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Faculdade de Ciências Farmacêuticas de Ribeirão Preto,1 Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto,5 and
Departmento de Microbiologia,3 Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil;

Universidade de Ribeirão Preto, São Paulo, Brazil2; and Plant Science Initiative,
University of Nebraska, Lincoln, Nebraska4

Received 6 June 2006/Accepted 25 July 2006

We have used an Aspergillus nidulans macroarray carrying sequences of 2,787 genes from this fungus to
monitor gene expression of both wild-type and uvsBATR (the homologue of the ATR gene) deletion mutant
strains in a time course exposure to camptothecin (CPT). The results revealed a total of 1,512 and 1,700 genes
in the wild-type and uvsBATR deletion mutant strains that displayed a statistically significant difference at at
least one experimental time point. We characterized six genes that have increased mRNA expression in the
presence of CPT in the wild-type strain relative to the uvsBATR mutant strain: fhdA (encoding a forkhead-
associated domain protein), tprA (encoding a hypothetical protein that contains a tetratrico peptide repeat),
mshA (encoding a MutS homologue involved in mismatch repair), phbA (encoding a prohibitin homologue),
uvsCRAD51 (the homologue of the RAD51 gene), and cshA (encoding a homologue of the excision repair protein
ERCC-6 [Cockayne’s syndrome protein]). The induced transcript levels of these genes in the presence of CPT
require uvsBATR. These genes were deleted, and surprisingly, only the �uvsC mutant strain was sensitive to
CPT; however, the others displayed sensitivity to a range of DNA-damaging and oxidative stress agents. These
results indicate that the selected genes when inactivated display very complex and heterogeneous sensitivity
behavior during growth in the presence of agents that directly or indirectly cause DNA damage. Moreover, with
the exception of UvsC, deletion of each of these genes partially suppressed the sensitivity of the �uvsB strain
to menadione and paraquat. Our results provide the first insight into the overall complexity of the response
to DNA damage in filamentous fungi and suggest that multiple pathways may act in parallel to mediate DNA
repair.

The DNA damage response is a protective mechanism that
ensures the maintenance of genome integrity during cellular
reproduction. DNA damage takes several general forms, in-
cluding single-strand breaks, double-strand breaks (DSBs),
base damage, and DNA-protein cross-links, which cause rep-
lication fork progression blockage and can generate secondary
lesions such as DSBs. Accumulation of mutations will eventu-
ally lead to genomic instability and, consequently, carcinogen-
esis in higher organisms. Cell cycle checkpoints and DNA
repair are the primary defenses against genomic instability. If
the DNA damage is extensive, apoptosis provides a mechanism
to eliminate cells with high mutation potential (59). The two
main signal transduction pathways that respond to DNA dam-
age are conserved across evolution: the ATM (mutated in
ataxia telangiectasia) and the ATR (ATM-Rad3-related) path-
ways (1, 62, 74, 76). The ATM pathway responds to the pres-
ence of DSBs. The ATR pathway also responds to DSBs but
more slowly than ATM. In addition, the ATR pathway can
respond to agents that interfere with the function of replication

forks, such as hydroxyurea (HU), UV light, and DNA-alkylat-
ing agents such as methyl methanesulfonate (MMS) (55, 56).
The ATM/ATR kinases phosphorylate and activate signal
transduction pathways that ultimately interface with the Cdk/
cyclin machinery (1).

Aspergillus nidulans has been used as a model genetic system
for the study of cell cycle control and the DNA damage re-
sponse (for a review, see references 5, 28, 58, and 66). The
recent completion of the A. nidulans genome sequence (http:
//www-genome.wi.mit.edu/annotation/fungi/aspergillus/) (27)
will facilitate a more systematic use of this fungus as a model
system for DNA repair studies. A. nidulans can normally tol-
erate high concentrations of the antitopoisomerase drug camp-
tothecin (CPT) (8). The basic mechanism of action for CPT is
well characterized (26). Briefly, CPT generates replication-
mediated DSBs, which in turn induce reversible or permanent
cell cycle arrest in G2-M. For a comprehensive evaluation of
genes that are transcriptionally modulated during growth in
the presence of CPT, we performed a large-scale analysis of
gene expression in A. nidulans by using a macroarray hybrid-
ization approach. The array technology can provide informa-
tion about large-scale gene expression when cells are chal-
lenged by this DNA-damaging agent. Thus, we constructed a
3,619-element array containing expressed sequence tag (EST)
sequences that have been functionally classified by similarity to
known genes (2). Using this array, we identified genes whose

* Corresponding author. Mailing address: Departamento de Ciên-
cias Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão
Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903,
Ribeirão Preto, São Paulo, Brazil. Phone: 55-16-6024280/81. Fax: 55-
16-6331092. E-mail address: ggoldman@usp.br.

† Supplemental material for this article may be found at http://ec
.asm.org/.
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expression displayed statistically significant modulation during
growth of A. nidulans in the presence of CPT. The analysis of
these data allowed us to identify specific genes and gene sets
whose induction seem to be related to biochemical changes
associated with the DNA damage response to this drug.

MATERIALS AND METHODS

Strains and media. The A. nidulans strains used are described in Table 1.

Media were of two basic types: (i) a complete medium with three variants, i.e.,

YAG (2% glucose, 0.5% yeast extract, 2% agar, trace elements), YUU (YAG

supplemented with 1.2 g/liter each of uracil and uridine), and liquid YG or YG

plus UU media of the same compositions (but without agar), and (ii) a modified

minimal medium (1% glucose, original high-nitrate salts, trace elements, 2%

agar, pH 6.5) or minimal medium without glucose. Trace elements, vitamins, and

nitrate salts were as described previously (39) (appendix, available on request

from the author). Standard genetic techniques for A. nidulans were used for all

strain constructions (39). The sensitivity to DNA-damaging and oxidative stress

agents and to UV light was evaluated by using the methodologies described

previously (24). To evaluate differences, we used one-way analysis of variance

and the Student-Newman-Keuls post hoc test. The data shown are the averages

from three independent experiments, analyses were performed using the soft-

ware package Sigma Stat (Jandel Scientifics), and the statistical significance was

set at � � 0.05.

DNA manipulations and construction of the inactivation strains. DNA ma-

nipulations were as described previously (63). DNA fragment probes for South-

ern blots were labeled with [�-32P]dCTP by using the random primers DNA

labeling system kit (Invitrogen). PCR primers were designed for amplifying each

DNA fragment necessary for PCR-mediated technique (42) by using Primer

Express version 1.0 (Applied Biosystems) design software. In the deletion con-

structions, the Aspergillus fumigatus pyrG gene was amplified from the pCDA21

plasmid (10), and this is referred to as the zeo-pyrG cassette because the ampli-

fied fragment also contains the zeocin resistance gene. The PCR-mediated con-

structions for the phbA (accession no. AN6073.2; encoding prohibitin), mshA

(AN1708.2; the homologue of the mutS family DNA mismatch repair protein

gene msh6), cshA (AN7103.2; the homologue of the CSB Cockayne’s syndrome

protein gene), fhdA (AN2893.2; encoding a protein containing a forkhead-asso-

ciated domain), and tprA (AN3617.2; encoding a protein with tetrarico peptide

repeats) genes consisted of three initial amplifications that generated 5�- and

3�-flanking regions of the target genes and final fusion PCRs. For the DNA

fragments containing the flanking regions, genomic DNA of the FGSC A4 strain

was used as a template. Table S1 in the supplemental material shows the primer

sequences and the fragment sizes of the 5�- and 3�-flanking regions for each gene.

Primers numbered �1 and �2 preceded by the name of the gene were used for

the 5�-flanking region, and primers numbered �3 and �4 preceded by the gene

name were used to amplify the 3�-flanking region; primers �2 and �3 have

homology to the zeo-pyrG gene. Primers for the zeo-pyrG gene amplification also

contained regions of homology to the 5� and 3� ends for each corresponding gene

flanking regions, yielding a 2,417-bp fragment. The final fusion PCR fragments

were independently generated using the three previous DNA fragments as tem-

plates and the outermost primers �1 and �4. After the reaction, the fusion PCR

products were gel purified with Perfectprep Gel Cleanup (Eppendorf) according

to the manufacturer’s instructions. Transformation of A. nidulans strain

TNO2A3 (�nkuA) (53) was according to the procedure described previously

(57), using approximately 5 �g of DNA fragments. Transformants were scored

for their ability to grow on YAG medium. Southern analysis demonstrated that

the deletion cassette had integrated at each gene locus and that a single inte-

gration event had occurred. For all the Southern analyses, each gene open

reading frame (ORF) was used as probe, and the absence of a radioactive signal

indicated that the entire gene was replaced. In order to test whether additional

integrative events had occurred, the membranes were stripped and subjected to

another hybridization using the pyrG gene as a probe. The deleted transformant

was crossed with strain UI224 in order to eliminate the �nkuA mutation; ac-

cordingly, all the deletion strains are wild type for this locus.

RNA isolation and cDNA library construction. A. nidulans strain GR5 or

AAH14 (1.0 � 107 conidia/ml) was used to inoculate 50 ml of liquid cultures,

which were incubated in a reciprocal shaker at 37°C for 16 h. Mycelia were

aseptically transferred to fresh YG medium in the presence or absence of 25 �M

of CPT. Mycelia were harvested by filtration through a Whatman no. 1 filter,

washed thoroughly with sterile water, quickly frozen in liquid nitrogen, and

disrupted by grinding, and total RNA was extracted with Trizol reagent (Life

Technologies). Ten micrograms of RNA from each treatment was then fraction-

ated in a 2.2 M formaldehyde–1.2% agarose gel, stained with ethidium bromide,

and then visualized with UV light. The presence of intact 25S and 17S rRNA

bands was used as a criterion to assess the integrity of the RNA. RNase-free

DNase treatment was done as previously described (65). Polyadenylated RNA

was purified using oligo(dT)-cellulose (Oligotex mRNA kit; QIAGEN, Ger-

many), and a unidirectional cDNA library was constructed in plasmid pSPORT-1

(Ampr) by using the Superscript plasmid system for cDNA synthesis and plasmid

cloning (Life Technologies) according to the manufacturer’s instructions to gen-

erate unidirectional 5� SalI and 3� NotI inserts. The number of clones of the

library (transformed into Escherichia coli EMDH10B) was about 3 � 106 CFU,

with an average insert size of 1.6 kb and 100% of clones having inserts larger than

200 bp; 10,000 individual colonies were transferred to 110 96-well microtiter

plates for storage at �80°C.

Real-time PCRs, plasmid DNA extraction, and sequencing. All the PCRs and

reverse transcription-PCRs (RT-PCRs) were performed using an ABI Prism

7700 sequence detection system (Perkin-Elmer Applied Biosystems). TaqMan

EZ RT-PCR kits (Applied Biosystems) were used for RT-PCRs, and the

TaqMan Universal PCR Master Mix kit was used for PCRs. The thermal cycling

conditions comprised an initial step at 50°C for 2 min, followed by 10 min at 95°C

and 40 cycles of 95°C for 15 s and 60°C for 1 min. The reactions and calculations

were performed as described previously (65). Table S2 in the supplemental

material describes the primers and Lux fluorescent probes (Invitrogen) used in

this work. Plasmid DNA was prepared by standard alkaline lysis procedures and

also by the boiling method described previously (48). Single-run sequencing was

done with the dideoxy chain termination method and dye termination chemistry

(Applied Biosystems) using universal M13 primers. The sequence analysis was

performed on ABI 377 and 3100 fluorescence automated sequencers. A pipeline

was built to analyze and assemble the A. nidulans EST sequences (the EST

project is available at http://143.107.203.68/camptothean/nidulans.html).

Construction of the A. nidulans macroarrays. The macroarray consisted of

3,619 elements that are representative cDNA clones from partial sequences of

2,787 A. nidulans ORFs. Twenty microliters of the plasmid DNA was dried to

completion and then resuspended in 40 �l of 50% dimethyl sulfoxide to a final

concentration ranging from 150 to 250 ng/�l. The purity and quality of all

plasmid DNAs were checked by agarose gel electrophoresis. Positively charged

nylon membranes (222 mm by 222 mm; Genetix, United Kingdom) were placed

into denaturing solution (NaCl, 1.5 M; NaOH, 0.5 M) and onto a Whatman no.

1 paper prewetted in the same denaturing solution. The plasmid DNAs were

spotted in duplicate onto the nylon membranes by using the “Q”-bot robot

(Genetix, United Kingdom) in a 5-by-5 array configuration, with spacing of 900

�m between each spot. After arraying, the membranes were denatured by the

same procedure described above and placed in the neutralizing solution (NaCl,

1.5 M; Tris-HCl, 1 M; pH 7.0) twice for 10 min each time. The DNA was fixed

to filters by UV light (160.000 �J/cm2) and stored at room temperature until used

for hybridizations.

Probe preparation and array hybridization. About 1 � 107 conidia/ml of the

A. nidulans wild-type strain GR5 were grown for 16 h in a reciprocal shaker (250

rpm) at 37°C. Mycelia were aseptically transferred to fresh YUU medium in the

presence or absence of 25 �M CPT. Samples were taken after 30, 60, and 120

min of CPT treatment. Total RNA was isolated from CPT-treated and untreated

TABLE 1. A. nidulans strains used in this work

Strain Genotype Reference

A4 Glasgow wild type (veA�) FGSC
AAH14 pyrG89 pabaA1 yA2 �uvsB::argB 24
ATr60cd1 pyrG89 argB2 chaA1 uvsC::pyr4 35
ATr60cd1-14 pyrG89 argB2 chaA1 uvsC::pyr4 �uvsB::argB This work
DC1 pyrG89 argB2 chaA1 35
GR5 pyrG89 wA3 pyroA4 FGSC A773
IM70 pyrG89 yA2 argB2 �phbA::pyrG This work
IM71 pyrG89 yA2 argB2 �mshA::pyrG This work
IM72-3 pyrG89 argB2 chaA1 �cshA::pyrG This work
IM73-104 pyrG89 argB2 chA1 �fhdA::pyrG This work
IM74-10 pyrG89 argB2 chA1 �tprA::pyrG This work
IM70-14 pyrG89 yA2 argB2 �phbA::pyrG �uvsB::argB This work
IM71-14 pyrG89 yA2 argB2 �mshA::pyrG �uvsB::argB This work
IM72-2.14 pyrG89 yA2 argB2 �cshA::pyrG �uvsB::argB This work
IM73-104.14A pyrG89 yA2 argB2 �fhdA::pyrG �uvsB::argB This work
IM74-10.14A pyrG89 yA2 argB2 �tprA::pyrG �uvsB::argB This work
TNO2A3 pyrG89 pyroA4 chaA1 �nKuA::argB 53
UI224 pyrG89 yA2 argB2 FGSC
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mycelia as described above. cDNA probes were produced as described previously

(64). Briefly, 30 �g of total RNA was reverse transcribed with Superscript II

RNase H (Invitrogen), using oligo-dT18V (156 pmol) with 50 �Ci [�-33P]dCTP

(2,500 Ci/mol) and unlabeled dATP, dGTP, and dTTP (1 mM each). After an

initial 20 min of incubation, unlabeled dCTP was added to a final concentration

of 1 mM and the reaction was continued for additional 40 min at 42°C. Unin-

corporated nucleotides were separated from the probe by passage through a

Sephadex G50 column (Amersham Bioscience). The radioactive signal was mea-

sured for each set of probes, and about equal cpm of each probe were added to

the hybridization mixtures. Variations in the amount of DNA in the spots were

estimated by hybridizing the membranes with an oligonucleotide probe that

recognized the sequence of the Ampr gene of the pSPORT1 vector (overgo

probe). This probe was synthesized with the primers OSG208 (5� GTGGTCCT

GCAACTTTATCCGC 3�) and OGA243 (5� TAGACTGGATGGAGGCGG

ATAA 3�) in the presence of [�-33P]dCTP according to the protocol described by

J. D. McPherson (http://www.tree.caltech.edu/protocols/overgo.html). Filters

were first hybridized with the oligonucleotide vector probe for 18 h at 58°C (for

details, see http://www.tree.caltech.edu/protocols/overgo.html). After hybridiza-

tion and washing, the filters were exposed for 96 h to a storage phosphor screen

(Imaging Plates; Fujifilm, Tokyo, Japan) and then scanned in a Fuji FLA3000

phosphorimager (Fujifilm, Tokyo, Japan) for image acquisition. The vector

probe was removed by pouring a boiling solution of 0.1% (wt/vol) sodium

dodecyl sulfate (SDS) over the filters and incubating them for 5 min at room

temperature. The probe stripping for the overgo probes was performed twice,

and the efficiency of probe removal was evaluated by phosphorimager scanning

after 48 h of exposure in the image plates. After stripping, the filters were

prehybridized with 5� SSC (1� SSC is 0.15 M NaCl plus 0.015 M sodium

citrate), 10� Denhardt’s solution, 20 mM Tris-HCl (pH 7.5), 1% SDS, 50%

formamide, and 100 �g/ml of salmon sperm DNA for 4 h at 42°C. An �-33P-

labeled cDNA probe was heat denatured for 5 min at 100°C, quickly cooled on

ice, and added to a prewarmed hybridization mixture that consisted of 5� SSC,

2� Denhardt’s solution, 20 mM Tris-HCl (pH 7.5), 1% SDS, 50% formamide,

5% dextran sulfate, and 100 �g/ml of salmon sperm DNA. Hybridization was

carried out for 24 h at 42°C. The filters were washed twice in 2� SSC and 0.1%

SDS for 15 min at 65°C, once in 1� SSC and 0.1% SDS for 15 min at 65°C, and

twice in 0.1� SSC and 0.1% SDS for 15 min at 65°C. After the last wash, the

filters were exposed to image plates for 96 h and scanned, as described above.

Radiolabeled cDNA probes were completely stripped from the filters by washing

them twice with a solution containing 0.4 M NaOH and 0.1% SDS at 65°C

following two neutralizing washes using a solution of 2 M Tris-HCl (pH 8) and

0.1% SDS at room temperature. The filters were then reexposed to the image

plates for 48 h in order to assess the residual labeled probe on each spot. If a

residual signal was detected, the filters were rewashed as described above and

reexposed for an additional 48 h. The result of the additional wash was deter-

mined. No more than two washes were ever required to completely remove the

hybridization signal. Duplicate membranes were probed four times without de-

tectable loss of signal. No cross hybridization signals were observed.

Macroarray analysis. Phosphorimages were analyzed using Arrayvision soft-

ware (Imaging Research, Canada). For each membrane, the grids were pre-

defined and manually adjusted to obtain maximum spot recognition, and the

spots were then individually quantified. The local background was automatically

subtracted from each spot by taking the average intensity of the area surrounding

each spot and subtracting it from the intensity value of each spot (sVol value).

The intensity values generated by the probe vector hybridizations were evaluated

to identify duplicated spots in which the amounts of DNA deposited onto the

membrane were unequal. The coefficients of variation for the duplicated spots in

the filters were calculated, and only spots presenting a coefficient of variation of

�10% were used for further analysis. The macroarray data were pooled by

averaging the two signal intensity values of the duplicated DNA spots and used

to calculate the expression ratios between CPT-treated and untreated samples

for the 30, 60, and 120 min of drug exposure. Each replicate membrane filter was

treated as a separate hybridization but with the same biological material (vari-

ability between replicates was about 10%). To reduce the fluctuations among

replica filters due to differences in the experimental conditions, the sign from

every spot was normalized using the median of all signals on that membrane; i.e.,

the median was set to 1 (47, 64), generating the nVol value. Genes with expres-

sion levels close to the background value were discarded. In order to determine

whether results were reproducible, correlation coefficients for duplicate hybrid-

izations were calculated, and these were greater than 0.91 for all hybridizations.

Differentially expressed genes were identified by Student’s t test by using the

log2s of normalized values from the two replicated experiments, with a P value of

	0.05. The data sets were then imported into Microsoft Excel spreadsheets for

further calculations. Means (M) of the normalized signals for the genes that

showed up-regulation at at least one of the three times of CPT treatment (30, 60,

or 120 min) were then calculated. The fold increase for each ORF was calculated

as M(nVol)CPT-treated/M(nVol)untreated 120 min. The transcripts were clustered

using the TIGR Multi Experiment Viewer 3.1 program (http://tigr.org/software

/tm4/), using agglomerative hierarchical average linkage based on the Euclidean

distance metric.

RESULTS

Establishment of the macroarray. The EST approach is a
rapid and relatively efficient method for quick gene discovery
and also for the establishment of arrays, because the cDNA
clones or their inserts can be spotted on nylon membranes or
glass slides. Since we are interested in investigating the effect of
DNA damage caused by the anti-topoisomerase I drug CPT on
the large-scale gene expression of A. nidulans, we generated a
macroarray for this organism based on this approach. Thus, a
unidirectional cDNA library was constructed for the identifi-
cation of genes expressed when A. nidulans was exposed to 25
�M CPT for 60 min. As previously demonstrated (22), by using
these conditions the uvsCRAD51 (the homologue of the RAD51
gene) mRNA accumulation is increased (see Fig. 4F) and the
DNA damage response is active in A. nidulans. We obtained
8,745 ESTs with a minimum length of 300 bases and a Phred
quality value of at least 20 (2, 20, 21, 29, 31, 73). We sequenced
from the 5� end 8,575, ESTs while 170 were sequenced from
the 3� end. Clustering by the CAP3 program (34) identified
1,214 singlets and 2,405 contigs. Comparison of these ESTs
with the assigned A. nidulans ORFs showed us that these 3,619
ESTs corresponded to 2,787 A. nidulans ORFs (http://www
-genome.wi.mit.edu/annotation/fungi/aspergillus/).

Macroarray analysis of the CPT transcriptional response in

the wild-type strain. To assess A. nidulans gene expression on
a large scale, we constructed a 3,619-element cDNA macroar-
ray by spotting cDNA clones representative of partial se-
quences of 2,787 nonredundant expressed genes from A. nidu-

lans. There are two independent copies of each element in our
array. These cDNA clones contained an average length of
about 1.0 kb. The annotation information provided by the A.

nidulans genome project was used for the designation of genes
in this array (http://www-genome.wi.mit.edu/annotation/fungi
/aspergillus/) (27).

To identify A. nidulans genes that display differential expres-
sion when the mycelia are exposed to CPT 25 �M during
growth, we assessed gene expression at 30, 60, and 120 min in
the presence and absence of CPT. Time course experiments
were performed twice for each time point, yielding 12 inde-
pendent hybridizations. For each experiment, samples were
collected and total RNA was prepared. The cDNAs were gen-
erated from the total RNA samples and labeled with
[�-33P]dCTP. Equal amounts of radioactively labeled cDNA
probes were separately hybridized to duplicate nylon mem-
branes. The signals were converted to relative intensity values,
quantified, and statistically analyzed. Statistical analysis of the
data generated by these hybridization experiments (Student’s t

test; P 	 0.05) showed 1,512 genes that displayed modulation
in their expression at at least one experimental time point. We
were able to observe several genes involved with a variety of
cellular processes, and their specific modulation is likely to be
implicated in the A. nidulans response to CPT (Table 2). These
genes were classified into broad functional categories (DNA
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TABLE 2. CPT-up-regulated A. nidulans genes revealed by transcript profiling in the wild-type strain

Functional category
and ORF

Homologue (NCBI protein accession no.)
BLAST results (species and E value/

% identity/% similarity)

Induction
time(s)
(min)

Chromatin/chromosome
AN1286.2 Putative hira protein; histone transcription regulator

(NP596575)
Schizosaccharomyces pombe e�156/

34/51
60, 120

AN2770.2 Putative histone promoter control protein (NP595268) S. pombe 1e�18/37/51 120
AN2765.2 Histone H1(AAF16011) Ascobolus immersus 4e�17/55/76 60
AN0734.2 Histone H4 (XP_328073) Neurospora crassa 6e�44/100/100 30, 60, 120
AN3468.2 Histone H2A (CAA75581) Aspergillus niger 3e�48/75/76 30, 60
AN8039.2 Histone H2A variant (NP595630) S. pombe 7e�43/83/90 30
AN3469.2 Histone H2B (AAP69672) Actinobacillus capsulatus 3e�42/98/98 60
AN3071.2 Histone acetyltransferase (AAF72665) Homo sapiens 3e�/42/60 120
AN8863.2 Probable nucleosome assembly protein I (CAD70974) N. crassa e�124/59/66 30, 120
AN8851.2 Centromere/microtubule binding protein CBF5

(NP013276)
S. cerevisiae 1e�71/70/80 30, 60

AN0253.2 Topoisomerase I (AAB39507) Candida albicans 0.0/50/65 30
AN2751.2 Topoisomerase II-associated protein PAT1 homolog

(NP595976)
S. pombe 3e�90/29/45 30

AN6364.2 Putative chromosome-associated protein (NP593260) S. pombe 0.0/46/64 30, 60
AN1698.2 Putative involvement in chromatin structure

(NP593191)
S. pombe e�180/43/59 30

AN8742.2 Structural maintenance of chromosome protein
(AAL82734)

A. fumigatus 0.0/57/71 30

DNA repair
AN3129.2 Related to NAD� ADP-ribosyltransferase (PARP)

(CAD21266)
N. crassa 1e�127/43/67 30, 60, 120

AN7309.2 Postreplication repair protein uvs-2 (P33288) N. crassa 1e�75/42/56 120
AN0076.2 Putative excision-repair protein (NP593167) S. pombe 1e�38/25/44 60
AN5344.2 DNA repair protein mus-8 (P52493) N. crassa 3e�63/79/83 30
AN7103.2 Similar to excision repair protein ERCC-6 (Cockayne

syndrome protein CSB) (XP224627)
Rattus norvegicus e�124/51/65 30, 120

AN1708.2 MutS family DNA mismatch repair protein Msh6
(NP588344)

S. pombe 0.0/50/69 30

AN2764.2 DNA repair protein Rad2 (NP594972) S. pombe e�124/60/75 120
AN4407.2 DNA repair and recombination protein Rad22 (RadC

A. nidulans) (NP593207)
S. pombe 2e�53/33/45 60

AN4365.2 Related to DNA mismatch repair homologue
(HPMS2) (XP_325240)

N. crassa 4e�86/31/46 120

AN1237.2 UvsC (Rad51 homologue) (EAL90369.1) A. fumigatus 0.0/98/100 30, 60, 120

DNA metabolism
AN6303.2 Related to replication factor C protein (RP-C)

(CAB91757)
N. crassa 0.0/46/59 60, 120

AN7423.2 Replication protein A (RP-A) (NP595092) S. pombe e�150 46/63 60
AN0415.2 Proliferating cell nuclear antigen (PCNA) (NP596504) S. pombe 1e�92/64/82 120
AN8201.2 DNA helicase, homologue of human XPBC

(NP012123)
S. cerevisiae 0.0/64/75 30, 60, 120

AN0067.2 Ribonucleotide reductase small subunit (BAB13815) Lentinula edodes 1e�138/61/71 30, 60
AN4380.2 Ribonucleotide-diphosphate reductase large chain

(XP322797)
N. crassa 0.0/80/87 60, 120

AN0687.2 Spermidine synthase (XP327013) N. crassa e�131/76/85 30, 60, 120
AN8216.2 Nucleoside diphosphate kinase (AAP85295) A. fumigatus 1e�67/79/90 30
AN0271.2 Deoxyuridine-5�-triphosphate nucleotide (NP593873) S. pombe 4e�46/69/78 30, 120
AN8185.2 Exonuclease II (NP593482) S. pombe 0.0/48/64 30, 120
AN2868.2 Small fragment nuclease (NP077195) Mus musculus 4e�37/48/65 30, 120
AN5932.2 DNA-directed DNA polymerase (CAB57881) S. pombe 0.0/43/60 30
AN2285.2 DNA helicase (NP594979) S. pombe e�159/39/52 120
AN2739.2 DNA polymerase theta isoform 2 (NP955452) H. sapiens e�101/31/48 60, 120

Protein degradation
AN2761.2 Ubiquitin-conjugating enzyme E2, 16 kDa (ubiquitin-

protein ligase)
Glomerella cingulata 6e�82/95/96 30, 120

AN3716.2 19S proteasome regulatory subunit (NP593594) S. pombe 9e�91/46/66 30
AN7422.2 Ubiquitin carboxyl-terminal hydrolase (NP596085) S. pombe e�130/37/53 120
AN6354.2 Ubiquitin carboxyl-terminal hydrolase (NP588530) S. pombe e�118/35/53 30, 120
AN4236.2 Probable 26S proteasome subunit and member of the

CDC48/PAS1/SEC18 family of ATPases (NP014760)
S. cerevisiae e�168/73/85 60, 120

Continued on following page
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TABLE 2—Continued

Functional category
and ORF

Homologue (NCBI protein accession no.)
BLAST results (species and E value/

% identity/% similarity)

Induction
time(s)
(min)

AN0909.2 Hypothetical protein (ubiquitin domain profile)
(EAA65938)

A. nidulans 0.0/92/92 30, 120

AN5981.2 Hypothetical protein (ubiquitin domain profile)
(EAA57730)

A. nidulans 0.0/77/77 60, 120

AN2085.2 Putative proteasome subunit PUP1 (NP014800) S. cerevisiae 7e�93/66/79 60, 120
AN4225.2 26S proteasome regulatory subunit (NP593111) S. pombe e�108/50/68 120
AN2000.2 Polyubiquitin (AAK19308) Tuber borchii e�166/98/100 30, 60, 120
AN7254.2 Cdc48 (AAM08677) A. fumigatus 0.0/90/93 30, 60, 120
AN4236.2 Probable 26S protease subunit and member of the

CDC48/PAS1/SEC18 family of ATPases (NP014760)
S. cerevisiae e�168/73/85 60, 120

AN2212.2 Ubiquitin-conjugating enzyme (NP596239) S. pombe 1e�34/49/65 30, 120
AN5793.2 20S proteasome beta-type subunit (NP015007) S. cerevisiae 1e�75/59/69 30, 60, 120
AN4869.2 20S proteasome component (NP036098) M. musculus 7e�79/57/75 60, 120
AN2416.2 Ubiquitin-activating enzyme E1C isoform 1; Nedd8-

activating enzyme (NP003959)
H. sapiens 4e�81/38/56 120

AN5705.2 Ubiquitin carboxyl terminus (T38954) S. pombe 1e�90/62/90 60, 120
AN1700.2 26S proteasome regulatory subunit (NP596381) S. pombe 0.0/43/62 60
AN4872.2 Monoubiquitin/carboxy extension protein fusion

(AAC24705)
Botryotinia fuckeliana 6e�60/73/79 30

AN4016.2 Ubiquitin fusion protein (CAB50892) Kluyveromyces lactis 8e�66/96/100 30, 60, 120
AN2174.2 Ubiquitin-activating enzyme E1 (O94609) S. pombe 0.0/58/72 30, 60, 120
AN5783.2 20S proteasome component (beta 7) (NP595308) S. pombe 9e�66/51/69 120
AN6988.2 Probable 26S proteasome subunit protein 8 homolog

(NP595870)
S. pombe e�165/77/86 120

AN2416.2 Ubiquitin-activating enzyme E1C isoform 1; Nedd8-
activating enzyme (NP003959)

H. sapiens 4e�81/38/56 120

AN1191.2 Ubiquitin-like modifier (NP596035) S. pombe 8e�20/50/64 120

Signal transduction, cell
cycle

AN1019.2 Putative Scf complex protein (CAD28438) A. fumigatus 0.0/79/85 30, 60, 120
AN6044.2 Similar to cell division cycle 2 homologue protein

kinase (NPKA) (XP235722)
S. pombe 2e�77/58/80 60

AN2412.2 Ca/CaM-dependent kinase-1 (AAL14118) N. crassa 1e�152/71/81 60, 120
AN6508.2 Protein kinase Skp1 (NP593134) S. pombe e�154/70/84 120
AN4182.2 Cell division control protein 2 CDC2 (cyclin-

dependent protein kinase) (XP330428)
N. crassa 1e�140/79/85 30, 120

AN5100.2 Similar to yeast Cdc50 (NP595126) S. pombe 9e�82/44/61 30, 60
AN5102.2 Cell division control protein 68 CDC68 gene product

(Q00976)
K. lactis 0.0/42/60 30, 60, 120

AN5744.2 14-3-3-like protein (AAP22960) Paracoccidioides brasiliensis e�124/
92/97

30, 120

AN1560.2 Polo-like kinase (BAB18588) Hemicentrotus pulcherrimus 1e�59/
42/61

30, 120

AN2047.2 Calmodulin (AAC96324) Magnaporthe grisea 1e�76/97/100 120
AN4583.2 Peptidylprolyl isomerase D (cyclophilin D)

(NP080628)
M. musculus 1e�86/48/59 60, 120

Miscellaneous
AN6073.2 Putative prohibitin (NP588144) S. pombe 4e�88/68/78 30, 60, 120
AN2893.2 Smad nuclear interacting protein (35.8 kDa)

(NP451217)
Caenorhabditis elegans 3e�29/43/63 120

AN7374.2 Hypothetical protein (EAA61745) A. nidulans e�119/100/100 30, 60, 120
AN3617.2 Tetratrico peptide repeat (ZP00109827) Nostoc punctiforme 3e�2/43/64 30, 60, 120
AN8562.2 Hypothetical protein (ankirin repeats) (EAA66987) A. nidulans 0.0/95/95 60, 120
AN1556.2 WD-40 repeat protein family (NP564469) Arabidopsis thaliana 4e�39/29/48 120
AN7170.2 Hypothetical protein (Myc type, helix-loop-helix)

(EAA61422)
A. nidulans e�101/70/70 30, 60, 120

AN4119.2 Major facilitator superfamily (AAO49453) Leptosphaeria maculans e�133/48/64 120
AN8489.2 ABC transporter PMR5 (BAB59028) Penicillium digitatum 0.0/71/83 120
AN2210.2 Probable ABC-transporter (NP200887) A. thaliana e�170/55/72 30, 60, 120
AN8746.2 Transcription factor Bft3 homologue (NP594757) S. pombe 4e�37/52/68 60, 120
AN1217.2 LIM/homeobox transcription factor (Q25132) Halocynthia roretzi 3e�07/38/58 30, 60, 120
AN2919.2 Zinc finger transcription factor ACE I (AAL69549) Talaromyces emersonii e�131/43/56 30, 60, 120
AN0273.2 Transcription factor that activates expression of early

G1-specific genes (NP013232)
S. cerevisiae 5e�11/28/42 30, 60, 120
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repair, DNA metabolism, proteasome, signal transduction, and
cell cycle). The data for the time course experiments as well as
the complete list of regulated genes are available online at
http://143.107.203.68/camptothean/html_iran_pub/.

Cluster analysis of transcriptionally induced genes. The
1,512 modulated elements from wild-type A. nidulans have also
been analyzed with the aid of a K-means algorithm, in an
attempt to cluster genes according to the similarities in their
expression profiles. Their distribution into 60 distinct clusters
shows a large number of genes with minor alterations in their
expression levels, while others were dramatically up- or down-
regulated at one or more steps of exposure to CPT (Fig. 1). We
focused our attention in the two clusters that seemed to con-
tain genes with the most intense and consistent up-regulation
profiles (counting from the top left to right, clusters 35 and 49
in Fig. 1). In cluster 35, genes were highly expressed upon
induction with CPT for 60 and 120 min, while cluster 49 con-
tained genes that were overexpressed at all the time points.
Most of the genes which are down-regulated, which are present
in the clusters 16, 53, 54, and 55, encode hypothetical proteins
(http://143.107.203.68/camptothean/html_iran_pub/).

In cluster 35, we have observed eight genes encoding hypo-

thetical proteins (AN1066.2, AN4049.2, AN5352.2, AN9412.2,
AN2029.2 [contains an F-box domain], AN7374.2, AN8462.2,
and AN8562.2 [contains ankirin repeats]) and four other genes
encoding a putative ATP-dependent helicase (AN7753.2), a
fumarate hydratase (AN8707.2), a 6-phosphogluconate dehy-
drogenase (AN3954.2), and a forkhead-associated domain pro-
tein (AN2893.2). Cluster 49 shows the up-regulation of three
genes encoding the poly(ADP-ribose) polymerase (PARP)
(AN3129.2; named prpA previously [67]), a hypothetical pro-
tein that contains a tetratrico peptide repeat (AN3617.2), and
a multidrug ABC transporter (AN8489.2).

To assess the reliability of the macroarray results and vali-
date the expression of some of these genes, we chose three
genes from clusters 35 and 49, manually selected 20 genes from
our significant-gene list (Table 2) of more expressed genes,
designed Lux probes, and used real-time RT-PCR analysis to
quantify their expression in the presence of CPT (see Fig. S1 in
the supplemental material). The results were expressed as the
relative A. nidulans growth in the presence of CPT divided by
the growth in the absence of CPT transcripts, where the growth
in the absence of CPT transcript copy number was given a
value of 1 (see Fig. S1 in the supplemental material). We also

FIG. 1. Clusters of gene expression generated by the K-means algorithm. The 1,512 genes that showed modulation in expression during the
exposure of the A. nidulans wild-type strain to CPT were evaluated by a figure-of-merit algorithm. The results obtained supported their subdivision
into 60 clusters, which was achieved with the aid of a K-means algorithm. Groups of genes with similar modulation of gene expression during
exposure to CPT are located in each cluster. The figure shows, on the y axis, the variation in the log2(Cy5/Cy3) ratios (from �4 to 4) and, on the
x axis, the different time points of the exposure to CPT, taking as a reference their respective expression levels at the corresponding time in the
absence of CPT. Clusters 35 and 49, containing genes that displayed the most intense and consistent up-regulation profiles, are indicated by
boldface and are shown in more detail in Fig. 5.
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compared the gene expression variation estimated by these two
methodologies by calculating both Pearson’s (RP) and Spear-
man’s (RS) correlation coefficients for the log2 ratios obtained
by the two approaches. As shown in Table 3, the value of either
RP or RS was above 0.50 (indicating moderate to strong cor-
relation) for 19 out of 23 genes (about 80% of the cases). Thus,
although we were able to detect some discrepancies between
the two methodologies, it seems that our macroarray hybrid-
ization approach is capable of providing information about A.

nidulans gene expression modulation with a considerably high
level of confidence. Our results strongly indicate that the genes
described here might have their mRNA expression increased
when A. nidulans is growing in the presence of CPT and pos-
sibly are involved in the DNA damage response.

Macroarray analysis of the CPT transcriptional response in

the uvsBATR strain. In several eukaryotic organisms, DNA
damage checkpoint activation is controlled by the conserved
family of ATM/ATR kinases (55, 68), which includes A. nidu-

lans UvsBATR and AtmAATM (14, 46). It has already been
shown that ATR is important in responding to the replication-
associated DNA damage from topoisomerase poisons (12).
Thus, to identify genes that have their expression dependent
on uvsBATR (the homologue of the ATR gene), we once more
assessed gene expression when the uvsBATR mutant strain was
grown for 30, 60, and 120 min in the presence and absence of
CPT. The same experimental design previously described for
the wild-type strain was again followed for the uvsBATR mutant
strain; i.e., time course experiments were performed twice for
each time point, yielding 12 independent hybridizations. It is
important to note that we did not detect any significant differ-

ence in survival with CPT treatment when the uvsBATR strain
was compared to the wild-type strain (data not shown), so the
expression data corresponded mainly to differences due to the
presence or absence of this gene. Statistical analysis of the data
generated by these hybridization experiments (Student’s t test;
P 	 0.05) showed about 1,700 genes that displayed modulation
in their expression at at least one experimental time point.
These data were compared to the corresponding data for wild-
type expression during growth in the presence of camptothecin
(Fig. 2 and 3). Altogether, there are 1,124, 820, and 891 genes
that are up-regulated and 908, 707, and 550 genes that are
down-regulated when both strains are exposed to CPT for 30,
60, and 120 min (Fig. 2). Surprisingly, there is only one gene
(AN5014.2, encoding a homologue of the 60S ribosomal pro-
tein L22) that showed overlap in the Venn diagram between
the three time points for increased and decreased mRNA
expression in the wild-type and the �uvsB mutant strain, re-
spectively. In order to have a comparative view of these alter-
ations, we arbitrarily and manually selected 84 genes from our
list of significant genes and hierarchically clustered them (Fig.
3). (The complete list of gene expression for the wild-type and
�uvsB mutant strains is available in Table S3 in the supple-
mental material and at http://143.107.203.68/camptothean
/html_iran_pub/.) This hierarchical clustering could be divided
into four groups (I to IV). We characterized in more detail
some representative genes belonging to the different groups. In
group I, we chose ORFs AN2893.2 and AN3617.2, which cor-
respond to genes encoding a forkhead-associated domain pro-
tein (named fhdA) and a hypothetical protein that contains a
tetratrico peptide repeat (named tprA), respectively. In group

TABLE 3. Comparison of gene expression values obtained with macroarray hybridization and real-time RT-PCR

Gene product (ORF)

Log2 ratio between value after the indicated time
(min) of CPT treatment and reference

point value (array/RT-PCR)
Correlation coefficienta

(RP/RS)

30 60 120

Ubiquitin carboxyl-terminal hydrolase (AN7422.2) 0.17/0.32 0.15/2.12 0.84/3.59 0.82/0.46
Ubiquitin-like modifier (AN1191.2) �0.22/1.48 �0.12/1.90 0.39/3.24 0.99/0.94
Histone acetyltransferase (AN3071.2) 0.45/0.06 0.52/0.43 0.95/1.35 0.99/0.89
Ubiquitin-activating enzyme Ned8 (AN2416.2) �0.14/1.28 �0.25/1.23 0.49/1.39 0.99/0.94
Histone H2A variant (AN8039.2) 0.25/1.72 �0.13/1.04 �0.54/0.78 0.96/0.89
Rad52 (AN4407.2) 0.27/1.29 2.07/3.35 0.23/2.83 0.68/0.49
PARP (AN3129.2) 1.17/3025 3.06/3.88 3.39/4.46 0.94/0.94
Rad2 (AN2764.2) �1.10/1.65 �0.12/1.08 0.37/0.63 �0.99/�0.98
Rad26 (AN7103.2) 0.36/2.18 �0.08/3.71 0.68/4.38 0.20/0.50
Rad18 (uvsH) (AN7309.2) 0.60/1.57 �0.55/2.37 0.69/3.76 0.22/0.43
MutS (AN1708.2) 0.78/1.17 0.79/4.55 �0.06/4.30 �0.06/0.43
Smad (AN2893.2) 0.07/1.33 1.76/2.41 2.66/2.65 0.98/0.89
Prohibitin (AN6073.2) 1.21/1.06 0.34/1.63 0.74/3.47 �0.27/�0.50
Sulfur metabolite repression control protein SconB (AN6359.2) 0.69/0.97 0.12/2.01 0.49/2.38 �0.58/�0.37
Helicase (AN2285.2) �1.09/0.19 �0.91/2.91 1.91/3.76 0.72/0.89
Topoisomerase I (AN0253.2) 0.96/2.06 �0.05/1.50 �0.21/2.12 0.30/�0.41
UvsC (Rad51 homologue) (AN1237.2) 0.43/1.43 0.67/1.98 1.20/0.33 �0.17/0.08
Ribonucleotide reductase small subunit (AN0067.2) 1.08/0.09 1.23/0.92 0.39/2.12 �0.83/�0.49
Ribonucleotide-diphosphate reductase large chain (AN4380.2) 0.43/1.52 0.94/1.97 1.17/3.31 0.91/0.89
Myb-like DNA binding protein Myb-1 (AN0279.2) 0.76/0.32 0.69/1.14 �0.69/1.19 �0.58/�0.99
Tetratrico peptide repeat (AN3617.2) 2.75/2.26 3.28/3.64 4.23/7.78 0.99/0.87
HpmS2 (AN4365.2) 0.73/0.99 1.58/2.03 1.22/2.55 0.72/0.50
Cell division cycle 2 homolog protein kinase (NPKA) (AN6044.2) �0.22/1.07 0.74/0.97 �0.29/3.30 �0.58/0.94

a Correlation coefficients calculated after comparison of the array and RT-PCR data for each gene. We calculated both Pearson’s (RP) and Spearman’s (RS)
correlation coefficients for each pair of curves. The former is more adequate for comparisons in which the data assume a normal distribution, while the latter is more
appropriate for data sets which do not follow a normal distribution. The highest R value is in boldface.
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II, two genes were selected: ORFs AN1708.2, corresponding to
a gene encoding a MutS homologue (mshA) involved in mis-
match repair, and AN6073.2, a prohibitin gene homologue
(phbA) which encodes a protein localized to the mitochondria,
where it might have a role in the maintenance of mitochondrial
function and protection against senescence (51). In group
IV, uvsCRAD51 (AN1237.2), and ORF AN7103.2 (cshA),
which corresponds to a gene that encodes a homologue of
the excision repair protein CSB (Cockayne’s syndrome pro-
tein; more highly expressed at 30 and 120 min [Table 2]),
were selected for further studies. Additionally, we have rec-
ognized the npkA gene (AN6044.2) in group III, which en-
codes a cdc2-related kinase that we had previously shown to
interact with uvsBATR (23).

First, we checked whether the mRNA expression of phbA,
mshA, cshA, fhdA, tprA, and uvsC was dependent on the
uvsBATR deletion mutant background. Thus, the uvsBATR de-
letion mutant was grown in the absence of any drug and trans-
ferred to 25 �M of CPT for 30, 60, and 120 min. Then, mRNA
was isolated, and real-time RT-PCR was performed. As pre-
viously shown (see Fig. S1 in the supplemental material), all
these genes are induced at the mRNA level when the wild type
is exposed to CPT; however, when the �uvsBATR mutant is
exposed to CPT, the mRNA expression of all these genes is

broadly down-regulated (Fig. 4). These results show that the
induced transcript levels of the phbA, mshA, cshA, fhdA, trpA,
and uvsC genes in the presence of CPT require uvsBATR.

To have more information about the function of some of
the genes identified as being more expressed in the wild type
and repressed in the �uvsBATR mutant when both strains
are exposed to camptothecin, we inactivated the phbA,
mshA, cshA, fhdA, and tprA genes by PCR-mediated dele-
tion (see Fig. S2 in the supplemental material). The uvs-

CRAD51 gene has been previously deleted (35). These dele-
tion mutants and the corresponding parental strain were
grown in the presence of different DNA-damaging and ox-
idative stress agents. Surprisingly, only the �uvsC mutant
strain was sensitive to CPT; in addition, this strain was also
sensitive to 4-nitroquinoline-1-oxide (4-NQO), HU, bleomy-
cin (BLEO), and paraquat (PARAQ) but was as sensitive as
the wild type to menadione (MENA) (Fig. 5). However, all the
mutant strains except the �tprA mutant are more BLEO sen-
sitive (Fig. 5). The �cshA and �mshA mutant strains showed
slight sensitivity to 4-NQO (Fig. 5). The �phbA and �fhdA

mutants showed MENA sensitivity, while all mutant strains
displayed PARAQ sensitivity, except the �cshA and �fhdA

mutants, which are as sensitive to PARAQ as the wild type. No
significant difference in sensitivity to UV light was observed
between these null mutants and the corresponding wild-type
strain (data not shown). Taken together, these results indicate
that the selected genes when inactivated displayed very com-
plex and heterogeneous phenotypes of sensitivity during
growth in the presence of agents that directly or indirectly
cause DNA damaging. All these phenotypes are identical in
media either supplemented with UU or not. Furthermore,
since most of these inactivation mutants are not sensitive to
CPT, the data also indicated that the transcriptional response
of A. nidulans to CPT does not necessarily identify genes that
directly protect against this genotoxic agent.

To learn more about the relationship between sensitivity to
growth in the presence of these agents and the transcriptional
response of the selected genes to them, we exposed the wild-
type strain to MMS, BLEO, and 4-NQO (Fig. 6) and MENA
and PARAQ (Fig. 7) and verified the mRNA expression of
these genes. The mshA and cshA genes showed a low level of
mRNA increase in the presence of MMS, BLEO, and 4-NQO
(2- to 3-fold), while phbA responded (1.2- to 2-fold induction)
to MMS and 4-NQO and fhdA responded (about 5-fold at 60
min) to MMS and BLEO. The uvsC gene showed about 6-, 17-,
and 7-fold mRNA increases when the wild-type strain was
exposed to MMS, BLEO, and 4-NQO for 60 min and a 9-fold
increase when exposed to 4-NQO for 120 min. The tprA gene
showed the highest expression (about 80-fold) after 120 min in
the presence of MMS. When the wild-type strain was exposed
to different concentrations of PARAQ and MENA, the mshA

and phbA genes showed low levels of mRNA increase (about
1.2- to 3-fold) (Fig. 7). In contrast, the fhdA, cshA, and uvsC

genes displayed high levels of mRNA expression when the
wild-type strain was exposed to different concentrations of
PARAQ (about 9-fold) and MENA (10- to 12-fold) (Fig. 7).
The tprA gene showed increased mRNA expression only in the
presence of 1 mM PARAQ (Fig. 7). These data suggest a very
complex transcriptional behavior of these genes when A. nidu-

FIG. 2. Venn diagram representation of transcripts identified as
exposed to CPT by 30 (A), 60 (B), and 120 (C) minutes. Wild-type and
uvsBATR deletion mutant strains are identified as gray and white cir-
cles, respectively.
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lans is exposed to different DNA-damaging and oxidative stress
agents.

Interestingly, we have also observed during the growth of
the �mshA mutant strain the appearance of sectors, which

could be a hallmark of genetic instability for this strain.
Thus, we investigated this phenotype by growing the wild-
type and �mshA mutant strains in the absence and presence
of 25 �M of CPT and 0.04 mM of MENA. The �mshA

FIG. 3. Hierarchical clustering showing the pattern of expression of arbitrarily selected genes from A. nidulans wild-type and uvsBATR deletion
mutant strains when exposed to CPT. The color code displays the log2 ratio for each time point, having as the reference value the treatment without
CPT for each time point. The genes highlighted in boldface were deleted in this work. Note that all the genes from clusters 35 (except AN1066.2,
AN2029.2, AN7753.2, AN8707.2, and AN3954.2) and 49 (identified in Fig. 2) are present in this list of selected genes.
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mutant strain grew about 25% faster than the wild-type
strain in the absence and presence of CPT; however, it grew
at about the same rate as the wild type in the presence of
MENA. The number of sectors in the �mshA mutant strain
was comparable in the absence of any drug treatment and in
the presence of MENA, but the number of sectors was
increased in the presence of CPT (data not shown), con-
firming that the mshA gene is an important component in
the pathways that contribute to A. nidulans genetic stability.

We constructed double-inactivation mutants with uvs-

BATR and these deleted genes (phbA, mshA, cshA, fhdA,
tprA, and uvsCRAD51) to screen for possible genetic interac-
tions. Surprisingly, in most cases, the deletion mutants ex-
hibited cosuppression with uvsBATR (Fig. 8). For example,
whereas both the uvsB and phbA mutants were extremely
sensitive to PARAQ, the double mutant grew almost as well
as the wild type. These observations suggest that a complex
network of functions controls the response to oxidative in-
ducing agents such as MENA and PARAQ. Furthermore,
many of these functions appear to act in a manner that is
antagonistic to UvsB, which could account for the observed
cosuppression.

DISCUSSION

Topoisomerases are enzymes that modify and regulate the
topological state of DNA (72). Since they are required for
replication, transcription, recombination, and chromosome
segregation, they have an important role in the maintenance of
genome integrity (6, 43). During the cleavage reaction, topo-
isomerases covalently attach to newly generated DNA 5� phos-
photyrosyl bonds (members of the type IA subfamily, including
E. coli topoisomerases I and III, eukaryotic topoisomerase III,
and archaeal reverse gyrase) or 3� phosphotyrosyl bonds
(members of the type IB subfamily, including eukaryotic topo-
isomerase I, archaeal topoisomerase V, and the poxvirus type
I topoisomerases) (26, 33, 43, 44, 70). Under normal circum-
stances, these covalent enzyme-DNA cleavage complexes are
fleeting catalytic intermediates and are present at low steady-
state concentrations that are tolerated by the cell. However,
conditions that significantly increase the physiological concen-
tration or lifetime of these breaks, such as exposure to the
anti-topoisomerase I drug CPT, cause several deleterious side
effects, including mutations, insertions, deletions, and chromo-
somal aberrations. The basic mechanism of action for CPT is

FIG. 4. Expression of phbA (A), mshA (B), cshA (C), fhdA (D), tprA (E), and uvsC (F) mRNAs is dependent on the uvsBATR gene when A.
nidulans is grown in the presence of CPT. The wild-type and �uvsB strains were grown in YG medium for 16 h at 37°C and then transferred to
YG or YG plus 25 �M of CPT for 30, 60, and 120 min. RNA was extracted and DNase treated, and RT-PCRs were run. The measured quantity
of each gene mRNA in each of the treated samples was normalized using the cycle threshold values obtained for the tubC RNA amplifications run
in the same plate. The relative quantitation of each gene and tubulin gene expression was determined by a standard curve (i.e., cycle threshold
values plotted against logarithm of the DNA copy number). Results of four sets of experiments were combined for each determination; means 

standard deviations are shown. The values represent the number of times that the genes are expressed compared to that for the wild type or the
�uvsB mutant grown without any drug (represented absolutely as 1.00).
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well characterized (26). Briefly, CPT generates replication-
mediated DSBs, which in turn induce reversible or permanent
cell cycle arrest in G2-M. The repair of a topoisomerase lesion
presents special problems because the strand break is entan-
gled with a covalently bound polypeptide. To restore the in-
tegrity of the chromosomal DNA, this polypeptide must be
removed. Mutants defective in DNA repair show increased
sensitivity to topoisomerase poisons, and it has already been
reported that in Saccharomyces cerevisiae multiple pathways
could repair topoisomerase damage (45, 69). Thus, to examine
gene expression during DNA damage caused by CPT, we have
performed a high-throughput macroarray hybridization analy-
sis of A. nidulans.

We evaluated gene expression in both A. nidulans wild-type
and uvsBATR deletion mutant strains in a time course exposure
to CPT. We concentrated our analysis on the genes that are
transcriptionally induced during the exposure of the A. nidu-

lans wild-type strain to CPT and analyzed whether the mRNA
expression of these genes was different in the uvsBATR deletion
mutant background compared to the wild-type strain. Some of
these genes were investigated in more detail by generating
deletion mutants and observing their mRNA expression when
the wild-type and uvsBATR deletion mutant strains were ex-
posed to several DNA-damaging and oxidative stress agents.
Furthermore, we also observed possible genetic interactions
with the uvsBATR deletion mutant by constructing double mu-
tants with these deletion strains. Surprisingly, we have shown
that among six genes induced by CPT at the mRNA level, only
one (uvsCRAD51) displayed CPT sensitivity when inactivated,
indicating that their roles in processing DNA lesions produced
by DNA-damaging agents cannot easily be inferred from gene

expression profiling. It has already been shown that the tran-
scriptional response of S. cerevisiae to DNA-damaging agents
does not identify the genes that protect against these agents
(7). However, in contrast to those authors, we have observed a
much more complex behavior and relationship between
mRNA expression and protection against these agents. Actu-
ally, this behavior was observed not only for CPT but also for
other DNA-damaging and oxidative stress agents. For in-
stance, most of the genes when inactivated caused BLEO sen-
sitivity, but they were either not induced by this drug or showed
only a slight mRNA increase. Furthermore, uvsCRAD51 was
highly induced by MENA and PARAQ, but the uvsCRAD51

deletion mutant strain is not very sensitive to these agents.
Genes induced during DNA damage caused by CPT. Tran-

scriptional and translational changes after DNA damage can
be either primary responses to the damage or secondary to
cellular processes responding to the damage. Identification of
changes in gene expression levels can provide a useful link
between DNA damage and CPT sensitivity. The transcrip-
tional regulation of genes by CPT-induced DNA damage could
reflect resistance mechanisms, and resistance to this drug could
be the result of (i) alterations in topoisomerase I that confer
resistance to CPT, (ii) cellular accumulation and transport of
CPT, and (iii) alterations in the ternary complex formation
(60). We have observed several transporters from the ABC
family and major facilitator superfamily as being more ex-
pressed during exposure to CPT. These genes could be in-
volved in the detoxification of CPT by pumping this drug out of
the cytoplasm. In yeast, mutations in the ABC protein Snq2
result in CPT resistance (61). In mammalian cells, MDR1
overexpression confers resistance to CPT (11), while inhibition

FIG. 5. Growth phenotypes of the inactivation mutants. Wild-type (wt) (UI224), �phbA (IM70), �mshA(IM71), �cshA (IM72-3), �fhdA
(IM73-104), �tprA (IM74-10), and �uvsC (ATr60cd1-14) strains were grown for 72 h at 37°C in YUU, YUU plus CPT (25 �M), YUU plus 4-NQO
(0.3 �g/ml), YUU plus HU (10 mM), YUU plus BLEO (4 �g/ml), YUU plus MENA (0.05 mM), and YUU plus PARAQ (2 mM).
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of MRP2 gene expression can increase cellular sensitivity to
CPT derivatives (41).

There is relatively little known about the pathways down-
stream from CPT-topoisomerase I-DNA ternary complex for-
mation that lead to repair of DNA damage or cell death.
Several DNA replication, DNA damage checkpoint, and DNA
repair proteins have been involved in the response to cleavage
complex formation (for a review, see reference 60). Taking
into consideration the repair of CPT-induced DNA damage,
both mismatch repair and base excision repair systems are
implicated. Accordingly, we have observed several genes in-
volved in these pathways as being induced upon CPT exposure
(Table 2). In addition to DNA repair genes, we have also
detected genes involved in (i) chromatin and DNA metabo-
lism, such as histone and ribonucleotide reductase genes; (ii)
protein degradation, such as genes encoding ubiquitin and
subunits of the proteasome; and (iii) signal transduction and
cell cycle, such as polo-like kinase and calmodulin genes. Some
of the genes observed to be more induced in the presence of
CPT were also seen to be expressed in other studies addressing
the global transcriptional regulation of genes by CPT-induced
DNA damage (13, 32, 50, 52, 77). Genes that act in the ubiq-
uitin/proteasome-dependent degradation pathway (77), in

DNA repair (such as RAD51 and PARP) (52), and in chroma-
tin architecture (such as the histone H2A gene) (50) were also
detected as being more induced by CPT. The participation of
these genes in the CPT DNA damage transcriptional response
remains to be determined.

We have observed that the genes encoding fumarate hy-
dratase, 6-phosphogluconate dehydrogenase, and PARP are
the most expressed genes in our macroarray hybridizations.
The fumarate hydratase is a nucleus-encoded mitochondrial
protein and an enzyme of the tricarboxylic acid cycle that has
been implicated in tumor susceptibility (30). Mutations in mi-
tochondrial tumor suppressor genes can contribute to tumor
formation through redox stress resulting from increased pro-
duction of reactive oxygen species (ROS) in mitochondria (30).
Increased production of this gene could contribute to avoid-
ance of DNA damage caused by ROS production. The 6-phos-
phogluconate dehydrogenase is an enzyme of the pentose
phosphate pathway that produces important precursors for
DNA biosynthesis and repair. Zhang et al. (75) have shown
that in the highly resistant bacterium Deinococcus radiodurans,
the pentose phosphate pathway augmented the excision repair
system by providing cells with adequate metabolites. PARP
consumes NAD� to catalyze the formation of ADP-ribosyl

FIG. 6. Expression of phbA, mshA, cshA, fhdA, tprA, and uvsC mRNAs when A. nidulans is exposed to different DNA-damaging agents. The
wild-type strain was grown in YG medium for 16 h at 37°C and then transferred to YG, YG plus 0.003% MMS, YG plus 1.0 �g/ml BLEO, or YG
plus 0.5 �g/ml 4-NQO for 30, 60, and 120 min. RNA was extracted and DNase treated, and RT-PCRs were run. The measured quantity of each
gene mRNA in each of the treated samples was normalized using the cycle threshold values obtained for the tubC RNA amplifications run in the
same plate. The relative quantitation of each gene and tubulin gene expression was determined by a standard curve (i.e., cycle threshold values
plotted against logarithm of the DNA copy number). Results of four sets of experiments were combined for each determination; means 
 standard
deviations are shown. The values represent the number of times that the genes are expressed compared to that for the wild type or the �uvsB
mutant grown without any drug (represented absolutely as 1.00).

VOL. 5, 2006 TRANSCRIPTIONAL PROFILE OF CAMPTOTHECIN 1699

 a
t U

N
IV

 O
F

 N
E

B
R

A
S

K
A

-L
IN

C
O

L
N

 o
n
 S

e
p
te

m
b
e
r 1

8
, 2

0
0
7
 

e
c
.a

s
m

.o
rg

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://ec.asm.org


groups on target proteins. Modification of a target by PARP is
a rapid response capable of altering protein activity and/or
stability (reviewed in references 36 and 40). Accordingly,
PARP plays an integral role in the cellular response to a
variety of stresses, most notably DNA damage (for a review,
see reference 3). Recently, we characterized a putative PARP
homologue (PrpA) in A. nidulans (67). The genetic analysis of

prpA demonstrates that it is an essential gene whose role in the
DNA damage response is sensitive to gene dosage. Notably,
temporal patterns of prpA expression and PrpA-GFP nuclear
localization suggest that PrpA acts early in the A. nidulans

DNA damage response. Interestingly, the prpA gene is highly
expressed at all time points in our array, highlighting its im-
portance upon DNA damage in A. nidulans.

FIG. 7. Expression of phbA, mshA, cshA, fhdA, tprA, and uvsC mRNAs when A. nidulans is exposed to different oxidative stress agents. The
wild-type strain was grown in YG medium for 16 h at 37°C and then transferred to YG, YG plus PARAQ (1 or 5 mM), or YG plus MENA (0.1
or 0.5 mM) for 60 min. RNA was extracted and DNase treated, and RT-PCRs were run. The measured quantity of each gene mRNA in each of
the treated samples was normalized using the cycle threshold values obtained for the tubC RNA amplifications run in the same plate. The relative
quantitation of each gene and tubulin gene expression was determined by a standard curve (i.e., cycle threshold values plotted against logarithm
of the DNA copy number). Results of four sets of experiments were combined for each determination; means 
 standard deviations are shown.
The values represent the number of times that the genes are expressed compared to that for the wild type or the �uvsB mutant grown without any
drug (represented absolutely as 1.00).

1700 MALAVAZI ET AL. EUKARYOT. CELL

 a
t U

N
IV

 O
F

 N
E

B
R

A
S

K
A

-L
IN

C
O

L
N

 o
n
 S

e
p
te

m
b
e
r 1

8
, 2

0
0
7
 

e
c
.a

s
m

.o
rg

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://ec.asm.org


We have further investigated the participation of inactivated
phbA, mshA, tprA, chsA, fhdA, and uvsCRAD51 genes by grow-
ing null mutant strains in the presence of several DNA-dam-
aging and oxidative stress agents. Most of these deletion strains
were more sensitive to BLEO than the corresponding wild-
type strain. Furthermore, the �phbA, �mshA, and �cshA mu-
tant strains were more sensitive to oxidative stress agents, such
as MENA and PARAQ. The phbA, mshA, and cshA genes are
homologues of the prohibitin, MutS, and CSB genes, respec-
tively, while tprA and fhdA encode hypothetical proteins that
have tetrarico repeats and a forkhead-associated domain, re-
spectively. Two prohibitins (PHB and PHB2 products) together
can form a high-molecular-weight complex, and these com-
plexes have been identified in both the mitochondria and the
plasma membrane (51). The least-controversial and best-de-
scribed function of the prohibitins is as chaperone proteins in
the mitochondria in the stabilization of newly synthesized sub-
units of mitochondrial respiratory enzymes (51). However,
prohibitins have potential roles as tumor suppressors, as anti-
proliferative proteins, as regulators of cell cycle progression, in
the yeast replicative life span, and in apoptosis (37, 38, 51).
Besides the phbA gene (AN6073.2), A. nidulans has another
prohibitin homologue, phbB (AN6861.2 [product 51% identi-

cal and 72% similar to PhbA; E value of 2e�64]), and it
remains to be determined if the proteins encoded by these two
genes also interact to form a complex. Our results emphasize a
possible role played by phbA in the DNA damage and oxidative
stress response.

We have observed that A. nidulans �mshA and �cshA mu-
tant strains are more sensitive to 4-NQO, MENA, and
PARAQ. The mshA product is the homologue of MutS, and
several studies on prokaryotic and eukaryotic MutS homo-
logues also demonstrated their involvement in the repair of
oxidative DNA damage (4, 9, 17, 18, 19, 49, 54, 72). Interest-
ingly, we observed a very high genetic instability in the �mshA

mutant strain that was translated by the presence of several
sectors when a colony of this strain was exposed to CPT or
MENA. The cshA gene is the homologue of CSB, which is
involved in the transcription-coupled repair subpathway of nu-
cleotide excision repair, providing the cell with a mechanism to
remove transcription-blocking lesions from the transcribed
strands of actively transcribed genes (16). Mutations in human
CSA and CSB cause Cockayne’s syndrome, a rare inherited
disorder characterized by UV sensitivity, severe neurological
abnormalities, and progeriod symptoms (15). Using a mouse
model for CSB, it has been shown that CSB-deficient cells and

FIG. 8. The double-inactivation mutants are more sensitive to oxidative stress agents. Wild-type (UI224), �uvsBATR, �phbA (IM70), �phbA
�uvsB (IM70-14), �mshA (IM71), �mshA �uvsB (IM71-14), �cshA (IM72-3), �cshA �uvsB (IM72-2.14), �fhdA (IM73-104), �fhdA �uvsB
(IM73-104.14A), �tprA (IM74-10), and �trpA �uvsB (IM74-10.14A) strains were grown for 72 h at 37°C in YUU, YUU plus MENA (0.05 mM),
and YUU plus PARAQ (2 mM).
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animals are sensitive to oxidative DNA damage. In contrast to
CSB�/� mouse embryonic fibroblasts, CSA�/� mouse embry-
onic fibroblasts are not hypersensitive to paraquat (16). These
differences in the DNA damage response between human CSA

and CSB and A. nidulans cshA not only uncover a clear differ-
ence in oxidative DNA damage sensitivity between CSA- and
CSB-deficient cell lines and mice but also show differences in
this system in the two species. Our data confirm that in A.

nidulans the CSB homologue (cshA) is also involved in the
repair of oxidative DNA damage. A CSA homologue has also
been identified in this organism (AN5235.2), but its function
has not been investigated yet.

Our results indicate that CPT is able to induce the expres-
sion of several genes in different pathways, including DNA
repair, which are also involved in DNA damage caused by
oxidative stress.

The uvsBATR gene is important for the response to DNA

damage induced by CPT and oxidative stress. It has been
shown that ATR is important in responding to the replication-
associated DNA damage caused by camptothecin (12, 25).
Down-regulation of ATR or Chk1 sensitized cells to 7-ethyl-
10-hydroxycamptothecin (SN-38) and camptothecin, but in
contrast, down-regulation of ATM and Chk2 had a minimal
effect on sensitivity to these drugs (25). Interestingly, besides
the known sensitivity to other DNA-damaging agents, such
as CPT (24), the uvsBATR deletion mutant was shown to be
more sensitive to oxidative stress agents, such as MENA and
PARAQ.

We have observed that the mRNA expression of a great
number of genes was affected by the absence of uvsBATR.
Furthermore, not only is the expression of some of these genes
dependent on uvsBATR, but when some of them are inacti-
vated, such as phbA, mshA, tprA, chsA and fhdA, they geneti-
cally interact with the uvsBATR deletion mutation. Curiously,
all these genetic interactions partially suppressed growth inac-
tivation in the presence of MENA and PARAQ but not DNA-
damaging agents. These results suggest that UvsBATR probably
monitors DNA damage caused by oxidative stress agents and
that PhbA, MshA, TprA, CshA, and FhdA genetically interact
with the UvsBATR complex during oxidative stress damage
caused by these agents. It has been reported that during DNA
damage caused by the DNA-methylating agent N-methyl-N�-
nitro-N-nitrosoguanidine, the MSH2 (MutS homologue 2)
protein interacts with the ATR kinase to form a signaling
module and regulate the phosphorylation of Chk1 and SMC1
(structure maintenance of chromosome 1) (71). The interac-
tions with phbA and chsA inactivation mutants are novel and
emphasize the role played by these genes in the DNA damage
response mediated by uvsBATR.

In summary, we have provided information about genes
which are regulated at the mRNA level in the presence of CPT
in A. nidulans and have evaluated the influence of the mutation
�uvsBATR on the mRNA expression of these genes in the
presence of CPT. Our results emphasize the complex network
of interactions involved in DNA damage. The response to CPT
may be robust in that it involves multiple redundant pathways.
By contrast, the responses to BLEO and ROS may not be so
robust and can be easily perturbed by a single mutation. In
addition, multiple functions contribute to ROS-induced lethal-

ity in ATR mutants, because mutations in several functionally
unrelated genes can all suppress �uvsBATR.
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Table S1: Primers used in this work for the generation of the deletion strains 

Gene
a
 Primer Sequences* bp 

phbA PROHIB-1 5’-TGCGCGAAACATAGGAGTC-3’ 

AN6073.2 PROHIB-2B 5’-GGAGCAGGACTGAGAATTCCTGTCCAGATGACAAGGTCG-3’ 
1996

 PROHIB 5’ ZEO-B 5’-CGACCTTGTCATCTGGACAGGAATTCTCAGTCCTGCTCC-3’ 

 PROHIB1600 3’ PYR 5’-CACTTGAAAGCGCGACAACTGAATTCGCCTCAAACAATGCT-3’ 
2417

 PROHIB1600-3 5’-AGCATTGTTTGAGGCGAATTCAGTTGTCGCGCTTTCAAGTG-3’ 

 PROHIB1600-4 5’-CTTCATTTCTGCGACAACGG-3’ 
1962

mshA MUTS-1 5’-CGTTCATGGTTCTCGCTTG-3’ 

AN1708.2 MUTS-2B 5’-GGAGCAGGACTGAGAATTCCCGTCAACGATGCACAATATC-3 
1973

 MUTS 5’ ZEO-B 5’-GATATTGTGCATCGTTGACGGGAATTCTCAGTCCTGCTCC-3’ 

 MUTS 3’ PYR-B 5’-CATCACACTTGGAGATGGCCGAATTCGCCTCAAACAATGCT-3’ 
2417

 MUTS-3B 5’-AGCATTGTTTGAGGCGAATTCGGCCATCTCCAAGTGTGATG-3’ 

 MUTS-4a 5’-TTCCGAGACAGACCGAGGT-3’ 
1383

cshA RAD26-1 5’-AGCGAAGGAATTGGCGTTACT-3’ 

AN7103.2 RAD26-2 5’-GGAGCAGGACTGAGAATTCCTGATCGACGGTCGTATTCATG-3’ 
1552

 RAD26 5’ ZEO 5’-CATGAATACGACCGTCGATCAGGAATTCTCAGTCCTGCTCC-3’ 

 RAD26 3’ PYR 5’-TATGCAGCGTGATATTGCCTGGAATTCGCCTCAAACAATGCT-3’ 
2417

 RAD26-3 5’-AGCATTGTTTGAGGCGAATTCCAGGCAATATCACGCTGCATA-3’ 

 RAD26-4 5’-TGTCATAACACGGTTCACGCA-3’ 
1710

fhdA SMAD-1 5’-TTGGTTGCCTTCTCGATGTG-3’ 

AN2893.2 SMAD-2 5’-GGAGCAGGACTGAGAATTCCGAGTCTCTGCGGCAAAAACA-3 
1844

 SMAD 5’ ZEO 5’-TGTTTTTGCCGCAGAGACTCGGAATTCTCAGTCCTGCTCC-3’ 

 SMAD 3’ PYR 5’-TGTGACCAACCGTTGATGAAGGAATTCGCCTCAAACAATGCT-3 
2417

 SMAD-3 5’-AGCATTGTTTGAGGCGAATTCCTTCATCAACGGTTGGTCACA-3’ 

 SMAD-4 5’-TTATATCTCACGCCACGCCA-3’ 
1785

tprA TRP-1 5’-TAATTCGGGCAAACTCACAGC-3’ 

AN3617.2 TPR-2 5’-GGAGCAGGACTGAGAATTCCGCGATCCGAATGGTAAACTGA-3’ 
1601

 TPR 5’ ZEO 5’-TCAGTTTACCATTCGGATCGCGGAATTCTCAGTCCTGCTCC-3’ 

 TPR 3’ PYR 5’-TTGGCGGATAGCTTGGAGATGAATTCGCCTCAAACAATGCT-3’ 
2417

 TPR-3 5’-AGCATTGTTTGAGGCGAATTCATCTCCAAGCTATCCGCCAA-3’ 

 TPR-4 5’-GATGCGCAGCATTTGTTACTG-3’ 
1556

a 
Access numbers  A. nidulans genome sequence (http://www-

genome.wi.mit.edu/annotation/fungi/aspergillus/) 



* Underlined regions indicate zeo-pyrG gene homology and dotted lines indicate 

homology to the 5’ and 3’ flanking regions respectively for each gene. bp indicates the 

fragment size. 



Table S2: Primers and fluorescent probes used in the Real Time RT-PCR 

reactions 

Primes and probes Sequences Genes
c

tubC_525FL
b
 5’-CACTTTATGCCGTCGCCGAAAG[FAM]G-3’ AN6838.2

tubC_525FL_583RU 5’-GCAGAATGTCTCGTCCGAATG-3’  

AN_Ubiq CT Hydr_356RL
b
  5’-GTACTGGTCCATGTGAATTACCGCCAG[FAM]AC-3’ AN7422.2

AN_Ubiq CT Hydr_356RL_316FUa 5’-TGATTCAGCAGGAGTCCAAGC-3’  

AN_Ubiq Modf._172FL
b
 5’-GAACTGGGAAACAGCCGTCAACAG[FAM]TC-3’ AN1191.2

AN_Ubiq Modf._172FL_211RUa 5’-ATGTCGAGCGTGTCTGGTGT-3’  

AN_Ubiq Ned8_542RL
b
  5’-CACACCTATCCTGCCATGCTATCTGGTG[FAM]G-3’ AN2416.2

AN_Ubiq Ned8_542RL_507FU 5’-CGCTCTGCACTATCGCCACT-3’  

AN_MUTS_866FL
b
 5’- GACCAACATCCCTCCTCTCGCTTGG[FAM]C-3’ AN1708.2

AN_MUTS_866_966RUa 5’- ATGTCCGATAGTGGCGTCATTC-3’  

AN_Helicase_2650RL
b
  5’-GACCGTGCGGAGAATCTTGCGG[FAM]C-3’ AN2285.2

AN_Helicase-2650RL_2584FU 5’-GGCATCCACCCTCCACAACT-3’  

AN_Smad_397RL
b
  5’-CACAGATTGCCGCGAGTGTCTG[FAM]G-3’ AN2893.2

AN_Smad_397RL_299FU 5’-GGCGACGGCTACACCATTC-3’  

AN_Hist ACTrasnf_217RL
b
 5’-GACGGGTTTGTGGTCTGCGCCG[FAM]C-3’ AN3071.2

AN_Hist ACTransf_217_RL_190FU 5’-CATTCAAACGCACGCCAGTC-3’  

AN_Histon H2Avar_112FL
b
 5’-GACCGTTGCAGTTCCCATGCGG[FAM]C-3’ AN8039.2

AN_Histon H2Avar_112FL_219RU 5’-CAGCATTTCCGGCAAGTTCC-3’  

AN_Prohibitin_684FL
b
 5’-GACAAGCGGGCAGCCTTCCTTG[FAM]C-3’ AN6073.2

AN_Prohibitin_684FL_757RU 5’-GCTCTTCTTGATGGCGTCTCC-3’  

AN_MYB_524RL
b
 5’-CAACTGGGAGAACGTGGAGGCAG[FAM]TG-3’ AN0279.1

AN_MYB_524_491FU 5’-CCCTATACCTCATGGACCTCTCG-3’  

AN_HPMS2_936FL
b
 5’-CACATTGGGACGACCGGGAATG[FAM]G - 3’ AN4365.2

AN_HPMS2_939FL_986RUb 5’- AACATGGGCCATTTGTTCACAG - 3’  

AN_RAD2_490FL
b
 5’-CACATTAGGCAGAGGCGCAATG[FAM]G-3’ AN2764.2

AN_RAD2_490FL_545RU 5’-GCGCCTCGAAGCATAACG-3’  

AN_RAD26_1590RL
b
 5’-CACCACGCAAGCCCGAATAAGTGG[FAM]G-3’ AN7103.2

AN_RAD26 _1590RL_1500FU 5’-CGCGAGGACGCACTTATGTAT-3’  

AN_RAD52_998RL
b
 5’-GACAATGGGAGCGGAACGGATTG[FAM]C-3’ AN4407.2

AN_RAD52_998RL_937FU 5’-AGCGGGCAGGCAGATTCCTA-3’  

An_RAD18(uvsH)_393FL
b
 5’-GACAATGAAATAGAGCCGAATGCCATTG[FAM]C-3’ AN7309.2

An_RAD18(uvsH)_393FL_420RU 5’-CTCTGTGATCGGGTGCGAATA-3’  

AN_SconB_388FL
b
 5’-CACCTTACTGGAATCGCTTCCTCAAGG[FAM]G-3’ AN6359.1



AN_SconB_388FL_410RU 5’-GCAGCAGAGAACAAGGACCAGA-3’  

PARP_ANIDULANS_1161RL
b
 5’-CTACTTTCGTGCGGAATTCTGGTAAAG[FAM]AG-3’ AN3129.2

PARP_ANIDULANS_1161RL_1083FU 5’-CGCTCAAGGAACTGGCAGAG-3’  

npka-3F 5’ -GCGCCTGAACCATATTGAAGA-3’  

npka-3R 5’-CGGTTGTGAGCTCCTTTGC-3’ AN6044.2

npka-3M2
a 

5’-AACCCAGCCGTATGAG[FAM]-3’  

TOP1_1311FL
b
  5’-CACCTCAAGGCCACAAGTGGAAAGAGG[FAM]G-3’ AN0253.2

TOP1-1311FL_1384RU 5’-ACGTCGGAATTAGCCGCAAG-3’  

rib_reduct_820RL
b
  5’-CACACCAGGCAGGCAAAGTCGGTG[FAM]G-3’ AN0067.2

rib_reduct_820RL _768FU 5’-GGCTGAAGAAGCGAGGCTTG -3’  

rns_2P_reduct_1560FL
b
  5’-GACACCGCCCGATTGCTCTTGGTG[FAM]C-3’ AN4380.2

rns_2P_reduct_1560 FL_1598RU 5’-GGCTTCAGCCGAATCGAAAG-3’  

TPR_4597FL 5’-CGGGGGAGATGTAGACCAGGCC[FAM]G-3’ AN3617.2

TPR_4597FL/4619RU 5’-GCTTTCCACCCATGAGATATTCC-3’  

uvsC_429FL
b
 5’-GACGGTTGCCATACCCTTGCCG[FAM]C-3’ AN1237.2

uvsC_429FL_450RU 5’-CTTCGCCGCACCCAT-3’  

a Sonda Taq Man® (Applied Biosystems); FAM: 6-carboxyfluorescein 

b Sondas LUX® (Invitrogem); FAM: 6-carboxyfluorescein.  

cAccess numbers  A. nidulans genome sequence (http://www-

genome.wi.mit.edu/annotation/fungi/aspergillus/). 
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Figure 2S – Southern blot analysis for the deletion A. nidulans mutants. Genomic DNA from the 
wild type and deletion mutant strains was isolated and cleaved with different restriction enzymes 
(A to E) and hybridized with the corresponding ORF; the radioactive signals were removed from 
each filter and they were then  hybridized with the A. fumigatus pyrG gene. (A) Genomic DNA 

from wild type and two ∆phbA mutant strains was digested with EcoRI; at the left and right 
panels, the hybridization with the phbA ORF and pyrG genes can be observed, respectively; (B) 

Genomic DNA from wild type and two ∆mshA mutant strains was digested with BamHI; at the 
left and right panels, the hybridization with the mshA ORF and pyrG genes can be observed, 
respectively. The pyrG gene recognizes two hybridizing bands when genomic DNA is digested 

with BamHI; (C) Genomic DNA from wild type and ∆cshA mutant strains was digested with 
BamHI; at the left and right panels, the hybridization with the cshA ORF and pyrG genes can be 

observed, respectively; (D) Genomic DNA from wild type and three ∆fhdA mutant strains was 
digested with EcoRI; at the left and right panels, the hybridization with the fhdA ORF and pyrG 

genes can be observed, respectively; and (E) Genomic DNA from wild type and two ∆trpA 
mutant strains was digested with ScaI; at the left and right panels, the hybridization with the tprA 
ORF and pyrG genes can be observed, respectively. 
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