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Abstract

Chromatin architecture has been implicated in cell-type-specific gene regulatory programs; yet, 

how chromatin remodels during development remains to be fully elucidated. Here, by 

interrogating chromatin reorganization during human pluripotent stem cell (PSC) differentiation, 

we discover a role for the primate-specific endogenous retrotransposon HERV-H in creating 

topologically associating domains (TAD) in human PSCs. Deleting these HERV-H elements 

eliminates their corresponding TAD boundaries and reduces transcription of upstream genes, while 

de novo insertion of HERV-Hs can introduce new TAD boundaries. HERV-H’s ability to create 

these TAD boundaries depends on high transcription, as transcriptional repression of HERV-H 

elements prevents formation of these boundaries. This ability is not limited to human PSCs, as 

these actively transcribed HERV-Hs and their corresponding TAD boundaries also appear in PSCs 

from other hominids but not in more distantly related species lacking HERV-Hs. Overall, our 

results provide direct evidence for retrotransposons in actively shaping cell-type- and species-

specific chromatin architecture.

Introduction

The three-dimensional organization of chromosomes enables long-range interactions 

between enhancers and promoters that are critical for building complex gene regulatory 

networks in multicellular species1,2. In somatic cells, interphase chromosomes occupy 

separate nuclear spaces known as chromosome territories3. Each chromosome is organized 

into a dynamic but non-random hierarchical structure characterized by stretches of 

transcriptionally active, megabase-long compartments that are interspersed with stretches of 

transcriptionally inactive compartments4. These compartments can be further partitioned 

into topologically associating domains (TADs), which exhibit high levels of intra-domain 

interactions and relatively low levels of inter-domain interactions5–7. TAD boundaries are 

generally conserved between cell types and closely related species5,8, and can restrict cis-

regulatory element interactions with target promoters9. At or within TAD boundaries, long-

range chromatin loops are frequently observed to link regulatory elements, including binding 

sites for the CCCTC-binding factor (CTCF), promoters and enhancers10,11. Thus, disrupting 

TADs can lead to failure of proper restructuring of chromatin and subsequent changes of 

transcriptional landscape that may eventually lead to disease12–15.

There is mounting evidence that a large fraction of TADs are shaped by CTCF, which 

occupies a majority of the TAD boundaries, and by the cohesin complex that generally 

colocalizes with CTCF16–20. The evolution and turnover of CTCF binding sites have been 

suggested to underlie the evolution of genome architecture in different species21, since a 
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subset of species-specific CTCF binding sequences are rapidly dispersed by transposable 

elements, in particular SINE elements22. However, how much transposable elements play a 

role in shaping the genome architecture during evolution has yet to be directly tested, 

particularly in primates.

Genome architecture is not only reshaped during evolution, but also reconfigured in a cell-

type-specific manner during differentiation and somatic cell reprogramming8,23–26. By 

interrogating the dynamic remodeling of chromatin architecture during human 

cardiomyocyte differentiation, we discover a class of primate-specific endogenous 

retrotransposons, human endogenous retrovirus subfamily H (HERV-H), which is involved 

in establishing TAD boundaries in hPSCs. Deletion of these HERV-H elements eliminates 

corresponding TAD boundaries, while de novo insertion of HERV-Hs can introduce new 

chromatin domain boundaries in human PSCs. These TAD boundaries are furthermore 

highly dependent on HERV-H transcription, as transcriptional silencing of HERV-Hs during 

hPSC differentiation or by genetic manipulation weakens or eliminates the insulation of 

TAD boundaries. Finally, comparative analysis of chromatin architecture in primate and 

non-primate species supports a role for actively transcribed HERV-Hs in demarcating 

primarily hominid PSC-specific TADs. Overall, our results provide direct evidence for 

retrotransposon elements in actively shaping chromatin architecture in specific cell types 

during evolution.

Results

Chromatin architecture undergoes reorganization during differentiation

To characterize the dynamics of genome organization during differentiation, we utilized a 

transgenic human embryonic stem cell (hESC) H9 MYL2:H2B-GFP ventricular 

cardiomyocyte reporter line, which can be differentiated into ventricular cardiomyocytes in a 

highly synchronized fashion27 (Supplementary Fig. 1a). We generated and collected samples 

in biological duplicates at six critical time points of cardiomyocyte differentiation: hESCs 

(Day 0), mesodermal cells (Day 2), cardiac mesodermal cells (Day 5), cardiac progenitors 

(Day 7), primitive cardiomyocytes (Day 15) and ventricular cardiomyocytes (Day 80) (Fig. 

1a). Flow cytometry confirmed that differentiation efficiency for D2 – D15 time point 

samples was at least ~80-90%, and MYL2:H2B-GFP+ ventricular cardiomyocytes were 

sorted at day 80 (Supplementary Fig. 1b). We performed in situ Hi-C4 experiments, and 

obtained on average three billion raw read pairs and one billion unique long-range cis 

contacts (minimum distance 10 kb, Supplementary Table 1) for each time point. Close 

correlation of Hi-C maps between biological replicates verified that these maps were highly 

reproducible at multiple scales (Supplementary Fig. 2a–d). Complementing these Hi-C 

contact maps, ChIP-seq and RNA-seq experiments were performed on these samples to 

identify CTCF and H3K27ac occupancy sites, and profile transcriptomes, respectively 

(Supplementary Fig. 2e–i).

Analyses of these Hi-C datasets showed extensive reorganization of chromatin architecture 

during hESC differentiation (Fig. 1a). Across the entire genome, the abundance of short-

range chromatin interactions decreased while the number of long-range chromatin 

interactions (above 500 kb) increased (Supplementary Fig. 3a). Identification of active (A) 
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and inactive (B) compartments at all stages showed that 81.6% of the genome maintained 

the same compartment state throughout cardiomyocyte differentiation (Fig. 1b). Among the 

18.4% of the genome that switched compartments, a similar proportion of the genome 

switched from A to B and from B to A at each stage transition (Supplementary Fig. 3b), and 

the majority (73%) only switched once, suggesting linear nuclear architectural changes 

during lineage commitment (Fig. 1b). Hierarchical clustering of genomic bins that switched 

compartments showed stage specific dynamics (Fig. 1b), which positively correlated with 

gene expression (Supplementary Fig. 3c,d) as reported previously8.

Consistent with recent reports describing loss of TADs during ESC differentiation23,28, we 

also observed that the number of TADs decreased as hESCs differentiated into ventricular 

cardiomyocytes using multiple TAD-calling algorithms5,10,29 (Supplementary Fig. 4a, b, c). 

Clustering of stage-specific TAD boundaries using differential Directionality Index (DI) 

scores, which estimate the strength of the TAD boundaries, further showed that the majority 

of stage-specific TAD boundaries were lost or weakened during differentiation and the effect 

was most pronounced at early mesoderm specification (D0-D2), and ventricular 

cardiomyocyte differentiation/maturation (D15-D80) (Fig. 1c).

HERV-H silencing is associated with loss of TAD boundaries during differentiation

To investigate the mechanism of TAD boundary turnover, we examined the sequence 

features of TAD boundaries that were lost in the course of differentiation with a particular 

focus on D0 hESC-specific TAD boundaries [ESC(+)] and the boundaries lost during D15-

D80 ventricular cardiomyocyte transition [vCM(−)] (Supplementary Table 2). While CTCF 

has been shown to play a critical role in defining TAD boundaries5,10,20, we observed no 

significant difference in CTCF occupancy across all stages examined at ESC(+), vCM(−) 

and stable TAD boundaries (Supplementary Fig. 4d). Thus, we explored whether other 

potential mechanisms might be involved in the formation of these TAD boundaries. 

Interestingly, we discovered that eight classes of repeat elements were over-represented 

specifically at ESC(+) TAD boundaries when compared to stable TAD boundaries (P value < 

0.01 and fold change > 2), whereas no enrichment of these repeats was observed in vCM(−) 

TAD boundaries (Fig. 1d). Additionally, the ESC(+) TAD boundaries were associated with 

hESC-specific H3K27ac signal and mRNA transcription (Supplementary Fig. 4e, f), which 

was particularly enriched for HERV-H transcription (Fig. 2a and Supplementary Fig. 5a).

HERV-H is a class of primate-specific endogenous retrotransposons. It is transcriptionally 

active in both human preimplantation embryos and PSCs30,31, and plays a critical role in 

pluripotency, stem cell maintenance and somatic cell reprograming32–36. Although more 

than 1,000 copies of HERV-H sequences exist in the human genome, they are expressed at 

different levels in hESCs (Fig. 2b)32. Notably, we discovered that the top 50 highly 

transcribed HERV-H loci are predominantly located at TAD boundaries in hESCs (Fig. 2c, 

Supplementary Fig. 5b) and that these TAD boundaries are lost when HERV-Hs are 

transcriptionally silenced in hESCs differentiating into mesodermal cells at day 2 (Fig. 2d; 

specific loci in Fig. 2e, f and Supplementary Fig. 5c, d, e). In addition, we found HERV-H-

associated TAD boundaries were not only present in H9 hESCs but also other hPSCs 

including H1 hESCs8,37 and human induced PSCs (iPSCs)38. However, similar to our H9 
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hESC data, these PSCs when differentiated into other lineages did not appear to exhibit 

HERV-H expression and associated TAD boundaries (Supplementary Fig. 6a). Given these 

findings, we further tested whether this correlation of TAD boundary and transcription is 

unique to HERV-H, or if high transcriptional activity in general correlate with boundary 

strength. We ranked all genes by their expression levels from high to low in hESCs, grouped 

every 1,000 genes into a bin, separated bins into two categories based on whether they 

contain CTCF peaks near their promoters, and then examined the DI scores at these 

corresponding promoters. We found that highly transcribed genes without CTCF peaks in 

their promoters displayed slightly higher boundary strength than lowly transcribed genes; 

however, the boundary strength was substantially lower than those observed in HERV-Hs 

with comparable expression levels (Supplementary Fig. 6b). Furthermore, additional 

genome-wide analyses revealed two genomic loci that contain a solo LTR7 sequence 

(HERV-H promoter), thus suggesting that HERV-H internal sequence or RNA may not be 

required in TAD formation (Supplementary Fig. 7). Taken together, these findings suggest 

that the HERV-H promoter may have a special sequence composition or transcription 

frequency that contributes to TAD boundary formation.

To explore how HERV-Hs might contribute to TAD boundary formation, we examined 

publicly available ChIP-seq data of histone modifications and transcription factors (TFs) in 

hESCs. Consistent with previous observations34, we found that not only RNA polymerase II 

subunit A (POLR2A) but also several histone modifications and transcription factors were 

enriched at sites for the top 50 transcribed HERV-Hs. Unexpectedly, three subunits of the 

cohesin complex were also enriched at these HERV-H elements (Supplementary Fig. 8). To 

further investigate the role of cohesin in HERV-H-mediated TAD boundary formation, we 

performed ChIP-seq in hESCs for the cohesin complex subunit SMC3. Analyzing this ChIP-

seq data along with RNA-seq as well as CTCF and POLR2A ChIP-seq data, we observed 

broad enrichment of cohesin, CTCF and POLR2A specifically at the 3’ end of these highly 

transcribed HERV-H sequences (Fig. 2g). The enrichment of these factors was not observed 

at sites of less active HERV-Hs (Fig. 2g), suggesting that they might play a role in mediating 

the formation of TAD boundaries by HERV-Hs. Interestingly, weak but reproducible broad 

enrichment of CTCF binding signal was observed in these regions despite the absence of 

canonical CTCF binding motifs (Fig. 2g), raising the possibility that CTCF may assist in 

defining these HERV-H-associated TAD boundaries as it does in most other TAD 

boundaries. Overall, these data support that HERV-Hs form TAD boundaries by 

accumulating cohesin complexes at its 3’ end, likely positioned by the transcribing POL2 

complex39,40.

Deletion of HERV-H elements abolishes nearby TAD boundaries and changes gene 

expression

To determine the role of HERV-H sequences in TAD boundary formation in hESCs, we 

produced two genetically engineered hESC lines, termed as HERV-H1-KO and HERV-H2-

KO respectively, in which two HERV-H elements located at two of the strongest hESC TAD 

boundaries were deleted using CRISPR-Cas9 genome editing tools. In both cases, deletion 

of HERV-H resulted in elimination of TAD boundaries, as evidenced by merging of the two 

TADs bordering each HERV-H element (Fig. 3a). Furthermore, deletion of HERV-H resulted 

Zhang et al. Page 5

Nat Genet. Author manuscript; available in PMC 2020 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in reduced expression of genes in the TAD domain immediately 5’ upstream of the HERV-H 

sequence (Fig. 3a). These findings demonstrated that HERV-H sequences are indispensable 

for the TAD boundaries formed at these regions, and moreover that the presence of HERV-H 

increases the transcriptional activity of the neighboring genes in the same TAD domain, 

supporting the notion that HERV-Hs may serve as enhancers in hESCs41,42. Notably, this 

activating effect is only seen in the genes on the 5’ end of HERV-H and not the 3’ end, 

suggesting that boundaries present on the 3’ end of HERV-Hs, may insulate the effect of 

enhancers. Supporting this possibility, additional analyses showed that genes located within 

500 kb or within the TADs upstream of boundary-associated HERV-Hs were more likely to 

be up-regulated in hESCs compared to differentiated cells than genes in the downstream 

(Fig. 3b and Supplementary Fig. 9a), respectively.

Further examination of the transcriptional profiles of both HERV-H knockout cell lines 

revealed that expression of 353 and 144 genes were significantly changed (Supplementary 

Fig. 9b, c, Supplementary Table 3), and alterations of gene expression profiles in HERV-H1-

KO and HERV-H2-KO were highly concordant (Supplementary Fig. 9d, Pearson r = 0.5, P 

value< 1 × 10−15) despite both engineered cells maintaining pluripotency. Of the 43 genes 

down-regulated in both KOs, 10 (23%) were located within 20 kb of other HERV-H 

sequences (Supplementary Fig. 9e), including two well-studied chimeric transcripts 

SCGB3A243 and LINC0045844, which are known to be regulated by HERV-Hs 

(Supplementary Fig. 9f, g). Thus, these data suggest that deletion of individual HERV-H 

sequences could lead to down-regulation of HERV-H-related transcription at other loci.

In further analyzing genes differentially expressed in our HERV-H knockout lines, we 

discovered that the human-specific long-coding RNA (lncRNA), Heart Brake (HBL1), 

which has been reported recently to suppress cardiomyocyte differentiation45, was also 

significantly reduced in the HERV-H1-KO hESCs (Supplementary Fig. 9g). Thus, we 

hypothesized that these changes in transcriptional landscape in the HERV-H1-KO could 

promote cardiomyocyte differentiation. To test this hypothesis, we examined the 

cardiomyocyte differentiation efficiency of HERV-H1-KO hESCs compared to control 

hESCs under suboptimal cardiomyocyte differentiation conditions. While these conditions 

led to ~40% cardiomyocyte differentiation efficiency at day 15 in control hESCs, we 

discovered that HERV-H1-KO hESCs exhibited > 80% cardiomyocyte differentiation 

efficiency (Fig. 3c). Thus, our results suggest that removal of highly expressed TAD-

associated HERV-Hs may alter the potential of hESCs to exit pluripotency and are consistent 

with recent work reporting that hyper-activation of some HERV-H LTR7s prevents hPSC 

lines from effectively differentiating into neuronal cells46.

Transcriptional repression removes HERV-H-driven TAD boundaries

Having established that HERV-H DNA sequences are required for TAD boundary formation, 

we investigated whether its transcriptional activity is also essential. To address this question, 

we blocked the transcription of the aforementioned HERV-H loci by employing a CRISPR-

dCas9-KRAB system with sgRNAs that targeted the promoters (5’ LTR7) of these HERV-Hs 

(Fig. 4a). Each sgRNA specifically reduced the targeted HERV-H expression by over 70% 

(Fig. 4b). Accompanying the reduction of HERV-H, the TAD boundary was weakened, as 
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evidenced by the decreased directionality index (Fig. 4c). This result indicates that HERV-

H’s high transcriptional activity is required for creating TAD boundaries in hESCs. 

Consistent with the HERV-H KO data, the genes 5’ upstream of HERV-Hs were also down 

regulated when HERV-H transcription was repressed (Fig. 4c). In addition, all 10 down-

regulated HERV-H loci in HERV-H KO hESCs showed down-regulation in both these lines, 

suggesting that modulation of individual HERV-H sequences or transcription might impact 

HERV-H transcription at other loci. However, trans-interactions between active HERV-Hs 

were not observed (Supplementary Fig. 10), suggesting such regulation might be achieved 

through mechanisms yet to be characterized.

de novo HERV-H insertion creates new TAD boundaries in hPSCs

To investigate whether HERV-Hs can create TAD boundaries de novo, we engineered two 

human hESC lines in which an 8-kb sequence from the HERV-H2 locus (which includes 1 

kb of additional sequences flanking of HERV-H2) was randomly inserted into multiple 

locations in the HERV-H2-KO hESC genome using a piggybac transposon (Fig. 5a). The 

exact location of 43 HERV-H2 inserts was determined by a combination of proximity 

location analysis using Hi-C and chimeric transcripts analysis using RNA-seq, as HERV-Hs 

frequently form chimeric transcripts and/or exhibit extensive read-through beyond the 3’ 

LTR (Supplementary Fig. 11c, Supplementary Table. 4). Out of these 43 insertions, 16 

exhibited a significant increase in the local contact insulation at the place of insertion, as 

evidenced by the change in Hi-C contact matrix and DI score (Fig. 5b). Furthermore, out of 

these 16 insertions, the allele harboring the HERV-H insertion could be unambiguously 

identified in 15 cases, where insertion of HERV-H was accompanied with allele-specific 

increase in insulation (Fig. 5c, d). Thus, these results indicate that HERV-H insertions can 

create chromatin boundaries de novo. However, at some places of insertion, the HERV-Hs 

might be silenced by the genomic contexts, thus no longer capable of forming TAD 

boundaries. As we showed earlier, 70% reduction of HERV-H transcription is sufficient to 

remove its associated TAD boundaries (Fig. 4b,c).

HERV-H introduces new TAD boundaries during primate evolution

It is estimated that HERV-H integrated into the primate lineage 30-40 million years ago 

(MYA) at the time of divergence of Old and New World monkeys47,48, with the largest 

expansion (LTR7 and LTR7B) occurring in the Old World monkey lineage, including 

hominids47. Consequently, hominids, including humans, harbor over 1,000 copies of HERV-

Hs, whereas New World monkeys only have 50-100 copies in their genomes. To explore 

whether HERV-Hs might have introduced de novo chromatin domains during primate 

evolution, we performed Hi-C to interrogate the chromatin architecture in iPSCs from 

bonobo, chimpanzee and marmoset (New World monkey). To complement these studies, we 

also examined Hi-C data of mouse ESC23 as a non-primate control. As we had expected 

because of their evolutionary distance to humans, TAD boundaries also exist in bonobo and 

chimpanzee iPSCs in the regions syntenic to the top 50 transcribing HERV-H loci in hESCs, 

which harbor similar HERV-Hs; whereas marmoset iPSCs and mouse ESCs do not contain 

HERV-Hs nor exhibit insulation at these syntenic regions (Fig. 6a,b and Supplementary Fig 

12a). Taken together, our data suggest that HERV-H introduced de novo TAD boundaries 

during primate evolution in a transcription-dependent manner. Consistent with this notion, 
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additional sequence analysis of the HERV-H LTR sequence showed that the TAD-forming 

HERV-Hs were predominantly flanked by a 450 bp subtype of LTR7 at both ends 

(Supplementary Fig. 12b,c), which display less sequence divergence between their 5’ LTRs 

and 3’ LTRs (Supplementary Fig. 12d), thus suggesting that these HERV-Hs likely were 

inserted more recently than other HERV-Hs that do not form TAD boundaries, or were 

impacted by gene conversion or selection49.

Discussion

Evolution of multicellular organisms is driven, in large part, by the invention of new gene 

regulatory circuits responsible for the fitness traits of each species. A long-standing theory 

holds that retroviruses may play an important role in the evolution of gene regulatory 

logic50,51. Over the years, many classes of endogenous retroviral elements have been found 

to recruit transcription factors to regulate nearby genes in a cell-type-specific manner, or 

initiate transcription of non-coding RNAs with regulatory functions41,52. Importantly, the 

expansion of SINE elements in rodents, dogs and opossums has been attributed to the 

rewiring of gene regulatory networks in these mammals by expanding, in each species, the 

repertoires of CTCF22, a DNA binding protein with a critical role in chromatin organization. 

Surprisingly, no evidence has been found so far for repeat-driven expansion of CTCF 

binding in primate genomes22, raising the question whether retrotransposon-driven 

chromatin re-organization indeed is a general strategy of evolution that applies also to the 

primate lineage.

Here, we provide multiple lines of evidence demonstrating that the primate-specific HERV-

H retroviral elements can delineate TAD boundaries in the human PSCs. Previous studies 

suggested that HERV-Hs integrated into the human genome during primate evolution to 

regulate human-specific pluripotency by creating novel chimeric transcripts (ESRG32, linc-

ROR36,53 and LINC0045844) and providing potential binding sites to recruit pluripotency 

factors (NANOG, SOX2 and POU5F1)33. However, our findings indicate that HERV-H 

sequences may affect gene regulatory programs by also creating new hPSC-specific TAD 

boundaries that shape chromatin architecture. Although the cohesin complex is involved in 

forming long-range chromatin loops at CTCF binding sites16,17 and most TAD boundaries 

are occupied by CTCF and cohesin complex in mammalian cells, these HERV-H-associated 

TAD boundaries appear to lack canonical CTCF binding motifs and sharp CTCF ChIP-seq 

peaks despite retaining cohesin complexes. From our CRISPRi and ChIP-seq studies, we 

discovered that HERV-H’s ability to form TAD boundaries is highly dependent on 

transcription and more specifically RNA Polymerase II (rather than CTCF) possibly 

positioning cohesin complexes (Supplementary Fig. 13). This finding is consistent with 

recent reports on the role of transcription and polymerase movement in positioning cohesin 

complexes to create insulation and reshape chromatin structure39,40. Furthermore, this 

HERV-H-mediated TAD-boundary forming process appears to potentially affect the 

regulation of gene transcription upstream but not downstream of the HERV-H loci, thus 

providing insight as to how HERV-Hs may impact gene regulatory networks. However, 

whether this observation is a general rule for all HERV-Hs will require future studies to 

more comprehensively interrogate these HERV-Hs.
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Finally, our findings suggest the intriguing possibility that other ERV families of repeats 

and/or other families of repetitive elements may have similar abilities to create TADs and 

insulation. Thus, future studies of these repeat elements will be interesting to discover 

whether other distinct classes of repetitive elements may also exhibit similar capacity to 

influence chromatin architecture in a broad range of cell types that include not only PSCs 

but also more differentiated cell types. Because reactivation of various transposable elements 

has been implicated in mammalian aging, cancer and other diseases54–56, such future studies 

may also illuminate underlying mechanisms for how reactivation of these elements could 

contribute to disease by disrupting genome architecture and altering gene regulatory 

programs.

Methods

Cell culture, differentiation, and collections for large-scale cardiac molecular studies

For the large-scale genomic and transcriptomic human embryonic stem cell (hESC) cardiac 

studies (i.e. ChIP-seq, RNA-seq and HiC experiments), an engineered H9 hESC 

MLC2v:H2B-GFP reporter transgenic line, which specifically expresses H2B-GFP in 

differentiated ventricular cardiomyocytes (CMs), was used27. This H9 hESC MLC2v:H2B-

GFP line was differentiated into cardiomyocytes and their intermediate developmental stages 

utilizing a well-established Wnt-based cardiomyocyte differentiation protocol57 that we have 

previously used to efficiently create hESC-CMs58. Specifically, the following developmental 

cardiac cell populations were generated and collected: Day (D)0 (hESC), D2 (mesoderm), 

D5 (cardiac mesoderm), D7 (cardiac progenitors), D15 (primitive CMs) and D80 

(ventricular CMs). Differentiation efficiency was assessed at specific developmental cardiac 

stages by flow cytometry using antibodies against POU5F1 (Cell Signaling C30A3) - D0/

hESC, BRACHYURY/T (R&D Systems AF2085) - D2/mesoderm, KDR/PDGFRA (R&D 

Systems AF357P and AF1264A, respectively) - D5/cardiac mesoderm, cTnT (ThermoFisher 

MA5-12960) - D15/primitive CMs. Differentiation success for collected D2-D7 samples was 

further confirmed by re-plating a portion of the cells dissociated for collection and then 

maintaining them until ~D15 when CM differentiation could be assessed using cTnT flow 

analysis. Collected samples that resulted in high differentiation efficiency (> 90%) were then 

further processed and analyzed for molecular studies (see below). For D80 ventricular CMs, 

we additionally sorted and purified these cells based on MLC2v:H2B-GFP prior to their 

processing and analyses (Supplementary Fig. 1). For RNA-seq studies, ~2 million 

dissociated cells were washed in PBS, lysed in Trizol and then stored at −80 °C until further 

processing. For ChIP-seq studies, dissociated cells were washed in PBS, fixed in 1% 

formaldehyde for 10 min, quenched with 0.125 M Glycine for 5 min at room temperature 

(RT), then 10 min on ice and finally washed twice with PBS. These fixed cell pellets were 

then snap-frozen and stored at −80 °C until further processing.

In situ Hi-C

In situ Hi-C was performed as described previously with minor modifications10. Cells were 

harvested and pelleted by centrifugation at 300 g for 10 min. Cells were resuspended in PBS 

and fixed with 1% formaldehyde for 10 min at RT. The reaction was quenched by incubating 

with 125 mM glycine for 5 min at RT before transferring onto ice. Cells were pelleted (300 
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g for 10 min at 4 °C) and subsequently washed twice with ice-cold PBS. After the second 

wash concentration was adjusted to 2 million cells/ml and 1 ml was transferred to a 1.5 ml 

tube (Eppendorf). Cells were pelleted (1,000 g, 5 min at 4 °C). Following supernatant 

removal, the pellet was flash frozen in liquid nitrogen and stored at −80 °C. Nuclei were 

isolated using lysis buffer (10 mM Tris-HCl (pH 8.0), 10 mM NaCl, 0.2% Igepal CA630) 

and incubation on ice for 15 min. Pelleted nuclei were permeabilized using 0.5% SDS and 

incubation for 10 min at 62 °C. SDS was quenched by adding Triton-X100. Chromatin was 

digested using the four base cutter restriction enzyme MboI (200 units, NEB) at 37 °C 

overnight. Digestion efficiency was checked by gel electrophoresis. After inactivation of 

MboI for 20 min at 62 °C, single-strand overhangs were filled with biotinylated-14-ATP 

(Life Technologies) using Klenow DNA polymerase (40 units, NEB) for 90 min at 37 °C. 

Next, DNA was ligated for 4 h at 16 °C using T4 ligase (2,000 units, NEB). Reverse 

crosslinking and protein degradation was performed using proteinase K (NEB) and 

incubation at 55 °C for 30 min. Finally, NaCl (500 mM) was added and the reaction was 

completed at 68 °C overnight. DNA was purified using ethanol precipitation and sonicated 

using an ultra sonicator (Covaris M220; duty cycle: 10; intensity: 4; cycles/burst: 220; 

duration: 55 s) to 300-700 bp small fragments. After size selection and purification using 

SPRI beads (Beckman Coulter), biotinylated DNA was isolated using Dynabeads MyOne T1 

Streptavidin beads (Life Technologies). Sequencing libraries were prepared on magnetic 

beads and final PCR amplification was carried out for 6 cycles. Size distribution of bead-

purified libraries was checked using a High Sensitivity D1000 ScreenTape on a Tapestation 

(Agilent) and quantified using Qubit (Life Technologies). Libraries were sequenced on 

Hiseq 4000 (100 bp PE, Illumina).

ChIP-seq

ChIP-seq experiments for all histone marks at all time points were performed as previously 

described59,60. The experiments were conducted according to experimental guidelines and 

read depth standards of the ENCODE consortium. Harvested cells were washed in PBS and 

fixed in 1% formaldehyde for 10 min at room temperature. Reaction was quenched with 125 

mM Glycine for 5 min at room temperature followed by 10 min incubation on ice. Next, the 

cells were washed twice with PBS. Crosslinked cells were lysed and chromatin sheared 

using a Branson Sonifier 450 (20 cycles, 15 sec ON, 45 sec OFF at power 3). Detailed 

protocols can be found on the ENCODE homepage for immunoprecipitation (https://

www.encodeproject.org/documents/89795b31-e65a-42ca-9d7bd75196f6f4b3/@@download/

attachment/Ren%20Lab%20ENCODE%20Chromatin%20Immunoprecipitation

%20Protocol_V2.pdf) and library preparation (https://www.encodeproject.org/documents/

4f73fbc3-956e-47ae-aa2d41a7df552c81/@@download/attachment/

Ren_ChIP_Library_Preparation_v060614.pdf). ChIP-seq experiments for CTCF and SMC3 

were carried out on two and ten million crosslinked cells, respectively, as previously 

described61,62. Nuclei were isolated using hypotonic buffer and subsequently lysed in RIPA 

buffer (140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium 

deoxycholate, 10 mM Tris-HCl pH 8.0 supplemented with protease inhibitor (Roche)) and 

chromatin was sheared using a Covaris M220. Cell lysates were precleared using Protein G 

beads (Sigma) and rotation for 3 h at 4 °C. For immunoprecipitation, chromatin was 

incubated with antibodies against CTCF overnight at 4 °C. Antibody chromatin complexes 
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were bound by Protein G beads for 2 h at 4 °C. After eight rounds of washing using 

combinations of high and low salt buffers, crosslinks were reversed with Proteinase K 

(NEB) at 65 °C overnight. DNA was purified by phenol/chloroform/isoamyl alcohol 

extraction and ethanol precipitation. Sequencing libraries were generated using the Accel-

NGS® 2S Plus DNA Library Kit (Swift). All ChIP-seq libraries were sequenced on HiSeq 

2500/4000 (50 bp SE, Illumina). Antibody information could be found in the “Life Sciences 

Reporting Summary”.

RNA-seq

Total RNA from cells was extracted using Trizol (Thermo) and purified with RNA Clean & 

Concentrator™−5 (R1013, Zymo Research). RNA sequencing libraries were prepared from 

1-2 μg total RNA using the Illumina TruSeq Stranded mRNA Library Prep Kit Set A 

(Illumina, RS-122-2101) or Set B (Illumina, RS-122-2102). Sequencing was carried out on 

HiSeq 2500/4000 (50/100 bp PE, Illumina).

HERV-H deletion study

To interrogate the functional significance of HERV-Hs, selected HERV-H sequences were 

genetically deleted in H9 MLC2v:H2B-GFP hESCs using CRISPR-Cas9 genome editing 

strategies. To this end, specific gRNA pairs with binding sites surrounding the target region 

were designed63 using a web-based software tool CRISPOR64, which generates gRNA 

sequences for optimal targeting of region of interest while minimizing potential off-target 

effects. These identified gRNAs were then synthesized in vitro using the GeneArt Precision 

gRNA Synthesis kit (Invitrogen). One day before transfection, 1 × 105 H9 MLC2v:H2B-

GFP hESCs were seeded in 12-well plates. When cells were 30-60% confluent, a pair of 

RNP complexes containing 2 μg of Cas9 protein (NEB) and 400 ng of in vitro transcribed 

gRNA were transfected using Lipofectamine Stem Transfection Reagent (Invitrogen)65,66. 

Three days after transfection, cells were diluted and clonally expanded for genotyping67. 

After confirmation of genome-edited clones by Sanger sequencing, at least two successfully 

targeted clones per deletion were selected for functional analysis. To examine the effects of 

deleting HERV-Hs on chromatin boundary formation and gene expression, in situ Hi-C and 

RNA-seq studies were respectively performed as described above. Because of the potential 

role of HERV-H1 in cardiac differentiation, HERV-H1-deleted H9 MLC2v:H2B-GFP hESC 

clones were additionally examined for their ability to differentiate into cardiomyocytes. To 

this end, hESC seeding density and canonical Wnt signaling levels were titrated to initially 

find suboptimal CM differentiation conditions that result in 50% CM differentiation by Day 

15 in control H9 MLC2v:H2B-GFP hESCs. These suboptimal CM differentiation conditions 

were then applied to both control and HERV-H1 deleted H9 MLC2v:H2B-GFP hESC clones 

to further assess their ability to differentiate into CMs from Day 7-15 as detected by TNNT2 

FACS analyses. The differentiation experiments were repeated three times.

HERV-H CRISPRi study

For the generation of the HERV-H1 or HERV-H2 CRISPRi lines, three CRISPRi gRNAs 

(Supplementary Table 5) were designed to target the DNA region from −50 to 300 bp 

relative to the TSS of the candidate genes68 and cloned into lenti-sgRNA (MS2)-puro 

plasmid (Addgene ID:73795)69. H9 MLC2v:H2B-GFP hESCs were firstly infected by 
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Lenti-dCas9-KRAB-blast virus (Addgene ID: 89567)70 and were selected by 5 μg/ml 

blasticidin for 5 days. Survivor cells were then transduced with gRNA lentivirus and 

selected by 1 μg/ml puromycin for 5 days. All cell lines were cultured for another 10 or 

more days to allow sufficient time for CRISPR inactivation of the target gene before being 

used for further experiments. HERV-H1 clone #3 and HERV-H2 clone #1 were selected for 

Hi-C and RNA-seq experiments based on their silencing efficacy and specificity.

HERV-H knock-in study

Plasmid construction—The PiggyBac expression vector PB-CMV-MCS-EF1α-

GreenPuro (System Biosciences, Cat. #PB513B-1) was modified to remove two core 

insulators and replace the original CMV promoter in the vector with EF1α promoter by 

Gibson assembly. Briefly, the EF1α-GreenPuro cassette and the backbone of PB-CMV-

MCS-EF1α-GreenPuro were PCR amplified respectively. Two fragments were then 

assembled together by NEBuilder HiFi DNA assembly master mix (NEB, Cat. #E2621S). 

The new modified plasmid was named as PB513Re.

To construct a HERV-H2 knock-in plasmid HERV-H2-PB513Re, an 8-kb sequence from the 

HERV-H2 locus (which includes 1 kb of additional sequences flanking of HERV-H2) was 

PCR-amplified and digested by Xho I and Not I, then cloned into PB513Re vector which 

was digested by the same two restriction enzymes. Recombined constructs were further 

verified by restriction enzyme digestion and sanger sequencing. The primers used for 

cloning were listed in Supplementary Table 5.

Generation of HERV-H2 knock-in line: To generate HERV-H2 knock-in line, we used 

PiggyBac transposon system which can efficiently integrate interested DNA into the genome 

at multiple sites71,72. One day before transfection, 1 × 105 HERV-H2-KO hESCs were 

seeded in 12-well plates. Next day, 1 μg HERV-H2-PB513Re plasmid and 0.1 μg transposase 

were transfected into the cells using Lipofectamine Stem Transfection Reagent. Cells were 

selected by 1 μg/ml puromycin for 5 days, then were diluted and clonally expanded for Hi-C 

and other further experiments. Two knock-in cell lines were obtained, named HERV-H-

ins.clone1 and HERV-H-ins.clone2, respectively.

Non-human primate iPSC cultures

Chimpanzee and bonobo iPSCs were cultured on plates pre-coated with Matrigel (BD 

Biosciences) in commercial mTeSR1™ medium (Stemcell technology, 85850). Cells were 

passaged every 5-6 days with TrypLE (Life Technologies) at a split ratio of 1:10. ROCK 

inhibitor Y27632 (10 μM) was added at least one hour prior to and 24 hours after passaging. 

Marmoset iPSCs were cultured on MEFs in CDF12 media containing DMEM/F12 (Life 

Technologies, 11330-032), 20% Knockout Serum Replacement (KSR, Life Technologies, 

10828), 2 mM Glutamax (Life Technolgies, 35050-061), 0,1 mM NEAA (Life Technologies, 

11140-050), 0.1 mM β-mercaptoethanol (Gibco, 21985) and 10 ng/ml FGF2 (Peprotech). 

Marmoset iPSCs were passaged every 6-7 days either using Collagenase IV (Life 

Technologies) at or TrypLE (Life Technologies) at 1:5 ratio. When passaged using TrypLE 

ROCK inhibitor Y27632 (10 μM) was added at least one hour prior to and 24 hours after 

passaging. Tests for mycoplasma contamination were routinely performed for all the cell 
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lines using PCR-based approach or MycoAlert mycoplasma detection kit (Lonza) following 

manufacturer’s recommendation every 10 passages.

ChIP-seq data processing

Read alignment: Reads were aligned to hg19 (GRC37) following standards of ENCODE 

ChIP-seq pipeline73. The full pipeline is available at https://github.com/ren-lab/chip-seq-

pipeline. Briefly, the reads were mapped with bwa74. PCR duplicates were removed using 

Picard75. Only reads with mapping quality > 30 were kept.

ChIP-seq peak calling: For each stage, ChIP-seq peaks were called using MACS276 for 

each biological replicate and pooled sample, using the pooled input sample as control. 

MACS2 was run with the default setting with “--nomodel –extsize 180” parameter. Peaks 

called in the pooled sample that also intersected with peaks in both replicates by at least 

50% bases were defined as replicated peaks and were used as the final peak list for that 

stage. Peaks from all stages were merged into a union peak list using bedtools mergeBed77.

ChIP-seq signal visualization: ChIP-seq bigWig files were generated using deeptools78 

bamCoverage function with the RPKM (Reads Per Kilobase of transcript per Million 

mapped reads) normalization option. Aggregated signal profiles were generated with the 

deeptools computeMatrix and plotProfile functions and further modified in R.

RNA-seq data processing:

Read alignment and quantification: RNA-seq alignment and quantification pipeline is 

available at https://github.com/ren-lab/rnaseq-pipeline. Briefly, reads were aligned to hg19 

(GRC37) and GENCODE GTF v19 with rnaSTAR79 following “ENCODE” options outlined 

in the rnaSTAR manual (http://labshare.cshl.edu/shares/gingeraslab/www-data/dobin/STAR/

STAR.posix/doc/STARmanual.pdf). PCR duplicates were removed using Picard. Raw reads 

for each gene were quantified using featureCounts80. Read per million reads and kilobases 

(RPKM) were calculated for each gene.

Differentiation gene expression analysis: differentially gene expression was 

performed using edgeR81 with the default normalization method, tagwise dispersion 

estimation function and glmLRT (negative binomial generalized log-linear model).

Hi-C data processing:

The HiC data processing pipeline is available at https://github.com/ren-lab/hic-pipeline. Hi-

C reads were aligned on hg19(GRC37) using BWA-MEM74 for each read separately, and 

then paired. For chimeric reads, only 5’ end mapped locations were kept. Duplicated read 

pairs mapped to the same location were removed to leave only one unique read pair. The 

output bam files were transformed into juicer file format and tag directories for further 

analysis in Juicebox 82 and HOMER83. Unless specified otherwise, we used the contact 

matrix in 10kb resolution and normalized using KR matrix balancing method.

Compartments A/B: Principal component analysis was performed using HOMER83 with 

resolution of 50 kb. DNA segments with positive PC1 value in both biological replicates 
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were defined as compartment A, whereas negative value for compartment B. Inconsistent 

PC1 signs between replicates were defined as inconsistent. For dynamic and static 

compartment analysis (Fig. 1b), only DNA segments with consistent compartment state at 

each of the six stages (which was 85% of all genomic bins) were included. A DNA segment 

was defined as static if it stayed compartment A or B at all six stages; Otherwise it was 

named dynamic. Compartment switch types were defined as “BA” if it switched from B to 

A, and vice versa. If the compartment bin switched from A to B, and then switched back to 

A, it will be defined as “ABA”, and the same rule applies to “BAB”. Bins with more than 2 

switches were very rare and left out in the analysis/plot. Hierarchical clustering was 

performed on the PC1 values of all dynamic bins, by both rows (segments) and columns 

(sample replicates), using (1- Pearson correlation coefficient) as distance and average 

linkage method to merge branches.

Insulation score: To quantify insulation based on KR normalized contact frequencies we 

used the insulation score defined in Crane et al. 2015 29, using 500 kb as the square size, and 

200 kb as the delta size. Insulation TADs were called using the perl script at https://

github.com/dekkerlab/crane-nature-2015.

Directionality Index: We calculated the Directionality Index (DI) as described in Dixon et 

al.5. The KR normalized contact matrices were used as input to this transformation. We 

generated the DI score at two different resolutions: 10 kb and 40 kb. In both cases, we 

limited the scope of interaction to 2 Mb upstream or downstream.

Topologically associating domains (TADs)

TAD identification: We called TADs using three different algorithms: domain caller5, 

Arrowhead10 and insulation score29. All methods were run with the default parameters 

recommended in the user manual and with the resolution at 10 kb. They produced different 

number of TADs because of inherent difference in their algorithms and choice of default 

parameters. Nevertheless, the same trend of TAD loss was observed (Supplementary Fig. 

4a,b,c).

Identification of non-redundant TAD boundaries: TAD boundaries were previously 

found to be conserved between cell types8. Based on this assumption, we should be able to 

find a set of non-redundant TAD boundaries across different cell types. To identify non-

redundant boundaries across all samples, we collapsed spatially identical or close TADs 

across all time points and replicates. To do this, we first quantile normalized the 

Directionality Index (DI) scores genome-wide between all twelve samples. Then we 

calculated the DI delta scores for each TAD boundary. DI delta score is the average 

difference in DI between the 4 bins (10 kb per bin) downstream and 4 bins upstream of the 

boundary. We concatenated TAD boundaries from all samples (twelve) and sorted them by 

their DI delta scores in descending order. Then we picked one TAD boundary from the top 

of the list and remove any remaining boundary within 50 kb of the top TAD boundary. The 

number as well as the stages of removed boundaries are recorded in the kept TAD 

boundaries as two additional columns. Then we picked the next TAD boundary on the list 

and repeat the same process, until the entire list was traversed. To remove unwanted spurious 
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calls, any TAD boundary without a redundant (duplicate) call is discarded. For each non-

redundant TAD boundary, it is denoted as a boundary (TRUE) in a stage if the DI delta score 

is greater than 200 in both replicates in that stage, otherwise is FALSE.

Dynamic TAD boundaries across stages: To determine dynamic TAD boundaries 

across stages, we first obtained the DI delta scores for each non-redundant TAD boundary. 

Then we log transformed the score and used the values as input to LIMMA84. LIMMA 

package was used to call differential boundary strength between each adjacent stage 

comparisons (e.g. D00 vs D02, D02 vs D05, etc.). P values were calculated with the eBayes 

function within LIMMA with trend parameter disabled, and were adjusted using Benjamini-

Hochberg method. A TAD boundary was called dynamic if its adjusted P value was less than 

0.01 in any adjacent stage comparisons. Otherwise, it was called a stable TAD boundary. 

However, if the delta scores of that boundary were consistently greater than 200 in all 

samples, regardless of its state called in LIMMA, it was denoted as stable TAD boundary. 

Within dynamic TAD boundaries, we denoted the ones that were only present (TRUE) at 

D00 as ESC(+) TAD boundaries, those that were only FALSE at D80 as vCM(−) TAD 

boundaries (Fig. 1c).

Overlap of TAD and TAD boundaries with CTCF and repeat elements: Overlap 

of CTCF ChIP-seq peaks and repeat elements to TAD and/or TAD boundaries were 

performed using BEDtools intersect77. When performing intersections, the TAD boundaries 

were increased to ± 25 kb from the original TAD boundaries to account for algorithmic 

inaccuracies in calling boundaries. Repeat elements were RepeatMasker annotation 

downloaded directly from UCSC85. To avoid spurious results introduced by repeats with few 

copies in the genome, only repeats with more than 1,000 copies genome-wide were tested 

here. The intersections were performed against each repeat name category separately, and 

for ESC(+) TADs, vCM(−) TADs and all stable TADs. For each repeat element, we obtained 

the fraction of TAD boundaries that contained that repeat. Then we calculated the fold 

enrichment of each repeat element at the TAD boundaries of ESC(+) (or vCM(−) ) TADs 

over stable TAD boundaries. The significance of the enrichment was computed using two-

sided proportion test function in R. The repeat elements with fold enrichment greater than 

two and P value less than 0.01 were reported as significantly enriched.

Gene expression profile at the TAD boundaries containing repeat elements 

(Fig. 2a and Supplementary Fig. 5a): For each of the eight repeat elements found in 

Figure 1c, we kept the DNA sequences that intersected with ESC(+) TAD boundaries. Using 

these sequences as reference point, we generated the average RPKM normalized signal over 

± 50 kb of the reference point with deeptools computeMatrix function78. Only LTR7 and 

HERVH-int sequences displayed high expression in hESCs.

HERV-H related analysis

Contact matrix on HERV-Hs transcribed at different levels (Fig. 2c,d): To 

investigate the boundary activity of HERV-Hs that transcribed at different levels, we 

visualized the contact matrix at 10-kb resolution. We sorted the HERV-H loci by their 

expression RPKMs in hESCs (day 0) in descending order and assign every 50 loci to a bin. 
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For each bin, we generated the median observed/expected score of each interacting pixel 200 

kb surrounding the HERV-H loci. The same obs/exp matrix were computed at day 2 and day 

5 for top 50 loci, and for rank51-100 and rank101-150 loci at day 0.

Directionality index profile on HERV-Hs in iPSCs and H1-derived cells and on 

all genes transcribed at different levels. (relating to Supplementary Fig. 

6a,b): The Hi-C data for human iPSCs were from Greenwald et al38. The Hi-C data from 

H1 ESC and its derived cells were from Dixon et al5,8. The data were downloaded and 

processed the same way as described above. Because DI scores are dependent on the 

sequencing depth, the H1ESC DI profile may look less pronounced comparing to the iPSC.

To investigate whether the correlation of gene expression and boundary strength also holds 

true for all genes, we also plotted DI score profile for human genes that express at different 

levels. We first sort the genes by their RPKMs in the hESC from high to low, and then group 

every 1,000 genes into bins, and further separate them into groups with CTCF peaks within 

20 kb of TSSs or not. Aggregated median DI scores were plotted for each group of genes at 

10-kb resolution up to 200 kb.

ChIP-seq enrichment analysis at TAD boundary-associating HERV-H loci 

(relating to Supplementary Fig. 8): To investigate which protein(s) may be responsible 

for TAD boundary formation at top 50 transcribing HERV-H loci, we downloaded hESC 

ChIP-seq bigWig files from ENCODE (primary) and other sources in the public domain 

(prefixed with the SRA ID if downloaded from other than ENCODE)86. For each ChIP-seq 

data, we computed the average bigWig signal on the top 50 HERV-Hs with 

bigWigAverageOverBed command from UCSC, and the average bigWig signal on HERV-Hs 

ranking from 51 to 300. Then we calculated the fold change with these two averages.

HERV-H insertion analysis (relating to Fig. 5 and Supplementary Figure 11): To 

identify the loci of HERV-H2 insertion, we extracted discordant read pairs from Hi-C that 

had one end mapped to the HERV-H2 DNA sequence. Based on Hi-C’s proximity ligation 

principle, we expect to see pileup of reads at genomic locations where the HERV-H2 were 

inserted into. Based on a naïve algorithm to detect clusters of adjacent 10-kb bins with more 

than 30 read pileups, we uncovered 33 and 19 insertions in HERV-H-ins.clone1 and HERV-

H-ins.clone2, respectively. We further narrowed the number of reliable insertions sites for 

analysis to 43 total insertions by choosing insertions that had RNA-seq signal from the 

widespread readthrough transcription at insertion sites. Directionality Index (DI) scores were 

calculated as described in Methods section (Hi-C data processing: Directionality Index) with 

a window size of 10 kb for the HERV-H-ins.clone1 HERV-H-ins.clone2 and HERV-H2-KO 

(parental) Hi-C data. Delta DI scores were calculated by finding the absolute difference 

between the average of 2 DI scores immediately upstream of the insertion bin and 2 DI 

scores immediately downstream of the insertion bin.

HERV-H insertion allelic analysis (relating to Fig. 5c,d): Reads from Hi-C of all 

developmental stages were used for genotyping and haplotype phasing. First, variants were 

called according to the GATK best practice pipeline87 using GATK 3.6-017-19. Briefly, 

reads were realigned, and base pair qualities were recalibrated. Variants were then called 
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using HaplotypeCaller (GATK) with default parameters. Variants were then recalibrated 

based on known gold standard variants. Only variants that passed filters were used in the 

downstream analysis. Considering possible artifact caused by restricted enzyme ligation, 

variants within MboI sites were removed. Second, high quality (quality > 30) heterozygous 

bi-allelic SNPs were phased using HaploSeq pipeline88. Briefly, reads from Hi-C data were 

extracted using extractHAIRs and then used as input for HAPCUT289 to generate 

haplotypes.

Haplotype phasing was performed on the HERV-H2-KO, HERV-H-ins.clone1, and HERV-H-

ins.clone2 Hi-C bam files using the obtained haplotype-phased VCF files. This created two 

bam files corresponding to “allele A” and “allele B” for each input bam file. In order to 

determine which phased allele contained each insertion, we calculated the number of 

discordant read pairs with one end mapping to HERV-H2 and the other end mapping to each 

predicted insertion position (within 100 kb). The phased bam with the most HERV-H 

discordant read pairs mapping to it was labeled as the KI allele in each case. Each phased 

bam file was converted to a pgl file using pgltools90 samTopgl to facilitate insulation 

analysis. We defined the “cross-over contact score” as the number of interactions that cross a 

10-kb bin divided by the number of interactions upstream and downstream of the bin, within 

a 200-kb window. The “cross-over contact score” measures the level of chromatin contact 

insulation. Cross-over contact scores were calculated in this manner for all insertion 

positions in the unaffected alleles as well as the predicted KI alleles. Two insertions (at 

chr2:213896052 and chr1:49135920) were removed from analysis because they contained 

bins where there were no interactions that crossed the bin, leading to 0 scores and bins 

where all interactions crossed the bin, leading to infinite scores. The R heatmap.2 function 

from gplots was used to plot the heatmap of the row Z-score normalized cross-over contact 

scores for the KI alleles and the unaffected alleles for each insertion position (Fig. 5d).

HERV-H comparative analysis (relating to Fig. 6): Mouse ESC Hi-C data from 

Bonev et al.23 was downloaded from SRA and aligned to mm10 with the same procedure as 

described above. Bonobo, chimpanzee and marmoset iPSC Hi-C data were aligned to 

panPan2, panTro6 and calJac3 reference genome, respectively, with the same procedure. The 

syntenic regions in mouse, marmoset, chimpanzee and bonobo to the human HERV-H loci 

(± 20 kb centered on each HERV-H sequence) were obtained using UCSC liftover tool with 

minimum ratio of base remap of 0.1.

HERV-H LTR type and divergence analysis (relating to Supplementary. Fig. 

12): To investigate the sequence features of the LTRs flanking TAD boundary associated 

HERV-Hs and non-boundary associated HERV-Hs, we examined their presence, length and 

sequence divergence. The LTRs for HERV-H include LTR7, LTR7A, LTR7B, LTR7C and 

LTR7Y. We downloaded the annotations for those LTRs from repeatMasker and assigned 

them to each HERV-H-int sequence by base overlap. The HERV-H loci were ordered by 

their expression levels and binned as described above (the top 50 were enriched at TAD 

boundaries).

Sequence divergence between the 5’ LTR and 3’LTR sequences was used to measure the 

insertion time for retrotransposons. Based on the retrotransposon insertion mechanism, at the 
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time of insertion, 5’ and 3’ LTR sequences should be identical; the LTR sequences will each 

accumulate mutations over time, and thus their sequence differences could be used as a 

proxy to their ages. We followed the steps outlined in https://github.com/SIWLab/Lab_Info/

wiki/Ageing-LTR-insertions to align each LTR pairs and calculated the sequence 

divergences91,92.

General data processing and plots

Most of the described data processing steps (statistical tests, clustering, plotting, etc.) were 

performed in python 3.4.5 (www.python.org) and statistical computing environment R 3.4.3 

(www.r-project.org). Boxplots were made with ggplot2 (https://cran.r-project.org/web/

packages/ggplot2). The elements of the boxplot are: center line, median; box limit, upper 

and lower quartiles; whiskers, 1.5× interquartile range; points, outliers.

Data availability

All sequencing datasets have been deposited on GEO with the accession number 

GSE116862.

Code availability

Scripts are available at https://github.com/shawnzhangyx/cvdc_scripts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Reorganization of TADs during human cardiomyocyte differentiation.
(a) Hi-C contact matrices for each stage of cardiomyocyte differentiation at mega-base 

resolution. (b) A heatmap showing hierarchical clustering of dynamic chromatin 

compartments during cardiomyocyte differentiation. The pseudo-color reflects the PC1 

values (compartment A/B) of compartment bins. Negative PC1 value stands for 

compartment B and positive for compartment A. Representative genes located in 

corresponding compartment bins are annotated to the right of the heatmap. (c) A heatmap 

showing the DI delta scores for the stage-specific TAD boundaries, ordered by the presence 

of TADs at six stages. vCM(−) stands for TAD boundaries lost in purified ventricular 

cardiomyocytes at D80, ESC(+) stands for hESC-specific TAD boundaries. (d) Scatter plot 

shows the fold enrichment and −log10(P values) for various repeat element classes at ESC(+) 

(N = 198) and vCM(−) (N = 329) TAD boundaries relative to the static TAD boundaries (N 

= 2,622). P values are from two-sided proportion test.
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Figure 2. Transcriptionally active HERV-H forms human ESC-specific TAD boundaries.
(a) Aggregated RNA-seq expression profile (RPKM normalized) at ESC(+) TAD boundaries 

that overlap HERV-H element. (b) Scatterplot shows the expression levels (RPKM) across 

different HERV-H loci (ordered by expression levels from high to low in ESC) at D0, D2 

and D5 stages of differentiation. (c) Heatmap of aggregated Hi-C contact matrix 

[log2(observed/expected)] within 200 kb of the top 50, 51-100 and 101-150 ranked HERV-

Hs, at D0. (d) Heatmap of the aggregated Hi-C matrix [log2(observed/expected)] within 200 

kb of the top 50 HERV-Hs, at D0, D2 and D5. (e,f) Representative Hi-C interaction matrices 
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of two HERV-H loci located at ESC(+) TAD boundaries at D0, D2 and D5 (top) are shown 

as heatmaps along with genome browser tracks of POLR2A, SMC3, CTCF, H3K27ac ChIP-

seq and RNA-seq data of the expanded genomic region containing the TAD boundary 

(arrow). (g) Aggregated genomic profiles of RNA-seq, POLR2A, SMC3 and CTCF ChIP-

seq around top 50 HERV-Hs located on the ESC(+) TAD boundaries (red) and lower ranked 

HERV-Hs (grey).
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Figure 3. Deletion of two HERV-H sequences leads to merging of TADs in hESCs.
(a) Hi-C interaction matrices of the wild-type (WT) and transgenic hESC lines (HERV-H1-

KO and HERV-H2-KO) are shown, along with DI scores, expression levels (RPKM) and 

fold changes of gene expression at the HERV-H1 and HERV-H2 loci. The loss of TAD 

boundary in the transgenic cells is accompanied with decrease of RNA expression of genes 

5’ terminus to the HERV-H sequences. (b) Boxplots show expression levels (RPKMs) of 

genes whose TSSs are located from −500 kb to the 5’ LTR (N = 49) and from 3’ LTR to 

+500 kb (N = 49) of boundary-associated HERV-Hs. P values are from two-sided paired t 

test on the log-transformed expression levels. The elements of the boxplot are: center line, 

median; box limit, upper and lower quartiles; whiskers, 1.5× interquartile range. (c) Line 

chart (mean ± standard error, N = 3 cardiomyocyte differentiations) shows percentage of 

TNNT2 positive cells during cardiomyocyte differentiation of WT and HERV-H1-KO hESC 

lines (two HERV-H1-KO clones analyzed). HERV-H1-KO hESCs display increased 

cardiomyocyte differentiation efficiency compared to WT hESCs.
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Figure 4. Silencing of HERV-H sequences weakened the TAD boundaries in hESC.
(a) Design of the CRISPR-dCas9-KRAB system to silence HERV-H expression using 

sgRNAs targeting 5’ LTR7. (b) Gene expression values of HERV-H1 and HERV-H2 in WT 

and CRISPRi-targeted hESCs. (c) Hi-C interaction matrices of the CRISPRi targeted hESC 

lines (sgHERV-H1 and sgHERV-H2) are shown, along with DI scores, and log2(fold-change) 

of gene expression in engineered cell lines over control at the HERV-H1 and HERV-H2 loci.
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Figure 5. HERV-H insertion creates de novo TAD boundaries.
(a) Design of the piggybac vector to “transpose” HERV-H to random genomic locations in 

the hESC (HERV-H2-KO line). (b) Hi-C contact matrices of the parental cell line (HERV-

H2-KO) and the cell line with HERV-H insertions (HERV-H-ins.clone1) are shown, along 

with DI scores at the locus of one HERV-H insertion. (c) Line plots showing the cross-over 

contact scores of both alleles in parental cell line (HERV-H2-KO) and HERV-H-ins.clone1 at 

the same locus as in (b). Only the allele (B) harboring HERV-H insertion shows a decrease 

of cross-over contact score (increase of insulation). (d) Heatmap shows the z-transformed 

cross-over contact scores for all predicted knock-in (KI) alleles and unaffected alleles in the 

HERV-H inserted cells.
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Figure 6. HERV-H introduces new TAD boundaries during primate evolution.
(a) A simplified tree of primate evolution with the copies of HERV-H annotated (left) and 

Hi-C interaction matrices of human ESCs, bonobo iPSCs, chimpanzee iPSCs, marmoset 

iPSCs and mouse ESCs are shown, along with DI scores at the syntenic regions to human 

HERV-H1 locus, HERV-H2 locus, and all top 50 transcribing HERV-Hs. The chimpanzee 

and bonobo syntenic regions are denoted with a star as they also contain HERV-H sequence. 

(b) Bar chart shows the percentage of HERV-H transcripts over all transcripts in the PSCs 

from each indicated species.
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