,B). In situ hybridization 12 hr post-ampu-

tation confirmed the expression of Mlig-ddx39 and Mlig-piwi1 in the blastema region, which consists

of proliferating neoblasts (Figure 5C,D). An antibody against M. lignano PIWI1 protein was previ-

ously developed and demonstrated to label neoblast population (Wasik et al., 2015). A combined

Mlig-ddx39 FISH / Macpiwi1 antibody labeling revealed cells co-expressing Mlig-ddx39 and Mac-

piwi1 in the testes, ovaries and somatic neoblasts (Figure 5E–G). Furthermore, a combined Mlig-

ddx39 FISH/phospho-histone H3 antibody mitotic labeling revealed expression of Mlig-ddx39 in the

proliferating cells of blastema (Figure 5H). These observations provide additional evidence for neo-

blast-specific expression of Mlig-ddx39.

Conservation of stem cell genes between Macrostomum, planarians,
and mammals
The generated Macrostomum gene sets enriched in proliferating cells and in germline allow probing

the evolutionary conservation of the involved genetic pathways within flatworms and beyond.

Toward this end, we overlapped M. lignano neoblast and germline transcript categories with tran-

scripts related to the neoblasts of S. mediterranea (Onal et al., 2012; Wurtzel et al., 2015), the

germline or sexual strain of Schmidtea (Wang et al., 2010; Chong et al., 2011; Resch et al., 2012),

and to mammalian pluripotency genes (Tang et al., 2010).

Many of the M. lignano transcripts identified as enriched in proliferating cells by the irradiation

approach have homologs within the set of X1 neoblast transcripts in Schmidtea (Figure 1—figure

supplement 5A,C), and the overlap is 3.78-fold higher than expected from random distribution (Fig-

ure 1—source data 4), suggesting the presence of the subset of genes with conserved neoblast

function in flatworms. Furthermore, comparison with mammalian genes known to be involved in plu-

ripotency (Tang et al., 2010) shows results similar to those previously reported for Schmidtea

(Onal et al., 2012), with a substantial overlap between Macrostomum neoblast and irradiation cate-

gories and mammalian pluripotency maintenance genes (Figure 1—figure supplement 5D), which

are 4.08-fold overrepresented in the stringent neoblast category (Figure 1—source data 4). At the
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same time, pluripotency repressor genes are nearly completely excluded from the neoblast category

(Figure 1—source data 4).

The transcripts which are enriched in the proliferating germline cells of M. lignano only show a

small overlap with known regulators of germ cell development in S. mediterranea and genes which

are enriched in or specific for the sexual strain compared to the asexual strain of S. mediterranea

Figure 5. Mlig-piwi and mlig-ddx39 expression patterns. (A,B) WISH expression pattern in adult and juvenile worms for Mlig-ddx39 and Mlig-piwi. Both

genes are expressed in the testes, ovaries, developing eggs and somatic stem cells located in bilateral bands. (C,D) WISH expression patterns for Mlig-

ddx39 and Mlig-piwi in the blastema, 12 hr post-amputation. (E–G). Mlig-ddx39 FISH and Macpiwi antibody double labeling of testis, ovary, and

somatic neoblasts. (H) Mlig-ddx39 FISH and mitotic phospho H3 antibody double labeling of the wound site, 48 hr post-amputation. Individual cells are

outlined and magnified in the second rows in panels E-H. Scale bars: 100 mm (A–D) and 25 mm (E–H).

DOI: 10.7554/eLife.20607.021
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(Figure 1—figure supplement 5D). The planarian germline set is based primarily on the differenti-

ated cells, while the Macrostomum set is enriched for genes expressed in proliferating germline

cells, which explains the minimal overlap between these sets.

Discussion
Obtaining insight in the gene expression profile of somatic neoblasts of M. lignano was the primary

aim of this study. This included several steps: determining a de novo transcriptome of M. lignano,

identifying genes enriched in its proliferating cells, and distinguishing which of those genes are

enriched in the germline or in the somatic neoblasts. As a last step, RNAi was used to confirm the

essential role of five genes for the functionality of somatic neoblasts.

A dual approach was used to determine which genes are enriched in proliferating cells: irradiation

and FACS. Both techniques proved to be efficient in determining the gene expression profile of pla-

narian neoblasts (Reddien and Sánchez Alvarado, 2004; Hayashi et al., 2006; Rossi et al., 2007;

Eisenhoffer et al., 2008; Blythe et al., 2010; Galloni, 2012; Shibata et al., 2012; Solana et al.,

2012) and were, therefore, our first choice.

In this study, worms were irradiated with three doses of 70 Gy within 1 day to be able to study

changes in gene expression as a function of time after irradiation. This differs from the published

lethal fractionated protocol performing several doses distributed over 9 days and accumulating in

210 Gy (De Mulder et al., 2010). However, the results of both methods on the level of morphology,

mortality, and decreasing number of proliferating cells are very similar. This demonstrates that the

previously described fractionation of doses can be given within 1 day without decreasing the effi-

ciency of the treatment. The effect of irradiation on gene expression is fast and mainly takes place

within the first 12 hr after the last irradiation pulse (Figure 2A). It was shown before that irradiation

causes a broad stress reaction to the cells, triggered by global DNA damage, but also includes

changes due to neoblast elimination (Eisenhoffer et al., 2008; Solana et al., 2012). In M. lignano,

analysis of GO Terms and Schmidtea cell type enrichment demonstrates that genes downregulated

at 12 hr post-irradiation are enriched for genes specific for proliferating cells. As the elimination of

proliferating cells should be seen at the RNA-seq level as a permanent downregulation of genes spe-

cifically expressed in these cells, only transcript clusters that are downregulated in all the three stud-

ied time points were selected. In this way, false positives with a temporal decreased expression

were avoided.

The M. lignano FACS strategy was developed to isolate populations of differentiated and prolifer-

ating cells. It focuses on live cell Hoechst labeling of the nuclear content, as cells in the late S, G2,

and M phase of the cell cycle have double the amount of DNA (4C) than differentiated cells (2C)

(Figure 1—figure supplement 3). Hoechst labeling has been commonly used to isolate proliferating

cells in planarians (Hayashi et al., 2006; Higuchi et al., 2007; Eisenhoffer et al., 2008;

Shibata et al., 2012), and the 4C DNA content is one of the main characteristics of the X1 cells,

which are highly enriched in neoblasts (Hayashi et al., 2006). Before the selection of cells based on

nuclear content, a few additional gating steps are performed to remove cell debris and cell clusters

from the selection, but also to be able to identify the 4C population. This population is much smaller

than the 2C population, as ‘only’ 6.5% of all cells in M. lignano are neoblasts (Bode et al., 2006). As

all approaches, the FACS strategy has its own limitations, which is mainly the focus on actively divid-

ing cells. Consequently, genes specific for the small population of quiescent neoblasts

(Verdoodt et al., 2012) will be missed.

Both approaches resulted in a set of about 7000 transcript clusters, clearly representing genes

enriched in proliferating cells based on the Schmidtea-‘Neoblast’ cell type enrichment and GO Term

analysis. While both RNA-Seq datasets are largely enriched for the same GO Terms, there are still

differences indicating the bias of the two approaches. The irradiation dataset, for example, is more

enriched for processes related to cell cycle and DNA repair, while the gene set identified by FACS

has a higher enrichment for processes related to RNA processing (Figure 1—source data 3). The

bias is further shown by the fact that about half of the identified transcript clusters are specific for

the used method. The other half (3374 transcript clusters) are identified with both approaches and

represent a trustworthy selection of genes enriched in proliferating cells. Detailed information can

be found in Figure 1—source data 2.
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As M. lignano is a sexually reproducing flatworm with testes and ovaries, it is important to distin-

guish which of the identified genes are enriched in germline cells and which in somatic neoblasts.

Therefore, differentiated and proliferating cells were not only isolated from adults, but also from

hatchlings and amputated heads, both lacking gonads. This approach proved to be efficient, as only

32 transcript clusters are overlapping in the identified sets of genes enriched in germline cells and in

somatic neoblasts (Figure 3).

Interestingly, much more transcript clusters are enriched in the germline (2739) than in the

somatic neoblasts (956). Previous publications (Sekii et al., 2009; Kuales et al., 2011; Arbore et al.,

2015), and a first ISH-screen of a selection of transcripts enriched in germline cells identified in this

study, confirmed that several of these genes are enriched or even expressed specifically in the

gonads. The essential function for the gonads was confirmed in the study for two genes: Mlig-cpeb1

and Mlig-ddx6. Knockdown of Mlig-ddx6, however, also resulted in regenerative defects, indicating

that despite the enrichment of the gene in gonads, it still has a crucial role in somatic neoblast func-

tionality. In situ hybridization experiments show that the majority of genes enriched in the germline

seem to be specific for the testes (Figure 3—source data 1). It has been suggested that the large

amount of testes-specific genes reflects the functional complexity of the testes and the requirement

of producing highly elaborate sperm (Arbore et al., 2015).

Several previous studies in planaria revealed sets of genes required for germ cell development

(Wang et al., 2010; Chong et al., 2011) or enriched in sexual S. mediterranea animals (Resch et al.,

2012). However, the overlap between these genes and M. lignano germline gene set identified in

this study is minimal (Figure 1—figure supplement 5B). When considering genes regulating the

development, regeneration, and maintenance of gonads and gametes, it is important to distinguish

between the proliferating and differentiated germline cells. This can explain the small overlap

between the transcripts enriched in the proliferating germline cells of M. lignano and the published

datasets of Schmidtea germline genes, which primarily include transcripts specific for differentiated

germline cells. Establishment of M. lignano gene sets specific for differentiated gonad cells will be

required for future comparative studies of germ cell development in flatworms.

In situ hybridization (ISH) of transcripts enriched in somatic neoblasts showed that, despite the

enrichment, these genes are also expressed in the gonads. Due to limitations of the ISH technique

to visualize single neoblasts scattered in the mesenchyme, expression in the gonads is more obvious

than expression in the somatic neoblasts (Figure 5). Therefore, it is important to develop more sensi-

tive methods for visualizing gene expression in single cells in M. lignano, as this will be essential to

confirm the specificity of genes for the somatic neoblasts or the germline. Our first attempts on

implementing fluorescent in situ hybridization in M. lignano based on protocols developed for pla-

narians (Currie et al., 2016) are encouraging (Figure 5E–H), but it remains to be demonstrated how

robust the method is when applied to a larger selection of genes.

The current lack of genes specifically expressed in somatic neoblasts of M. lignano is fascinating,

and it is unclear whether they do not exist and neoblasts residing in mesenchyme and in gonads are

largely similar, or cannot be identified yet due to technical limitations. In the future, it will be impor-

tant to identify transcriptional signatures of somatic neoblasts by using a combination of markers

enriched in somatic neoblasts and germline-specific markers, which should be absent in these cells.

In addition, it would be interesting to identify the differentiation lineage from somatic stem cell to

gamete as Macrostomum can regenerate its gonads. Gene expression data obtained in this study

can facilitate the design of such experiments.

To obtain a final selection of genes enriched in somatic neoblasts, and with a potential crucial

role for their functionality, we combined the irradiation and FACS data, resulting in 357 transcript

clusters. Among these transcript clusters, 211 have clear homology to 159 different human genes,

and therefore are particularly interesting to study evolutionary conserved aspects of stem cell func-

tioning. The observation that mammalian homologs with a known function in pluripotency mainte-

nance are enriched more than four fold in the stringent neoblast set (Figure 1–source data 4 and

Figure 1—figure supplement 5B) further illustrates this. The remaining 146 genes are not con-

served in humans and could be interesting in explaining the astonishing regeneration capacity of

flatworms. Moreover, such candidates could be studied in the context of parasitic flatworms, as they

are potential therapeutic targets.

To explore the importance of the first selection of genes for neoblast functionality, we performed

RNAi experiments studying both homeostasis and tail regeneration. By using 3-weeks screens, five
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genes resulting in clear phenotypes were found (Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and

Mlig-h2a). In addition, Mlig-piwi, the only known gene essential for neoblast functionality in M.

lignano (De Mulder et al., 2010), was identified again, and two less severe phenotypes were

observed within the 3-weeks screens (Mlig-pcna and Mlig-cdc20). Most of these genes are known to

be involved in cell cycle regulation (Lee and Nurse, 1987; Henricksen et al., 1994; Parker et al.,

1995). In addition, genes encoding histone proteins were previously shown to be important for neo-

blasts in S. mediterranea, as Smed-H2B is essential for neoblast maintenance (Solana et al., 2012).

The morphological changes of the five robust phenotypes during homeostasis are very similar to

those of irradiation and suggest problems with cellular turnover and stem cell survival. In addition,

no blastema could be observed after tail-amputation, and mitotic labeling revealed a significant

decrease in proliferation, confirming this hypothesis. In the case of the Mlig-piwi and Mlig-pcna phe-

notypes, a small blastema and even a small tail, respectively, could be formed (Figure 4—figure

supplement 1). Amputation of the tail after 3 weeks of treatment with Mlig-pcna dsRNA resulted in

a complete lack of a blastema, indicating that Mlig-pcna needs to be knocked down for a longer

period before effects can be observed. As disintegration of gonads is often the first sign of a pheno-

type during homeostasis, more research is needed to study whether the Mlig-cdc20 phenotype is

much slower than the others and develops with further treatment, or is limited to the germline. It is

important to note that longer and more detailed RNAi screens might reveal additional slower or sub-

tler phenotypes, and it is important to design RNAi screens according to the scientific question. For

this study, we chose to focus on fast, obvious, and robust phenotypes visible in all worms within 3

weeks, as we were mainly interested in identifying genes that can be used as neoblast markers and

experimental controls for further more detailed research of stem cell biology in M. lignano.

In our RNAi screen, Mlig-ddx39 stood out as the fastest and most severe phenotype, and there-

fore clearly essential for neoblast functionality. Knockdown of Mlig-ddx39 resulted in the death of all

worms within 3 weeks, which was not the case with other tested candidate genes. The mitotic label-

ing revealed that already during the 10th day of treatment almost no mitotic cells can be observed in

both cut and intact Mlig-ddx39(RNAi) animals, suggesting the fast elimination of proliferating cells.

This explains the morphological changes, such as shrinkage, bulges, loss of gonads, and general dis-

integration, which already become visible during the second week of treatment. Based on these

results, we propose the use of Mlig-ddx39 as a positive control for RNAi experiments in M. lignano,

which is already a common practice in our laboratory. In addition, the ISH results showing enriched

expression in the gonads and in somatic neoblasts in both the intact body and in the blastema indi-

cate that Mlig-ddx39 could be a convenient marker for proliferating cells.

Interestingly, ddx39 is highly conserved in different species, as all members of the DEAD box

RNA helicase family. These genes include a common D-E-A-D (Asp-Glu-Ala-Asp) motive and are

known for their roles in RNA metabolism (Linder and Jankowsky, 2011). Functions of ddx39 have

been linked to mRNA export, which was demonstrated in D. melanogaster (Eberl et al., 1997) and

C. elegans (MacMorris et al., 2003). Moreover, ddx39 was shown to be important for regeneration

and development of limbs in X. laevis (Wilson et al., 2010). Therefore, it could be interesting to use

different model organisms for studying whether ddx39 has a conserved function in stem cell biology.

To increase the accessibility of the generated datasets, we developed an online interface to this

resource, which is available at http://neoblast.macgenome.org. The interface provides a straightfor-

ward way to search through the different transcript categories and to visualize and analyze the

expression data of any gene of interest, for example by transcript ID, gene name or keyword. In

addition, links to download the transcriptome assembly and the gene expression data and the classi-

fication into categories are provided. To facilitate the comparison of M. lignano and planarians, S.

mediterranea homologs and their various classifications are provided, as well as links to PlanMine,

which contains comprehensive information of planarian genomics (Brandl et al., 2016).

In summary, the de novo M. lignano transcriptome and generated sets of genes enriched in the

germline and somatic neoblasts are valuable resources for further development of this species as a

model organism for stem cell research. A preliminary screen already identified several novel, not pre-

viously implicated in stem cell biology, genes essential for neoblast functionality. Specifically, ddx39

is suggested as a positive control for RNAi experiments and a marker for proliferating cells.
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Materials and methods

Culture of Macrostomum lignano
Macrostomum lignano is cultured in Petri dishes with nutrient-enriched artificial seawater (f/2)

(Anderson et al., 2005), at 20˚C and a 14 hr/10 hr light/dark cycle. Worms are fed ad libitum with

the diatom Nitzschia curvilineata (Rieger et al., 1988).

g- Irradiation treatment
Worms were exposed to g-rays of 0,0288 cGy/sec with a Cesium 137 g-ray machine (CIS Bio Interna-

tional S.A, France) at the Department of Cellular Biology, University Medical Center Groningen.

Batches of animals (n = 120) kept in a Petri dish with f/2 were irradiated with an accumulative dose

of 210Gy, following a protocol of three pulses of 70Gy every 4 hr. Afterwards, worms were trans-

ferred to a new Petri dish with fresh f/2 and ad libitum food to avoid starvation. At 12, 24, and 72 hr

post-irradiation (i.e. after the last irradiation exposure), RNA of 40 randomly collected worms was

isolated. Prior to RNA isolation, worms were starved for 12 hr to avoid RNA contamination of dia-

toms. Control animals (n = 40) were cultured in the same way as the treated worms; however, the g-

ray exposure was omitted. Three independent replicates of irradiation were performed.

Preparation and sequencing of RNA-seq libraries for de novo
transcriptome assembly
RNA isolation
Worms were starved for 18–24 hr prior to RNA isolation to prevent diatom RNA contamination, then

rinsed in fresh medium. Total RNA was extracted using TRIzol Reagent (Ambion, Foster City, CA),

according to manufacturer’s instructions. Animals were homogenized in TRIzol Reagent by pipetting.

For every extraction, a batch of 200–300 worms was used. Samples were resuspended in nuclease-

free water and treated with five daU of DNAse I (Thermo Scientific, Waltham, MA) for 45 min at

37˚C. Enzyme and all the remaining DNA were removed by extraction with phenol:chloroform:iso-

amyl alcohol (125:24:1, pH 4.5 Life Technologies, Waltham, MA). Samples were alcohol precipitated

overnight at –80˚C. Total RNA was pelleted by centrifugation at 12,000 g for 20 mins at 4˚C, washed
with 70% ethanol and air-dried for 5 min. RNA was resuspended in nuclease-free water. Concentra-

tion of total RNA samples was measured with Qubit RNA BR assay kit (Invitrogen, Waltham, MA).

Preparation of 454 library
Random-primed normalized cDNA library for 454 sequencing was prepared by Vertis Bioteknologie

AG (Freising, Germany). Total RNA was isolated from the worms pellet using the mirVana miRNA

isolation kit (Ambion). The RNA preparation was analyzed for its integrity by capillary electrophore-

sis. From the total RNA poly(A)+ RNA was prepared. First-strand cDNA synthesis was primed with a

N6 randomized primer. Then, 454 adapters A and B were ligated to the 5’ and 3’ ends of the cDNA.

The cDNA was finally amplified with PCR (16 cycles) using a proof-reading enzyme. Normalization

was carried out by one cycle of denaturation and reassociation of the cDNA, resulting in N1-cDNA.

Reassociated ds-cDNA was separated from the remaining ss-cDNA (normalized cDNA) by passing

the mixture over a hydroxylapatite column. After hydroxylapatite chromatography, the ss-cDNA was

amplified with 10 PCR cycles. For Titanium sequencing, the cDNA in the size range of 500–700 bp

was eluted from a preparative agarose gel. An aliquot of the size fractionated cDNA was analyzed

by capillary electrophoresis. The library was sequenced on GS FLX Titanium machine following man-

ufacturer’s protocol.

Illumina libraries
Poly(A)-tailed mRNA fraction was purified from total RNA and barcoded RNA-seq libraries were cre-

ated using SureSelect Strand Specific RNA Library Prep Kit (Agilent, Santa Clara, CA) or NEXTflex

Rapid Directional qRNA-Seq Kit (Bioo Scientific, Austin, TX) in accordance with manufacturer’s pro-

tocol. Ribo-Minus depleted RNA was prepared by RiboMinus Eukaryote Kit for RNA-Seq (Ambion)

and NEXTflex Rapid Directional qRNA-Seq Kit (Bioo Scientific). Sequencing was performed on the

Illumina HiSeq 2500 machine.
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RAMPAGE libraries
5’-enriched libraries were prepared according to RAMPAGE protocol (Batut et al., 2013).

3’-specific libraries
The CEL-seq protocol (Hashimshony et al., 2012; Junker et al., 2014) combined with T-fill sequenc-

ing protocol (Wilkening et al., 2013) allows mapping of polyadenylation sites in mRNAs and thus

precise annotation of 3’ ends. While CEL-seq protocol is designed for single cells, it works well with

larger amounts of RNA as well. For generating 3’-specific libraries RNA was extracted from whole

adult sectioned worms using TRIzol reagent (Ambion), following the manufacturer’s manual. RNA

pellets were resuspended with barcoded primers consisting of a polyT stretch, a 4 bp random bar-

code, a unique sample-specific barcode, the 5’ illumina adaptor, and a T7 promotor. The RNA sam-

ples were reverse transcribed, pooled, and in vitro transcribed for linear amplification with the

MessageAmp II kit (Ambion) according to the CEL-Seq protocol (Hashimshony et al., 2012). Illu-

mina sequencing libraries were made with the TRuSeq small RNA sample prep Kit (Illumina, San

Diego, CA) and paired-end sequencing was performed using T-fill protocol as described in

Wilkening et al. (2013).

Preparation and sequencing of RNA-Seq libraries from irradiated
animals
At the defined time points after irradiation, animals were rinsed with fresh f/2 medium, suspended in

500 ul of TRIzol reagent (Ambion), and homogenized. Total RNA extraction was performed with the

Direct-zol RNA MiniPrep kit (Zymo Research, Irvine, CA), according to the manufacturer’s instruc-

tions. Concentration and quality of extracted RNA was measured using the Qubit RNA BR Assay Kit

(Life Technologies). Total RNA was used to make RNA-Seq libraries with the SureSelect Strand-Spe-

cific RNA Library Prep kit for Illumina Multiplexed Sequencing (Agilent), in accordance with the man-

ufacturer’s protocol. Sixteen libraries were pooled (2 nM) and sequenced on the Illumina HiSeq 2500

machine.

Preparation and sequencing of RNA-seq libraries from FACS-isolated
cells
Cells were sorted from worms representing three conditions: intact worms, 1-day-old juveniles, and

amputated heads. Intact worms were starved for 48 hr before sorting. To obtain the juveniles, newly

hatched worms were collected and maintained for a day without food. To obtain heads, worms were

relaxed in 7.14% MgCl2, cut below the pharynx and let to regenerate for 24 hr without food. On the

day of sampling, worms were collected in RNase-free 1.5-ml tubes. Worms were put on ice to facili-

tate aspiration of excess f/2, after which they were resuspended in 100 ml Otto1 buffer (0.1M Citric

acid, 0.5% Tween in MilliQ) and incubated for 8 min at room temperature. 300 ml Otto2 (0.4M

Na2HPO4 in MilliQ) buffer was added and worms were vigorously pipetted up and down to lyse

them into a cell suspension. The suspension was diluted up to 1 ml by adding 600 ml 1:2 Otto1:

Otto2, and samples were labeled with 4 drops of a live-cell Hoechst staining for 20 min at room tem-

perature (NucBlue Live ReadyProbes Reagent, Thermo Fisher Scientific), after which samples were

kept on ice.

For cell sorting, a gating strategy was developed including the elimination of cell debris and cell

clusters, the identification of neoblasts, and finally the selection of G1 cells, representing mainly dif-

ferentiated cells, and late-S/G2/M phase cells, representing proliferating cells (Figure 1—figure sup-

plement 4). To sort the differentiated cells, a selection on the left side of the G1 peak was made to

avoid contamination with early S-phase cells as much as possible. Sorting was performed using a

Beckman Coulter Moflo Astrios (Central Flow Cytometry Unit, UMCG). Samples of 5000 cells per

RNase-free tube were collected, which were put on ice. TRIzol reagent (Life Technologies) was

added as fast as possible and the samples were stored at �80˚C. RNA-Seq libraries were made

using the CEL-Seq method and single-end sequenced using T-fill protocol as described above. For

each studied condition three replicate libraries were generated.

For confirmation of specificity of the developed sorting strategy, six samples of 100 adult worms

were collected, and three of them were irradiated with an accumulative dose of 210Gy as described

above, while the other three samples were kept as controls. Worms were macerated and labeled
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with Hoechst as described above. Flow cytometry was performed using a BD FACSCanto II, and the

percentages of single cell Hoechst labeled cells within the 2C and 4C gates were determined with

the FCS express software package.

De novo transcriptome assembly and annotation
Raw RNA-seq reads were processed by the read cleaning module of Mira assembler v.4.0.2

(Chevreux et al., 2004) to trim adapter sequences and low-quality regions. Filtered Illumina paired-

end reads were normalized by insilico_read_normalization.pl utility from Trinity v.2.0.6 package

(Grabherr et al., 2011) to the maximum coverage of 30x and assembled by IDBA-tran v.1.1.1

(Peng et al., 2013), Trinity v.2.0.6 (Grabherr et al., 2011), and SOAPdenovo-trans v.1.0.4

(Xie et al., 2014) assemblers using strand information and default assembler parameters. For SOAP-

denovo-trans assemblies with multiple k parameter were generated (k = 23,27,31,41,51,61). Non-

stranded 454 data were assembled with Mira assembler v.4.0.2 (Chevreux et al., 2004). For each

assembly, redundancy was removed using cd-hit-est program from CD-HIT v.4.6.1 (Fu et al., 2012)

with parameters ‘-c 0.99 -T 0 -M 0’, and the results of different assemblies were further merged

using cd-hit-est with the same parameters. Next, RNA-seq reads were mapped back to the resulting

contigs using Bowtie v.2.2.4 (Langmead and Salzberg, 2012), reads mapping to a given contig

extracted and reassembled using CAP3 v 12/21/07 (Huang and Madan, 1999) and Newbler v.2.7

(Margulies et al., 2005) requiring consistent placing of paired-end reads. The reassembly pipeline is

available at https://github.com/eberezikov/ReCAP. The reassembled contigs were merged with cd-

hit-est and prioritized by the number of reads mapped. The primary set of contigs that explains 90%

of all available RNA-seq reads was selected as the main assembly.

Transcriptome assembly quality was evaluated using TransRate v.1.0.1 (Smith-Unna et al., 2016)

using polyA-enriched and Ribo-Minus depleted libraries. Homologs from human (GRCh37) and S.

mediterranea (Liu et al., 2013; Brandl et al., 2016) were identified using blastx v.2.2.6

(Altschul et al., 1997) taking the best hits with e-value cutoff below 0.01. Pfam domains from Pfam

database v. 27 (Finn et al., 2016) and Core Eukaryotic genes (Parra et al., 2009) were annotated

using HMMER v.3.1 (Eddy, 2011). tRNA and rRNA genes were annotated using tRNAscan-SE v.1.23

(Lowe and Eddy, 1997) and RNAmmer v 1.2 (Lagesen et al., 2007), respectively. Assessment of

transcriptome completeness was performed using BUSCO v.2 (Simão et al., 2015) with Eukaryota

and Metazoa datasets.

Transsplicing leader sequence was identified by analyzing k-mer frequencies (k = 19) in the first

100 nt of transcripts. The consensus sequence CCGTAAAGACGGTCTCTTACTGCGAAGACTCAA

TTTATTGCATG reconstructed from the overlapping frequent k-mers corresponds is the same as

published previously (Wasik et al., 2015).

Differential expression analysis of RNA-Seq data
RNA-seq reads were mapped to MLRNA1509 transcriptome assembly using Bowtie v.2.2.4

(Langmead and Salzberg, 2012), and gene-level counts for transcript clusters were calculated from

the resulting bam files by Corset v.1.03 (Davidson and Oshlack, 2014) combining both irradiation

and FACS datasets. Subsequent differential gene expression analysis was performed with edgeR

package (McCarthy et al., 2012) separately for the irradiation and FACS dataset gene counts. Lowly

expressed clusters were removed, requiring at least one count per million in at least three samples.

Unwanted variation was removed with RUVSeq package (Risso et al., 2014) using k = 3 for the irra-

diation dataset and k = 1 for the FACS dataset. FDR cutoff of 0.05 was used for statistical

significance.

Whole mount in situ hybridization
cDNA synthesis was performed using the SuperScript III First-Strand Synthesis System (Life Technolo-

gies) according to the manufacturer’s protocol with 2–3 mg of total RNA as a template for each reac-

tion. Provided oligo(dT) and hexamer random primers were used.

DNA fragments selected as templates for in situ hybridization probes, were amplified from cDNA

by standard PCR with GoTaq Flexi DNA Polymerase (Promega), followed by cloning using the

pGEM-T vector system (Promega) and sequenced by GATC Biotech. All primers used are listed in

Figure 3—source data 1 and Figure 3—source data 2. DNA templates for producing DIG – labeled
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riboprobes were amplified from sequenced plasmids using High Fidelity Pfu polymerase (Thermo

Scientific). Forward (5’-CGGCCGCCATGGCCGCGGGA-3’) and reversed (5’TGCAGGCGGCCGCAC

TAGTG-3’) primers binding the pGEM-T vector backbone near the insertion site were designed.

Moreover, versions of the same primers with a T7 promoter sequence (5’-GGATCCTAATACGAC

TCACTATAGG-3’) appended upstream were obtained. The T7 promoter sequence serves as a start

site in subsequent in vitro transcriptions. A pair of primers, depending on the orientation of the

insert in the vector: forward with T7 promoter and reverse without or vice versa, was used to amplify

every ISH probe template.

Digoxigenin (DIG) labeled RNA probes (500 to 800 bp in length) were generated using the DIG

RNA labeling Mix (Roche, Switzerland) and T7 RNA polymerase (Promega, Fitchburg, WI) according

to the manufacturer’s protocol for in vitro transcription. The concentration of every probe was mea-

sured with the Qubit RNA BR assay (Invitrogen), probes were diluted in Hybridization Mix

(Pfister et al., 2007) to 20 ng/ml, stored at �80˚C and used within 4 months. The final concentration

of the probe and optimal temperature used for hybridization varied for different probes and were

optimized for each probe.

Whole mount in situ hybridization (ISH) was performed following an earlier described protocol

(Pfister et al., 2007). Pictures were made using a standard light microscope with DIC optics and an

AxioCam HRC (Zeiss, Germany) digital camera and the EVOS XL Core Imaging System

(ThermoFisher).

Fluorescent in situ hybridization and immunofluorescence
Fluorescent in situ hybridization (FISH) was performed following the published FastBlue protocol

developed for planarians (Currie et al., 2016), except the 5% NAC treatment and bleaching steps

were ommited. The primary, polyclonal antibody for Macpiwi1 (1:250) (Wasik et al., 2015) or the pri-

mary anti-phospho histone H3 Antibody (1:100) (Millipore, Billerica, MA) was added to the FISH anti-

body solution as 1:250. After FISH development, samples were incubated with secondary goat anti-

rabbit IgG Antibody conjugated with FITC (Millipore), diluted 1:150 in blocking solution, for 1 hr at

room temperature. Samples were then washed five times with PBS-T. Slides were mounted using

80% glycerol solution, and the labeling was visualized with a Leica TCS SP8 confocal microscope at

the UMCG Imaging and Microscopy Center.

RNA interference
In order to generate dsRNA fragments, the same plasmids were used as for making ISH probes.

Templates for the synthesis of both sense and antisense RNA strands were amplified from the plas-

mids containing the insert of interest. The same primers were used as for ISH riboprobe template

amplification, and for each fragment, two PCRs were performed – with both pairs of primers (for-

ward with T7 promoter and reversed without and vice versa). High Fidelity Pfu polymerase (Thermo

Scientific) in 150 ml of total volume reaction was used. PCR products were then run on 1% agarose

gel, PCR product bands were cut out and purified using the QIAquick Gel Extraction Kit

(Qiagen, Netherlands). Each template was then used to synthesize the corresponding single strand

RNA with the TranscriptAid T7 High Yield Transcription Kit (Thermo Scientific) according to manufac-

turer’s protocol. The single reaction volume was 50 ml, and tubes were incubated in 37˚C for 5 hours.

Afterwards 100 ml of nuclease-free water was added to each tube, sense and antisense RNA strands

were mixed to a final volume of 300 ml and annealed by incubating them at 70˚C for 10 min, fol-

lowed by gradual cooling down to room temperature, taking approximately 90 min. Every sample

was then treated with 1U of RNase A (Life Technologies) and 5U of DNase I (Thermo Scientific) for

45 min at 37˚C. Samples were alcohol precipitated overnight at �80˚C. dsRNA was pelleted by cen-

trifugation at 12,000g for 15 min at 4˚C, washed with 75% ethanol, and air-dried for 5 min. dsRNA

was resuspended in nuclease-free water and the concentration was measured using Nanodrop

ND1000. Freshly autoclaved and filtered f/2 medium was used to adjust the concentration to 10 ng/

ml. Samples were aliquoted in 1.5 ml Eppendorf tubes and stored at �80˚C.
Specific knockdown of candidate genes by RNA interference with double-stranded RNA deliv-

ered by soaking was performed as previously described (De Mulder et al., 2009). RNAi soaking

experiments were performed in 24-well plates in which algae were grown. Individual wells contained

300 ml of dsRNA solution (10 ng/ml in f/2 medium) in which 15 individuals were maintained. RNAi
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was performed for three weeks during which dsRNA solution was refreshed daily. Worms were

weekly transferred to fresh 24-well plates to ensure sufficient amount of food. For each gene of

interest, the effect on homeostasis and regeneration was studied. As a negative control, GFP dsRNA

was used. In experiments addressing regeneration, the tail of worms was amputated after 1 week of

RNAi. Photos of randomly selected worms were made 1 week after cutting for studying the effect of

RNAi on regeneration, and between 2 and 3 weeks of treatment to study to effect on homeostasis.

Mitotic labeling
Mitotic labeling was performed as described in Ladurner et al. (2000). In short, both cut and intact

worms were randomly selected at the 10th day of RNAi treatment (48 hr after amputation of the

tail), washed in f/2 medium and relaxed in 1:1 MgCl2:f/2 for 5 min, fixed in 4% paraformaldehyde

(PFA) for 1 hr, washed with PBS-T (PBS and 0,1% Triton X-100) and blocked with BSA-T (1% bovine

serum albumin in PBS-T) for 30 min. The primary anti-phospho histone H3 Antibody (Millipore) was

diluted 1:100 in BSA-T and applied overnight at 4˚C, followed by washing with PBS-T. Worms were

incubated in secondary goat anti-rabbit IgG Antibody conjugated with FITC (Millipore), diluted

1:150 in BSA-T, for 1 hr at room temperature. After being washed with PBS-T, slides were mounted

using Vectashield (Vector Laboratories US, Burlingame, CA). Mitotic cells were visualized using a

Leica TCS SP2 confocal microscope and counted with the Cell counter plugin in ImageJ.

Data accessibility
Web interface that provides search and visualization capabilities for the generated datasets is avail-

able at http://neoblast.macgenome.org. RNA-seq data have been deposited at DDBJ/EMBL/Gen-

Bank under the accession SRP082513. The transcriptome assembly has been deposited at DDBJ/

EMBL/GenBank under the accession GEXL00000000. The version described in this paper is the first

version, GEXL01000000.
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