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Abstract

Adequate genetic information is essential for sustainable crustacean fisheries and aqua-

culture management. The commercially important orange mud crab, Scylla olivacea, is

prevalent in Southeast Asia region and is highly sought after. Although it is a suitable aqua-

culture candidate, full domestication of this species is hampered by the lack of knowledge

about the sexual maturation process and the molecular mechanisms behind it, especially

in males. To date, data on its whole genome is yet to be reported for S. olivacea. The avail-

able transcriptome data published previously on this species focus primarily on females

and the role of central nervous system in reproductive development. De novo transcrip-

tome sequencing for the testes of S. olivacea from immature, maturing and mature stages

were performed. A total of approximately 144 million high-quality reads were generated

and de novo assembled into 160,569 transcripts with a total length of 142.2 Mb. Approxi-

mately 15–23% of the total assembled transcripts were annotated when compared to pub-

lic protein sequence databases (i.e. UniProt database, Interpro database, Pfam database

and Drosophila melanogaster protein database), and GO-categorised with GO Ontology

terms. A total of 156,181 high-quality Single-Nucleotide Polymorphisms (SNPs) were

mined from the transcriptome data of present study. Transcriptome comparison among

the testes of different maturation stages revealed one gene (beta crystallin like gene) with

the most significant differential expression—up-regulated in immature stage and down-

regulated in maturing and mature stages. This was further validated by qRT-PCR. In con-

clusion, a comprehensive transcriptome of the testis of orange mud crabs from different

maturation stages were obtained. This report provides an invaluable resource for enhanc-

ing our understanding of this species’ genome structure and biology, as expressed and

controlled by their gonads.
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Introduction

Orange mud crab, Scylla olivacea is widely distributed along the equator and predominantly

found in the Southeast Asia region [1–5]. It is considered as one of the most economically

important marine crustacean species in Southeast Asean countries including Malaysia, Thai-

land, Philippines and Indonesia [2,6,7]. Until now, landing of S. olivacea around Southeast

Asia region depends solely on wild fisheries and although small scale aquaculture productions

were reported [2], they often only involve fattening of wild-caught marketable-sized crabs with

low flesh content or production of soft-shelled crabs from captured juvenile crabs. The over-

exploitation of wild S. olivacea resources, coupled with habitat loss and pollution, negatively

affect its population health and indirectly impact the livelihood of coastal communities as well.

One of the ways to help safeguard the natural resources of S. olivacea is to meet the market’s

demand with farmed animals. In 2014, the estimated world aquaculture production of Scylla

species was approximately 183,000 tonnes (Scylla serrata Fact Sheet, Cultured Aquatic Species

Information Programme, Fisheries and Aquaculture Department, Food and Agriculture Orga-

nization of the United Nations; http://www.fao.org/fishery/species/2637/en [accessed February

20, 2016]). Unfortunately, most of these productions still rely on wild broodstocks and juve-

niles [2]. Full involvement of S. olivacea in aquaculture is currently still not possible due to the

lack of in-depth knowledge in many fields, especially regarding its basic reproductive biology

and physiology.

Directly related to sexual maturation and reproduction, testis is responsible for the produc-

tion of male gametes via spermatogenesis and androgenic hormones. The morphology and

ultrastructure of testis and germ cells of Scylla spp., and their histological changes during sex-

ual maturation has been described in detail by Anbarasu et al. [8] andWaiho et al. [9], yet the

regulatory mechanism and gene expression in testis during sexual maturation are still poorly

understood. Extremely limited molecular studies were conducted on S. olivacea [10,11]. Most

studies focus primarily on the maturation of females and tissue-specific gene expression pro-

files in male S. olivacea are currently unavailable [11]. The limited genome and transcriptome

information available for this economically important portunid species hampers the large-

scale aquaculture of S. olivacea, especially in the field of broodstock selection and artificial seed

production.

Transcriptome analysis is able to reveal genes that are being actively expressed in specific

tissue and species of interest, and also facilitate the discovery of potential molecular markers.

This is in particular useful in non-model organisms where the full genome data is still not

available for comparison [12–14]. The use of transcriptome analysis has been reported in sev-

eral economically important aquaculture species [15–18]. The reproduction-related genes of

commercially important crustacean species, such as swimming crab Portunus trituberculatus,

Chinese mitten crab Eriocheir sinensis, green mud crab Scylla paramamosain and Oriental

river prawnMacrobrachium nipponense were successfully identified via transcriptome

sequencing [12, 19–21]. To date, the sequencing of whole genome and research involving

next-generation sequencing of S. olivacea has yet to be reported. The availability of sufficient

genome or transcriptome data are potentially useful for studies on differential gene expres-

sions, gene regulatory mechanisms, and molecular marker application. Present study presents

a comprehensive analysis of the transcriptome data derived from testis tissue of S. olivacea in

different maturation stages using Illumina HiSeq. An annotated S. olivacea testis transcriptome

library was constructed via de novo assembly of sequenced reads. The findings in this study

provide an in-depth insight to the changes occurring in the testis of S. olivacea at molecular

and genomic level, and could further facilitate future studies on specific functional genes, iden-

tification of molecular markers and the construction of detailed genetic map in this species.
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Materials and Methods

Sample collection

Male S. olivacea (carapace width range = 60.0 to 123.0 mm) were obtained from Setiu Wet-

lands, Terengganu, Malaysia (5˚38’19’’N; 102˚46’20’’E) during July 2014. Setiu Wetlands is a

common fishing ground and no licensing was required for the acquisition of mud crabs. We

adhered to the ASAB (2012) “Guidelines for the treatment of animals in behavioural research

and teaching” published in Animal Behaviour 83: 301–309. None of the work involved endan-

gered or protected species. All crab handling and experimental procedures were approved by

the Ethics Committee of Institute of Tropical Aquaculture, Universiti Malaysia Terengganu in

accordance with the “Malaysian code of practice for the care and use of animals for scientific

purposes” outlined by Laboratory Animal Science Association of Malaysia. All crabs were

transported live back to marine hatchery of Institute of Tropical Aquaculture, Universiti

Malaysia Terengganu, Terengganu, Malaysia, disinfected and maintained briefly in filtered sea

water before being sacrificed.

RNA extraction and cDNA library preparation

Crabs were categorised into three maturation stages, i.e. immature, maturing and mature,

based on their gonadosomatic index (GSI) and gonad external morphologies: immature—GSI

=<0.15, vas deferens are translucent and barely visible; maturing—GSI =<0.36, vas deferens

are visible, milky white but not enlarged; mature—GSI =>0.40, vas deferens are milky white

and swollen [9]. Testes of crabs from all maturation stages were removed and snap frozen in

liquid nitrogen, with six samples per stage. Testes were homogenized using mortar and pestle

and temperature was maintained low using liquid nitrogen. RNA extraction using Direct-zol™

RNAMiniPrep (Zymo Research, U.S.A) was conducted independently on one sample from

each tissue to ensure that RNA extraction method used was able to extract sufficient quantity

of high quality RNA. Subsequently, equal amount (25 mg) of the remaining homogenized

samples were pooled according to maturation stage (five samples per stage) and total RNA was

extracted for each pooled samples. The RNA quality and quantity were assessed using Nano-

Drop 2000 (Thermo Fisher Scientific Inc., USA) and Qubit 2.0 RNA Broad Range Assay (Invi-

trogen, USA) respectively. The RNA integrity number (RIN) of each samples were measured

using Agilent Bioanalyzer (Agilent, USA). All samples were selected for sequencing (RIN in

the range of 7.4–8.3). RNA were then pooled according to maturation stages.

mRNA isolation and cDNA synthesis were performed using NEBNext1Ultra™ RNA

Library Prep Kit for Illumina1 according to manufacturer’s protocol. The synthesized cDNA

was quantified using Qubit 2.0 DNA Broad Range Assay (Invitrogen, USA). A minimum of

10ng cDNA was fragmented using Covaris S220 (Covaris Inc, USA) to a targeted size of 200–

300 bp. The fragmented cDNAs were then end-repaired, ligated to NEBNext adapters, and

PCR-enriched using NEBNext1Ultra™ RNA Library Prep Kit. The final sequencing libraries

were quantified using KAPA kit (KAPA Biosystem, USA) on Agilent Stratagene Mx-3005p

quantitative PCR (Agilent, USA) and sizes were confirmed using Agilent Bioanalyzer High

Sensitivity DNA Chip (Agilent, USA). The resulting sequencing libraries were sequenced

using an Illumina flow cell, and 209 cycles on the Illumina HiSeq™ 2000 platform (Illumina,

USA). The sequencing run generated a total of 17 GB of raw data.

Pre-processing and de novo assembly

Adapter clipping, trimming reads based on quality, and removing sequences with ambiguous

bases (N) was conducted using Trimmomatic version 0.32 [22] and Prinseq-lite version 0.20.4
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[23]. FastQC assessment reports of sequence reads were used to evaluate read quality before

and after pre-processing. All subsequent analyses were conducted using clean reads.

After pre-processing, the clean reads from the data sets were assembled by de novo assembly

using Trinity RNA-Seq version 2.0.4 [24]. Reference transcripts were generated by combining

all clean reads of the Illumina sequencing data sets. Only one gene (the longest one) was

selected to represent the assembled component from each cluster to prevent redundancy [24].

Transcriptome assembly completeness was analysed using BUSCO [25] against a set of 2,675

arthopoda genes to evaluate the quality of the final assembly. All clean reads of de novo assem-

bly sequence data from S. olivacea were deposited in GenBank, National Centre for Biotech-

nology Information (NCBI, USA, http://ww.ncbi.nlm.nih.gov/) under the Accession No.

GDRN00000000 (BioProject Accession No. PRJNA289610).

Functional annotation

Homology searches and assembled transcripts mapping were conducted using Blastx (version:

ncbi-blast-2.2.30+) against the UniProt database, Interpro database, Pfam (Protein family)

database and Drosophila melanogaster protein database with a cut-off e-value of 1e-5. The top

(best) hit from each assembled transcript comparisons were used as the annotation reference

for the respective transcripts. The Gene Ontology (GO) terms of S. olivacea were further ana-

lysed using Blast2GO software v.2.6.0 [26,27] based on default parameters (e-value< 1e-6,

annotation cut-off> 55 and a GO weight> 5).

Single Nucleotide Polymorphism (SNP) calling

For SNPs calling, only reliable, Bowtie mapped reads were considered. Insertion or deletion

variations (InDels) were excluded because alternative splicing impedes reliable InDel discov-

ery. SNPs were called using SAMtools mpileup [28]. Genotype likelihoods were computed

using SAMtools utilities. Variable positions in the aligned reads were compared to the

reference transcripts using the BCFtools utilities. Read depth� 10, SNP reads/total reads

ratio� 25, SNP quality� 50 and mapping quality� 20 were used to filter false positive SNPs

by using in-house Perl scripts.

Identification and validation of differentially expressed gene

To identify differentially expressed genes, paired-end reads were first aligned back to the

assembled transcripts (length� 300 bp) using RSEM [29]. Transcripts’ abundance was then

estimated and alternatively-spliced transcripts were constructed. In some rare cases, these

transcripts may be from paralogs that shared high sequence similarity. Differential expression

analysis between samples was conducted using edgeR [30]. Expected counts of mapped read

pairs were normalized, and the fold changes and p-values for each gene or transcript were cal-

culated. Results were then filtered based on a set of threshold values (log2FoldChange and

adjusted P- (Padj) value< 0.05). For the identification of significantly differentially expressed

genes, only genes with padj value of< 1e-10 was considered.

Total RNA from immature, maturing and mature specimens were extracted using Direct-

zol™ RNAMiniPrep (Zymo Research, U.S.A) and converted to cDNA using iScript™ Reverse

Transcription Supermix (Bio-Rad, USA) as per manufacturer’s protocol. Approximately 5 μl

of RNA served as template for cDNA conversion and the incubation protocol was: priming at

25˚C for 5 min, reverse transcription at 42˚C for 30 min and inactivation at 85˚C for 5 min.

Quantitative real-time polymerase chain reaction (qPCR) was run in Miniopticon Real-time

PCR system (Bio-Rad, USA) with SYBR Green PCRMaster Mix (Bio-Rad, USA) to validate

differentially expressed genes obtained from transcriptome data. Primers were designed using
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PrimerQuest Tool (Integrated DNA Technologies Inc., Singapore) with housekeeping gene

18S rRNA [31] as internal control (normalization gene) (Table 1). Three biological replicates

and two technical replicates for each maturation stage were run along with internal control

in qPCR. Standard manufacturer protocol was applied, with each qPCR reaction (total

volume = 25 μl) contained 10 ng cDNA as template. The temperature profile used was initial

denaturation at 95˚C for 3 min, followed by 40 cycles of denaturation at 95˚C for 15 s and

annealing at 60˚C for 30 s. cDNA template was replaced with diethylpyrocarbonate water in

negative control. Comparative Cycle Threshold (CT) method [32] was used to determine the

fold difference of studied gene in different maturation stages. One-Way ANOVA was used to

determine statistical difference between maturation stages (significant value at p< 0.05), fol-

lowed by Tukey’s test. All statistical analyses were conducted using Microsoft excel 2013.

Results

Transcriptome sequencing and read assembly

Three cDNA libraries representing different maturation stages (i.e. immature, maturing and

mature) of S. olivacea were sequenced using Illumina HiSeq 2000 platform. A total number of

76,337,338, 64,928,802 and 30,841,304 raw reads were obtained from immature, maturing and

mature male crabs respectively. Approximately 86.27%, 86.05% and 74.02% of clean reads

were retrieved after pre-processing (adaptor removal, quality trimming and N removals) to

discard low quality and empty reads (Table 2). A large number of reads (86.50%) aligned back

to the transcripts as expected (Table 2). Reads that did not map back to the assembled tran-

scripts corresponded to either low quality reads or lowly-expressed transcripts that could

not be assembled due to the minimum length requirement (� 300 nt). The assembled tran-

scripts (n = 160,569) had a total size of 142,192,028 bp, an average size of 886 bp, assembled

transcript range of 300 bp to 16,041 bp and a N50 assembled transcripts length of 1,225

(Table 2). Nearly half of (45.55%) of the assembled transcripts were at the length range of 300–

499 nt (Fig 1). Approximately 41% (n = 64,793) of assembled transcripts contained protein-

coding potential. Busco analysis revealed that 2,045 out of 2,675 genes could be fully annotated

(76% completeness) and 2,355 out of 2,645 genes met the criterion for partial annotation

(88.04% completeness).

Functional annotation

BLASTx search against the UniProt database, Interpro database, Pfam database andD.melano-

gaster protein database was conducted to annotate the consensus sequences. Out of 160,569

total number of assembled transcripts, 36,642 (22.82%) transcripts mapped back to UniProt

database, 25,511 (15.89%) transcripts mapped back to Interpro database, 23,620 (14.71%) tran-

scripts mapped back to Pfam database and 25,375 (15.80%) transcripts mapped back to D.mel-

anogaster protein database (1e-5 cut-off threshold). A total of 240 transcripts (0.95%) to the D.

melanogaster protein database were full length. Approximately 75.32% of the top-hit align-

ments had a similarity of higher than 40% (Fig 2). Seven out of the top ten organism hits in S.

Table 1. Primers used in quantitative real-time polymerase chain reaction.

Gene name Primers Sequence Target size Reference

Beta crystallin like gene BCG-F 5’-GCATGTACCCAGAACGGAGT-3’ 103 bp -

BCG-R 5’-TTTACCACAAGCTGCTGCAC-3’
18S rRNA qRT-F 5’-ATGATAGGGATTGGGGTTTGC-3’ - Wang et al. [31]

qRT-R 5’-AGAGTGCCAGTCCGAAGG-3’
doi:10.1371/journal.pone.0171095.t001
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olivacea transcriptome against UniProt database were Arthropods (Table 3). Nevada termite,

Zootermopsis nevadensis had the highest matched assembled transcripts percentage (11.38%)

followed by water flea, Daphnia pulex (6.67%) and European centipede, Strigamia maritima

(4.96%) (Fig 3). Among the annotated transcripts, 480, 56, 8 and 1 transcripts were similar to

that of other Scylla species in UniProt database, i.e. S. paramamosain, S. serrata, S. olivacea and

S. tranquebarica respectively. The top 20 high quality annotations of S. olivacea transcriptome

based on E value and bit score are listed in Table 4.

GO terms of S. olivacea transcriptome were analysed using the GO classification system.

A total of 19,155 (52%) transcripts were GO-categorized into one of the three GO domains,

i.e. biological process (12,250 transcripts), cellular component (11,129 transcripts) and

molecular function (26,805 transcripts) while the remaining 17,487 transcripts were unas-

signed. Fig 4 shows the distribution of transcripts across the top 10 GO terms for each of the

three GO domains. The top three categories in the biological process GO domain were

“DNA integration” (698 transcripts), “transmembrane transport” (381 transcripts) and

Table 2. Summary of assembly statistics.

Immature crabs Maturing crabs Mature crabs

Raw sequencing reads

Total reads 76,337,338 64,928,802 30,841,304

Total bases (bp) 7,710,071,138 6,557,809,002 3,114,971,704

Clean sequencing reads

Total reads 65,859,364 55,873,266 22,828,074

Total bases (bp) 6,578,177,998 5,579,213,298 2,261,133,698

Percentage of clean reads (%) 86.27 86.05 74.02

Percentage of clean bases (%) 85.32 85.08 72.59

Alignment statistics

Total Reads 144,560,704

Reads Aligned 125,050,327

% Reads Aligned 86.50

Assembled Transcripts Length (in bases) 142,192,028

Total Assembled Transcripts Covered (in bases) 140,431,613

% Total Assembled Transcripts Covered 98.76

Average Read Depth 73.39

Assembled statistics

Number of assembled transcripts 160,569

Total size of assembled transcripts (bp) 142,192,028

Longest assembled transcripts (bp) 16,041

Shortest assembled transcripts (bp) 300

Number of assembled transcripts > 1K nt 39,060

Number of transcripts > 10K nt 49

Mean assembled transcripts size 886

N50 assembled transcripts length 1,225

Assembled transcripts %A 26.87

Assembled transcripts %C 22.96

Assembled transcripts %G 23.86

Assembled transcripts %T 26.31

Assembled transcripts %N 0

Assembled transcripts %non-ACGTN 0

doi:10.1371/journal.pone.0171095.t002
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“regulation of transcription, DNA-templated” (350 transcripts). In the cellular component

GO domain, most of the transcripts were involved in “integral component of membrane”

(3185 transcripts), “nucleus” (1406 transcripts) and “membrane” (908 transcripts). “nucleic

acid binding”, “ATP binding” and “zinc ion binding” were the top three categories in the

molecular function GO domain, with a total number of assigned transcripts of 2222, 1794

and 1511 respectively.

Genes associated with growth, development and reproduction

During the annotation process, a number of GO terms associated with growth, development

and reproduction processes, especially with the term from the ontology of “multicellular

organismal development” (GO:0007275). The child terms and co-occurring terms associated

with this parent category are listed in Table 5. The regulators (i.e. proteins) of growth, develop-

ment and reproduction were identified from S. olivacea transcriptome annotation results

(Table 6).

SNP discovery

A total of 156,181 potential SNPs (59,224 SNPs in Immature, 38,851 in Maturing and 58,106

in Mature) were identified from 481,707 transcripts (Fig 5, S1 Appendix). The transition (Ts):

transversion (Tv) SNPs ratios of Immature, Maturing and Mature were 2.19: 1.00, 2.32: 1.00

and 2.19: 1.00 respectively, with a mean ratio of 2.22: 1.00. SNP types A$G and C$T were

the most common and their numbers were similar in each maturation stage. Similar trend was

observed in the numbers of transversion types A$C, A$T, G$C and G$T (Fig 5).

Fig 1. Graphical length distribution summary of transcripts identified in S. olivacea transcriptome data sets.

doi:10.1371/journal.pone.0171095.g001
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Identification and validation of differentially expressed gene

A total of 200 genes were up- or down-regulated with a Padj value of< 0.05 (Table 7, S2

Appendix). Of these differentially expressed genes, only 69 genes were successfully annotated,

while the remaining 65.5% are novel genes. Significant differential expression patterns between

Fig 2. Similarity distribution of BLAST hits.

doi:10.1371/journal.pone.0171095.g002

Table 3. Top 10 organism hits of assembled transcripts in S. olivacea transcriptome against UniProt database.

Organism scientific name (common name) Taxonomy Matched assembled transcripts (n)

Phylum Subphylum Class

Zootermopsis nevadensis (Nevada termite) Arthropoda Hexapoda Insecta 4,170

Daphnia pulex (Water flea) Arthropoda Crustacea Branchiopoda 2,444

Strigamia maritima (European centipede) Arthropoda Myriapoda Chilopoda 1,817

Stegodyphus mimosarum (Spider) Arthropoda Chelicerata Arachnida 1,284

Strongylocentrotus purpuratus (Purple sea urchin) Echinodermata Echinozoa Echinoidea 1,123

Tribolium castaneum (Red flour beetle) Arthropoda Hexapoda Insecta 927

Acyrthosiphon pisum (Pea aphid) Arthropoda Hexapoda Insecta 816

Pediculus humanus subsp. Corporis (Body louse) Arthropoda Hexapoda Insecta 774

Branchiostoma floridae (Florida lancelet) Chordata Cephalochordata Leptocardii 731

Capitella teleta (Polychaete worm) Annelida - Polychaeta 593

doi:10.1371/journal.pone.0171095.t003
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different maturation stages of S. olivacea are clearly seen in the heatmaps (Figs 6, 7 and 8). In

general, more differentially expressed genes were found in the comparison involving immature

crabs (67 and 106 differentially expressed genes were found for the comparison between

immature and mature crabs, and between immature and maturing crabs, respectively) than

the comparison between mature and maturing crabs (27 differentially expressed genes). Differ-

entially expressed genes that were annotated (excluding genes encoding for uncharacterized

proteins) are tabulated in Table 8 based on the different clustering within each heatmap. How-

ever, application of minimum threshold of Padj< 1e-10 revealed only one gene that is likely a

potential candidate marker for immature crabs.

The most significant differentially expressed gene—the 1515 bp beta crystallin like gene

(accession no: GDRN01147796.1) was up-regulated in immature specimens but down-regu-

lated in maturing and mature specimens. No significantly differentially expressed genes with

minimum threshold of Padj< 1e-10 were found when comparing mature and maturing

specimens. The beta crystallin like gene was validated using qPCR and gene-specific primers

(Fig 9).

Discussion

In recent years, the usage of high-throughput sequencing technique to reveal various genomic

and genetic information, even in non-model organisms has been steadily gaining momentum

[33,34]. In addition, transcriptome sequencing allows the profiling of genes that are differen-

tially expressed under different physiological conditions [35]. Current study used pooled

Fig 3. Species distribution of top ten BLAST hits against UniProt database andD.melanogaster protein database, with a 1e-5 cut-
off threshold.

doi:10.1371/journal.pone.0171095.g003
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samples to represent each developmental stage for the differential expression analysis as we

were interested in the gene expression among stages rather than the inter-individual variation

within specific stage. Thus, in this context, pooling minimizes the effects of biological variation

(difference among individuals) [36] and highlights the substantive gene expressions expressed

during each stage [37]. Konczal et al. [38] reported that when liver transcriptomes of bank

voles were sequenced individually and as pooled samples, the accuracy of allele frequency esti-

mation was minimally affected by inter-individual variation in gene expression and that

pooled RNA-seq is as accurate as pooled genome resequencing. A total of 17 Gbp transcrip-

tome data consisting of 144,560,704 clean reads were successfully obtained in three runs in

present study. The amount of clean reads retrieved were higher than that acquired from the

Chinese mitten crab (Eriocheir sinensis, 25,698,778 reads in two runs) [12] and boreal spider

Table 4. Top 20 annotations of S. olivacea transcriptomewith the highest bit score.

Description Accession ID Organism Scientific name
(common name)

Alignment length
(amino acids)

E
value

Bit
Score

Type

Cj-cadherin Q5CCS4 Caridina multidentata (Amano
shrimp)

3007 0 5472 Full
length

Dynein heavy chain, cytoplasmic A0A067RE92 Zootermopsis nevadensis
(Nevada termite)

3298 0 5434 Full
length

Uncharacterized protein K7J7S2 Nasonia vitripennis (Jewel wasp) 4156 0 5202 Partial

Projectin Q86GD6 Procambarus clarkii (Red swamp
crayfish)

2694 0 4756 Partial

Pre-mRNA-processing-splicing factor,
putative

E0VM49 Pediculus humanus subsp.
corporis (Body louse)

2373 0 4354 Full
length

Uncharacterized protein T1JAK1 Strigamia maritima (European
centipede)

3404 0 4342 Partial

Spectrin alpha chain A0A067RUI8 Zootermopsis nevadensis
(Nevada termite)

2422 0 4045 Full
length

Laminin subunit alpha A0A067R415 Zootermopsis nevadensis
(Nevada termite)

3616 0 3516 Full
length

Talin-1 A0A067R9F3 Zootermopsis nevadensis
(Nevada termite)

2522 0 3336 Partial

Spectrin beta chain A0A067R2J7 Zootermopsis nevadensis
(Nevada termite)

2151 0 3322 Full
length

Ciliary dynein heavy chain, putative E0VLA6 Pediculus humanus subsp.
corporis (Body louse)

2193 0 3212 Partial

Myosin Va F6K356 Eriocheir sinensis (Chinese
mitten crab)

1778 0 3203 Full
length

Putative uncharacterized protein E9G1C9 Daphnia pulex (Water flea) 2247 0 3094 Full
length

Putative uncharacterized protein D6X207 Tribolium castaneum (Red flour
beetle)

2254 0 3049 Full
length

Dynein beta chain, ciliary P39057 Heliocidaris crassispina (Sea
urchin)

2780 0 3025 Partial

Clathrin heavy chain A0A067RP81 Zootermopsis nevadensis
(Nevada termite)

1683 0 2978 Full
length

Target of rapamycin B5M076 Blattella germanica (German
cockroach)

2495 0 2963 Full
length

Fatty acid synthase F8RHR0 Litopenaeus vannamei (Whiteleg
shrimp)

2445 0 2928 Partial

DNA-directed_RNA_polymerase V5YTD8 Oratosquilla oratoria (Japanese
mantis shrimp)

1552 0 2916 Full
length

Putative U5 small nuclear ribonucleoprotein
200 kDa helicase

A0A067RJY2 Zootermopsis nevadensis
(Nevada termite)

1891 0 2883 Partial

doi:10.1371/journal.pone.0171095.t004
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Fig 4. Gene ontologies. Transcript counts (log10) for Gene Ontology (GO) classification of the S. olivacea
transcriptome for biological process (black), cellular component (white) and molecular function (grey)
categories.

doi:10.1371/journal.pone.0171095.g004
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crab (Hyas araneus, 98,508,658 reads in six runs) [39] but lower than that of whiteleg shrimp

(Litopenaeus vannamei, 399,056,712 reads in four runs) [40]. The average size of assembled

transcripts was 886 bp, larger than those found in E. sinensis (average 191 bp) [12], H. araneus

(average 195 bp) [39] but smaller than the average size of assembled transcripts in L. vannamei

(1137 bp) [40]. Comparably, a transcriptome analysis of a close relative to S. olivacea, i.e. the

yellow mud crab (S. paramamosain) by 454 deep sequencing generated lesser clean reads

(1,314,101 high quality reads) with a smaller average size (411 bp) [41].

The discoveries and annotations of known genes were based on four protein databases, i.e.

UniProt, Interpro, Pfam and D.melanogaster protein database. The low number of successful

gene annotations (approximately 15–23% hits when compared to the four protein databases)

might be due to unavailability of whole genome of the studied crab species and the scarcity of

genomic data of closely related organisms in public domains [41]. Using the same next-gene

sequencing (NGS) technology, i.e. Illumina HiSeq 2000 platform, approximately 18.62% of

clean reads of a non-model organism, the swimming crab (Portunus trituberculatus) were

annotated in Swiss-prot [21]. In addition, aquaculture sector and researchers also focus more

on female candidates of most commercially important species, resulting in richer genetic

information compared to males. The high percentage of unannotated sequences (more than

75%) from the transcriptome data of S. olivacea implies that potentially useful genetic informa-

tion, especially differentially expressed genes that might be available was missed and remain

unexploited. Thus, current transcriptome data might still hold many important genes and

valuable genetic information that can be mined in the near future.

In the transcriptome data of S. olivacea, predominant gene clusters were found to be

involved in various biological processes (e.g. DNA transcription and signal transduction pro-

cesses) and molecular functions (e.g. molecular binding activities), in addition to formation of

structural component of cells, such as nucleus, membrane and cytoplasm. The consistency of

gene distribution based on GO terms and GO categories in the present study with other

Table 5. Number of hits of selected GO child terms and co-occurring terms based onmulticellular organismal development (GO:0007275).

GO ID GO term Hits Example Sequence E value Accession ID

Child Terms

GO:0007349 Cellularization 2 Vielfältig, isoform D 9e-10 M9NES1

GO:0007566 Embryo implantation 2 Uncharacterized protein 1e-73 F6SMD1

GO:0009790 Embryo development 2 Trip12 protein 1e-139 Q3KR60

GO:0009791 post-embryonic development 1 Uncharacterized protein 1e-21 ALDH5A1

GO:0030237 Female sex determination 1 Protein Wnt 1e-27 WNT4

GO:0030238 Male sex determination 1 Tyrosine-protein kinase receptor 4e-139 IGF1R

Co-occurring terms

GO:0007283 Spermatogenesis 11 Gilgamesh isoform E 0 Q59DW8

GO:0010468 Regulation of gene expression 2 Putative uncharacterized protein 1e-43 Q8CDC6

GO:1900194 Negative regulation of oocyte maturation 2 Uncharacterized protein 1e-10 F6Q3S2

GO:1902436 Negative regulation of male mating behaviour 1 Putative uncharacterized protein 1e-43 Q8CDC6

GO:0061369 Negative regulation of testicular blood vessel morphogenesis 1 Protein Wnt 1e-27 F6UNR8

GO:0051781 Positive regulation of cell division 10 PDGF-and VEGF-related factor 6e-10 V9IG02

GO:0050793 Regulation of developmental process 5 Notch protein 0 A0MK40

GO:0040014 Regulation of multicellular organism growth 3 Amyloid beta protein 8e-63 M1EDY4

GO:0040034 Regulation of development, heterochronic 2 Hunchback transcription factor 2e-114 C4PGG7

GO:0048047 Mating behaviour, sex discrimination 1 Putative uncharacterized protein 1e-43 Q8CDC6

GO:0007617 Mating behaviour 1 Amyloid beta protein 8e-63 M1EDY4

doi:10.1371/journal.pone.0171095.t005
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Table 6. Selected regulators (i.e. proteins) of growth, sexual differentiation and reproduction expressed in the testis of S. olivacea.

Identity Accession ID Hit organism Similarity
(%)

E
value

Example Query ID

Neurohormones

Vitellogenesis-inhibiting hormone
(VIH)

V9ZBG5 Scylla paramamosain (Green mud
crab)

99.2 5e-85 Ref_Crab_Transcript_38360_732

Crustacean hyperglycemic hormone
(CHH)

A5A599 Scylla olivacea (Orange mud crab) 99.28 2e-91 Ref_Crab_Transcript_59696_1668

Neuropeptide B4IC30 Drosophila sechellia (Fruit fly) 51.43 2e-11 Ref_Crab_Transcript_54220_1201

Neurotrophin G5CJW4 Litopenaeus vannamei (Whiteleg
shrimp)

68.57 2e-53 Ref_Crab_Transcript_58755_445

Neuroparsin A0A023PY98 Metapenaeus ensis (Greasyback
shrimp)

47.13 8e-12 Ref_Crab_Transcript_70043_2913

Sexual differentiation related

SOX14 protein B9VWK7 Scylla paramamosain (Green mud
crab)

99.48 0 Ref_Crab_Transcript_45440_2864

VASA-like protein variant E5FQX4 Scylla paramamosain (Green mud
crab)

99.05 0 Ref_Crab_Transcript_27201_2369

Sex-lethal V9PP85 Eriocheir sinensis (Chinese mitten
crab)

98.71 1e-97 Ref_Crab_Transcript_49023_2008

Piwi-like protein X2CS90 Portunus trituberculatus
(Swimming crab)

96.65 0 Ref_Crab_Transcript_53740_1185

Doublesex and mab-3 related
transcription-like protein

D7REN5 Eriocheir sinensis (Chinese mitten
crab)

95.7 3e-56 Ref_Crab_Transcript_69520_1864

Doublesex and mab-3 related
transcription factor 11E

X2D7J9 Macrobrachium rosenbergii (Giant
freshwater prawn)

86.67 2e-12 Ref_Crab_Transcript_31999_445

Male-specific lethal 3-like protein A0A067R1H2 Zootermopsis nevadensis (Nevada
termite)

82.98 3e-41 Ref_Crab_Transcript_88052_3530

VASA A0A023JMC5 Charybdis japonica (Asian paddle
crab)

80 3e-18 Ref_Crab_Transcript_23777_903

Growth and development related

Krueppel-like factor 10 Q13118 Homo sapiens (Human) 100 2e-79 Ref_Crab_Transcript_160024_379

Growth factor receptor-bound protein
2

U6DGZ9 Neovison vison (American mink) 100 4e-83 Ref_Crab_Transcript_151979_370

Transforming growth factor-beta
regulator I

H9B3Y8 Scylla paramamosain (Green mud
crab)

99.27 1e-91 Ref_Crab_Transcript_149715_1563

Sex combs reduced A0A059PB91 Parhyale hawaiensis (Amphipod) 93.58 3e-48 Ref_Crab_Transcript_44496_829

Early growth response protein 3 A0A067R8D8 Zootermopsis nevadensis (Nevada
termite)

90.71 8e-87 Ref_Crab_Transcript_152664_761

Male reproductive-related LIM protein B8LG57 Macrobrachium rosenbergii (Giant
freshwater prawn)

89.13 1e-33 Ref_Crab_Transcript_29874_1367

Prostaglandin E synthase 2 M1F4P3 Penaeus monodon (Giant tiger
prawn)

78.92 0 Ref_Crab_Transcript_59927_1959

Prostaglandin F synthase M1F418 Penaeus monodon (Giant tiger
prawn)

77.92 1e-
170

Ref_Crab_Transcript_36654_1601

Up-regulated during skeletal muscle
growth protein 5

A0A067QSY5 Zootermopsis nevadensis (Nevada
termite)

69.23 2e-14 Ref_Crab_Transcript_21795_733

Fibroblast growth factor receptor
substrate 2

A0A067RCV1 Zootermopsis nevadensis (Nevada
termite)

66.67 3e-40 Ref_Crab_Transcript_50850_3332

Putative transforming growth factor
beta receptor 1

L7MGX7 Rhipicephalus pulchellus (Zebra
tick)

63.67 0 Ref_Crab_Transcript_59348_1873

Inhibitor of growth protein A0A067QYK9 Zootermopsis nevadensis (Nevada
termite)

66.91 1e-52 Ref_Crab_Transcript_62117_1271

Epidermal growth factor receptor A0A067R240 Zootermopsis nevadensis (Nevada
termite)

68.7 0 Ref_Crab_Transcript_84884_4296

(Continued )
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studies [41–43] showed that genes encoding these functions are rather conserved and easily

annotatable from database. Functional annotation and enrichment analysis of GO functions

aid in mapping out genes and their potential functions at transcriptomic level. The transcrip-

tome data in present study represents an extensive gene catalog particularly expressed in the

testis of S. olivacea, with important role in several biochemical processes such as reproductive

development, growth and sexual differentiation. These transcriptome data will be useful for

future genomic and gene functional analysis of S. olivacea.

Although the role of gonad in regulating developmental processes in crustaceans with the

aid of a variety of regulatory factors (e.g. hormones and neurotransmitters) have been exten-

sively studied [44–46], the underlying molecular mechanisms governing their biosynthesis

remain largely unexplored [21]. Gene sequences related to growth, sexual differentiation and

reproduction were identified in the transcriptome data of S. olivacea. Known for their regula-

tory role in reproduction in crustaceans [44,47], the identification of crustacean hyperglyce-

mic hormone (CHH) family peptides (Table 6) in this study may aid in providing possible

Table 6. (Continued)

Identity Accession ID Hit organism Similarity
(%)

E
value

Example Query ID

Vascular endothelial growth factor
receptor 2

A0A067QWZ0 Zootermopsis nevadensis (Nevada
termite)

69.81 8e-16 Ref_Crab_Transcript_127316_361

Hormone enzymes and receptors

Estrogen-related receptor D2Y1A7 Scylla paramamosain (Green mud
crab)

100 6e-22 Ref_Crab_Transcript_7743_1209

Insulin-like androgenic gland
hormone

A0A075INW9 Scylla paramamosain (Green mud
crab)

98.51 7e-39 Ref_Crab_Transcript_35719_619

Red-pigment concentrating hormone U3PE66 Scylla paramamosain (Green mud
crab)

97.8 1e-18 Ref_Crab_Transcript_16600_356

Bursicon hormone alpha subunit C3S7D8 Callinectes sapidus (Blue crab) 96.88 6e-19 Ref_Crab_Transcript_2620_1085

E75 nuclear receptor Q3I5Q8 Gecarcinus lateralis (Blackback
land crab)

95.55 0 Ref_Crab_Transcript_69307_4236

Prohormone convertase D0UJV3 Libinia emarginata (Longnose
spider crab)

93.55 2e-9 Ref_Crab_Transcript_15118_512

Pigment dispersing hormone receptor C6L2K2 Penaeus japonicus (Kuruma
shrimp)

80.85 1e-16 Ref_Crab_Transcript_149701_305

Growth hormone secretagogue
receptor type

A0A026WUM1 Cerapachys biroi (Clonal raider ant) 78.79 5e-7 Ref_Crab_Transcript_136683_553

Lutropin-choriogonadotropic hormone
receptor

A0A067QJD2 Zootermopsis nevadensis (Nevada
termite)

76.32 3e-32 Ref_Crab_Transcript_5206_458

Gonadotropin-releasing hormone
receptor

A0A087TGG2 Stegodyphus mimosarum
(Communit nest spider)

62.14 5e-55 Ref_Crab_Transcript_35602_1201

Juvenile hormone epoxide hydrolase
2

V9IEI5 Apis cerana (Asian honey bee) 60.42 2e-11 Ref_Crab_Transcript_96004_451

Ecdysteroids and receptors

Retinoid-X receptor-2 S4TH64 Callinectes sapidus (Blue crab) 99.49 0 Ref_Crab_Transcript_60375_1703

Ecdysteroid receptor O76246 Uca pugilator (Atlantic sand fiddler
crab)

95.81 2e-47 Ref_Crab_Transcript_141583_1159

Ecdysteroid receptor 3 I6UZ31 Scylla paramamosain (Green mud
crab)

92.94 2e-99 Ref_Crab_Transcript_46583_2256

Ecdysteroid receptor 2 I6V8K3 Scylla paramamosain (Green mud
crab)

87.65 0 Ref_Crab_Transcript_46581_2790

Putative ecdysteroids/dopamine
receptor

D6WWZ1 Tribolium castaneum (Red flour
beetle)

59.09 4e-79 Ref_Crab_Transcript_110825_1460

doi:10.1371/journal.pone.0171095.t006
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alternatives to the conventional eyestalk ablation methods to promote growth and sexual

maturation.

Found in our gonad transcriptome of male S. olivacea, neurotrophins (Table 6) are vital neu-

rohormones that promote the survival, development and function of neuronal cells [48]. Ini-

tially being considered as a characteristic of vertebrates, neurotrophins and their receptors were

found in invertebrate crustacean Daphnia pulex in the year 2011 [49]. In addition, their roles in

testicular development were supported by the findings of the expression of neurotrophins and

their receptors in testes of vertebrates [50,51]. It was hypothesized that neurotrophins might be

Fig 5. Distribution of putative single nucleotide polymorphisms (SNPs) in S. olivacea sequences.

doi:10.1371/journal.pone.0171095.g005
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involved in the regulation of male germ cell differentiation via paracrine signalling based on

their (neurotrophins and their receptors) different cellular localizations [52].

Identified mostly in insects, neuroparsins are multifunctional neurohormones that are anti-

gonadotropic, involved in the regulation of hemolymph lipid and trehalose levels, and in their

reproduction development [53,54]. Recently, a crustacean neuroparsin–Metapenaeus ensis

neuroparsin (MeNPLP) homologous to the insect neuroparsin was discovered in most major

organs of sand shrimpMetapenaeus ensis, including in the hepatopancreas, nerve cord, brain,

heart, ovary and muscle. Surprisingly, no expression ofMeNPLP was found in the testis.

MeNPLP is involved in the ovarian maturation in shrimp as a drop in the production of vitello-

genin protein in hemolymph and ovary was observed following the RNAi silencing ofMeNPLP

[55]. The discovery of neuroparsin gene expression in the testis of S. olivacea (Table 6) might

indicates that the neuroparsin is vital for the development and reproduction of male mud crab

but not in shrimp. Similar postulate was proposed to explain the absence of neuroparsin gene

in the widely-studied Drosophila melanogaster (Arthropoda, Insecta) genome and that due to

different metamorphosis patterns, neuroparsin becomes non-essential in some Drosophila spe-

cies [56].

VASA gene is vital for germ cell development, proliferation and maintenance and can be

found in both invertebrates and vertebrates [57,58]. This gene encodes for RNA-dependent

helicase and is specifically expressed in germ cells throughout all developmental stages [59].

The function and regulation of VASA proteins during gonadal development and gametogene-

sis have been described for several crustacean species [57,59–62], including S. paramamosain

[31]. Only found to be expressed in the ovary and testis, VASA gene was highly expressed dur-

ing early gametogenesis of S. paramamosain, with significantly higher expression levels were

observed in the testes of immature and maturing males. In contrary, no significant decrease in

the expression of VASA gene was found among different developmental stages of S. olivacea

(Table 6, S2 Appendix). This inconsistency of VASA expression was also found in other crusta-

cean species. For example, in Chinese white shrimp Fenneropenaeus chinensis, the expression

of VASA gene showed a decrease pattern from spermatogonia to spermatids, and no expres-

sion was observed in mature sperm [63]; while VASA RNA was found in the nucleus and cyto-

plasm of sperms of giant freshwater prawn (Macrobrachium rosenbergii) [60].

Prostaglandins (PGs) are cell-signalling autocoids derived from lipids and some are known to

be involved in the reproduction development in crustacean, i.e. the level of PGD2, PGE2 and

PGF2 α increased with the progression of vitellogenesis and ovarian developmental stages

[21,63]. However, most of the previous studies in crustaceans focused on the involvement of

PGs on oogenesis and ovarian development [64–66]. In the present study, we identified two

PGs, namely PGE2 and PGF (Table 6). Both PGs are known for their regulatory roles during

oocyte maturation in animals including crustaceans [64,67,68]. Thus, the findings in this study

suggest that PGs might also be involved in the regulation of testicular development in S. olivacea.

Table 7. Differential expression analysis of S. olivacea at gene level.

All genes Significant differentially expressed genes (Padj < 0.05)

Cond.
1

Cond. 2 Total Up-regulation (Cond.
2 > Cond. 1)

Down-regulation (Cond.
2 < Cond. 1)

Up-regulation (Cond.
2 > Cond. 1)

Down-regulation (Cond.
2 < Cond. 1)

I M 121,288 53,598 67,690 26 41

I R 125,107 62,787 62,320 65 41

M R 115,207 62,183 53,024 15 12

Note: Cond.: condition; I: immature; M: mature; R: maturing.

doi:10.1371/journal.pone.0171095.t007
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Fig 6. Heatmap of gene expression values depicting clustering of genes between immature (UMT_I, left panel) andmature
stages (UMT_M, right panel) based on the expression of mRNAs for a set of significant genes (Padj < 0.05). Sample names are
represented in columns and significant genes are represented in rows. Genes are clustered together based on expression similarity.
Low to high expression is represented by a change of colour from red to green, respectively. The colour key scale bar at upper left
shows Z-score values for the heatmap.

doi:10.1371/journal.pone.0171095.g006
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Fig 7. Heatmap of gene expression values depicting clustering of genes between immature (UMT_I, left panel) and
mature stages (UMT_R, right panel) based on the expression of mRNAs for a set of significant genes (Padj < 0.05).
Sample names are represented in columns and significant genes are represented in rows. Genes are clustered together based
on expression similarity. Low to high expression is represented by a change of colour from red to green, respectively. The colour
key scale bar at upper left shows Z-score values for the heatmap.

doi:10.1371/journal.pone.0171095.g007
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Fig 8. Heatmap of gene expression values depicting clustering of genes between immature (UMT_M, left panel) andmature
stages (UMT_R, right panel) based on the expression of mRNAs for a set of significant genes (Padj < 0.05). Sample names are
represented in columns and significant genes are represented in rows. Genes are clustered together based on expression similarity. Low
to high expression is represented by a change of colour from red to green, respectively. The colour key scale bar at upper left shows Z-
score values for the heatmap.

doi:10.1371/journal.pone.0171095.g008
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Table 8. Selected differentially expressed genes betweenmaturation stages in the S. olivacea testis expression profile.

Cluster on heatmap Description Log2FC Padj Regulation Accession ID of Hit

Cond.: I vs M

I beta crystallin like gene -6.78 7.74E-11 − D3PHS5

III Aminopeptidase -5.00 3.46E-02 − A0A067QSR5

III Beta-2-microglobulin -8.18 2.22E-03 − P16213

I beta crystallin like gene -6.78 7.74E-11 − D3PHS5

III Aminopeptidase -5.00 3.46E-02 − A0A067QSR5

III Beta-2-microglobulin -8.18 2.22E-03 − P16213

III C-type lysozyme -6.17 1.63E-03 − B2R4C5

III Elongation factor 1-alpha -9.13 2.71E-05 − W5PHA3

III MHC class I antigen -7.59 2.60E-02 − R4ZGR1

III Mobile element protein -5.36 8.51E-03 − L7VVN2

III Prosaposin -8.65 2.00E-04 − A0A024QZQ2

III Transposase -5.53 4.51E-03 − G8UKJ2

III Transposase -5.28 1.21E-02 − A3JAS2

III Transposase -4.87 6.51E-03 − A0A037X5S6

III Transposase mutator type -5.66 2.22E-03 − R9CHU0

IV Actin 1 -4.08 1.27E-02 − C5HF65

IV Gamma-crystallin A -4.88 1.90E-05 − D3PIA3

V Vitellogenin 3.00 4.13E-02 + Q9UAR3

VI Amyloid beta A4 protein 3.57 4.88E-02 + A0A067QWW4

VI Capsid protein 4.03 4.71E-03 + D9ZD21

VI C-type-lectin-like-4 protein 5.72 1.47E-04 + W6MNG5

Cond.: I vs R

I Aminopeptidase N -5.98 2.78E-04 − A0A067QSR5

I Gamma-crystallin A -4.37 5.88E-05 − D3PIA3

I TnpC -4.18 4.96E-02 − G9HZ26

I Transposase -4.15 6.26E-03 − G8UKJ2

III Beta-crystallin A1 -10.18 1.35E-19 − D3PHS5

IV Farnesoic acid O-methyltransferase 3.39 1.29E-02 + B8X2Z4

IV FreD 4.91 1.34E-04 + A0A068LKH5

IV Leukocyte elastase inhibitor 8.95 2.67E-06 + G7Y5W4

Cond.: M vs R

I C-type lysozyme 5.85 3.23E-03 + B2R4C5

I Putative nuclease HARBI1 3.44 2.96E-02 + A0A067RIF9

II Beta-2-microglobulin 7.57 4.28E-02 + P16213

II Elongation factor 1-alpha 8.27 3.23E-03 + W5PHA3

II Prosaposin 8.45 1.67E-03 + A0A024QZQ2

V Vitellogenin -3.27 2.96E-02 − Q9UAR3

V Capsid protein -3.77 1.25E-02 − E1CI71

V C-type-lectin-like-4 protein -6.31 9.43E-04 − W6MNG5

VI RNA-dependent RNA polymerase -6.05 2.79E-03 − A0A023VRY1

Note: Cond.: condition; I: immature; M: mature; R: maturing; Log2FC: Log2FoldChange; Padj: adjusted P-value;

−: down-regulated;
+: up-regulated.

doi:10.1371/journal.pone.0171095.t008
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Ecdysteroid receptors (EcR) are nuclear receptors that are to be bound and activated by

ecdysteroids [69]. They act as ligand-dependent ecdysteroid signalling mediators and upon

binding with ecdysteroids, corresponding genes will be actively transcribed and a cascade reac-

tion will be initiated. Although present in all arthropods, the number of hormones and recep-

tor isoforms’ structures in crustaceans differ with that of insects’. In crustaceans, ecdysteroids

are produced by Y-organs and positively regulate molting, gametogenesis and gonad matura-

tion [21,70]. Some EcR splice variants are organ-specific and they might play different roles

although present in both sexes [71]. Four types of EcR were found in this transcriptome,

namely EcR, EcR2, EcR3 and putative ecdysteroids/dopamine receptor (Table 6). As shown by

Li et al. [72] in Drosophila, EcRs found in the testis of S. olivacea might also play the same role

—maintenance of testis stem cells.

SNPs are potential markers that are frequently used in trait-mapping and whole-genome

association studies due to their wide distribution and abundant polymorphisms [73,74]. They

serve as potential markers in non-model species lacking full annotated genome sequences

[16,75,76]. For example, an ATP-dependent DNA helicase gene, RuvB-like 2, with three SNPs

(one exonic and two intronic) was significantly expressed in the ovaries of mature giant tiger

shrimp (Penaeus monodon) and influenced overall body weight during ovarian development

[77]. In addition, four intronic SNPs in the actin and CHH were reported to influence the

growth performance inM. rosenbergii [78]. The mean Ts: Tv ratio (2.22: 1.00) of SNPs

reported in current study can aid in the identification of genes affected by selection [76,79].

Studies showed that unlike in fish [75, 80–82], the mean Ts: Tv ratio is species-specific in crus-

taceans. The mean Ts: Tv ratios inM. rosenbergii [83] P. trituberculatus [84], green mud crab

(S. paramamosain) [20] and Chinese mitten crab (Eriocheir sinensis) [85] were 1.99: 1.00, 1.00:

Fig 9. Fold difference of beta crystallin like gene in different maturation stages of testis of male S. olivacea. 18S rRNAwas used as
reference gene.Different superscript letters within the same row indicate significant differences (P < 0.0001) between different stages of maturation.

doi:10.1371/journal.pone.0171095.g009
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1.79, 3.48: 1.00 and 1.00: 1.84, respectively. In addition, the superiority of Illumina HiSeq 2000

over the Roche/454 platform and its potential in the development of SNP markers were

highlighted in this study, with approximately eleven-fold increase in the SNPs discovery

(13,271 SNPs detected in the testis and ovary of S. paramamosain as reported by Gao et al. [20]

in comparison with 156,181 SNPs found in the testis of S. olivacea in this study). The putative

SNPs found in this study are useful in various fields of fisheries and aquaculture regarding S.

olivacea, such as the study of population genetic structures, conservation of wild population,

mapping of economically important traits, and provide resource for potential valuable markers

for future selective breeding of S. olivacea.

The availability of transcriptomic data from the testis of S. olivacea found in this study

proved to be beneficial, in which soon after approximately 160,000 transcriptome shotgun

assembly sequences of S. olivacea were made public in GenBank, our data were mined for

putative peptide-encoding transcripts to further understand the peptidergic control systems in

S. olivacea and subsequently suggest possible endocrine manipulation to improve its aquacul-

ture production [86]. Being the largest and most diverse class of hormones, peptides function

as major signal transducers and essentially regulate behavioural and physiological changes in

all aspects, including growth, sexual development, reproduction and metabolism [87–90]. This

mined peptidome identified 49 transcripts encoding putative peptide precursors and subse-

quently predicted 187 distinct peptides for S. olivacea [86]. Based on the high similarity in

peptide structure and the numbers of peptide families found between S. olivacea and S. para-

mamosain [91], Christie [86] postulated that the physiological roles of these peptides might be

conserved in both Scylla species. The precursors of neuropeptides found in this study, e.g.

CHH and vitellogenin-inhiting hormone (VIH), are mainly produced by the X-organ-sinus

gland complex located at the eyestalk ganglia of S. olivacea [45,92,93]. However, some of the

peptide groups, such as the CHH, were reported to be produced and released by non-neuronal

tissues (epithelial endocrine cells of the gut) as well in other crab species for the regulation of

water and ion during moulting [93]. Thus, the discovery of these putative peptide-encoding

transcripts in the testis of S. olivacea suggests that testis might be involved in the production

and regulation of reproductive hormones in Scylla spp. and possibly also in other brachyurans

or crustaceans more than what we expected. In support of this postulate, a neuropeptide—pig-

ment dispersing hormone (PDH)-encoding transcript, was also found to be produced in the

reproductive organs (i.e. ovaries) of S. paramamosain [94].

The reproductive regulatory mechanism and development are complex processes, with tes-

tis being the main regulator. The differentially expressed genes found between the testis

expression profile of different maturation stages serve as a large candidate database for the

mining of novel genes involved in the gonad development, maturation and reproduction in S.

olivacea and other crustaceans as more than half (65.5%) of the differentially expressed genes

are novel genes (S2 Appendix). Most of the annotated differentially expressed genes (e.g. trans-

posase, prosaposin and aminopeptidase) are involved in general cell regulation and signalling

pathways (Table 8). Genes that regulate growth, maturation and reproduction such as Farne-

soic_acid O-methyltransferase and vitellogenin increased in expression in the testis of S.

olivacea as the crab matures. Other genes expressed in testis such as Dmrt (reported in S. para-

mamosain [20] and E. sinensis [95]) and Feminization-1 (FEM-1) (reported in S. paramamo-

sain [20]) that are involved in sex differentiation and testis development were not found in this

study. Of a total of 200 genes that were differentially expressed at Padj< 0.05 (S2 Appendix),

beta crystallin like gene was the most significant differentially expressed gene at Padj< 1e-10

(up-regulated in immature stage but down-regulated in maturing and mature stages). Thus,

this gene serves as a good candidate for a marker of immaturity in crab testis. The beta crystal-

lin domain (Pfam PF00030) is a water-soluble calcium binding domain found in a diverse set
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of proteins. Proteins within this domain are multifunctional and although primarily found in

the eye lens, beta crystallin is also regulated in other sites such as brain and testis [96,97].

Found in all vertebrate classes, beta crystallin is highly expressed during developmental stages,

presumably involved in the formation of complex optical properties in the eye lens [98]. In

addition, betaB2-crystallin proteins are postulated to be involved in fertility as mutation in

betaB2-crytallin gene resulted in subfertile mice in both males and females [99,100]. This gene

is found to be upregulated in the testis of mice during the initiation of spermatogenesis [99],

similar to the result found in current study. The relationship between beta crytallin proteins

and the gonad maturation in invertebrates is still unexplored and this study serves as the first

report of this gene in invertebrate and its possible involvement in the gonadal maturation.

This finding broadens our understanding on the reproductive biology of invertebrates, partic-

ularly crustaceans, as they are known for regulating their reproductive development with the

aid of neuropeptides produced in the eyestalk [45]. If their functions remain the same, the beta

crystallin like proteins are also likely to be found in the eye lens of crustaceans. Thus, the use of

the frequently adopted procedure of eyestalk ablation to promote faster gonadal maturation

especially in male crustaceans for aquaculture production need to be reviewed because

although eyestalk ablation removes testis inhibiting factors and resulted in the increase in the

size of testis and the number of number of mature spermatocytes [101,102], it also removes

beta crystallin like proteins, which promotes testicular maturation and the absence of it may

influence fertility. The negative effect of eyestalk ablation on the quantity and quality of spawn-

ing, and subsequent larvae viability have been reported in female crustaceans [103,104]. Fur-

ther study on this specific beta crystallin like gene that was found upregulated in immature

male S. olivaceamight provide more insight on its involvement in crustacean fertility and

reproductive development.

Conclusions

The first transcriptome analysis on the testis of orange mud crab (S. olivacea) was carried out

successfully and yielded 144,560,704 high quality reads. Present study also demonstrated the

usefulness of next generation sequencing (Illumina) in characterizing transcriptome profile

and gene expression of non-model organism using tissue-specific samples. Data obtained in

present study greatly contributes to the understanding of the gene expression and genome

structure occurring within the testis of S. olivacea throughout its developmental stages. Poten-

tial SNPs reported in this study is useful for future selective breeding, trait-mapping, and gene

localization studies. The discovery and validation of differentially expressed beta crystallin like

gene based on the testis transcriptome profiles of S. olivacea show that this particular gene

might be suitable to be use as immaturity marker in male S. olivacea in the future.
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