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Abstract

Background: Well-known anti-malarial drug artemisinin exhibits potent anti-cancerous activities. In-vivo and in-vitro

studies showed its anti-tumor and immunomodulatory properties signifying it as a potent drug candidate for study.

The studies of mechanisms of cell movement are relevant which can be understood by knowing the involvement

of genes in an effect of a drug. Although cytotoxicity and anti-proliferative activity of artemisinin is evident, the

genes participating in its anti-migratory and reduced invasive effect are not well studied. The present study reports

the alteration in the expression of 84 genes involved in cell motility upon artemisinin treatment in MCF-7 breast

cancer cells using pathway focused gene expression PCR array. In addition, the effect of artemisinin on epigenetic

modifier HDACs is studied.

Methods: We checked the functional stimulus of artemisinin on cell viability, migration, invasion and apoptosis in

breast cancerous cell lines. Using qRT-PCR and western blot, we validated the altered expression of relevant genes

associated with proliferation, migration, invasion, apoptosis and mammary gland development.

Results: Artemisinin inhibited cell proliferation of estrogen receptor negative breast cancer cells with fewer efficacies

in comparison to estrogen receptor positive ones. At the same time, cell viability and proliferation of normal breast

epithelial MCF10A cells was un-affected. Artemisinin strongly inhibited cancer cell migration and invasion. Along with

orphan nuclear receptors (ERRα, ERRβ and ERRγ), artemisinin altered the ERα/ERβ/PR/Her expression status of MCF-7

cells. The expression of genes involved in the signaling pathways associated with proliferation, migration, invasion and

apoptosis was significantly altered which cooperatively resulted into reduced growth promoting activities of breast

cancer cells. Interestingly, artemisinin exhibited inhibitory effect on histone deacetylases (HDACs).

Conclusions: Upregulated expression of tumor suppressor genes along with reduced expression of oncogenes

significantly associated with growth stimulating signaling pathways in response to artemisinin treatment suggests its

efficacy as an effective drug in breast cancer treatment.
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Background

Breast cancer, despite of early detection, new discoveries

and increased awareness, remains the second leading

cause of cancer related deaths in women worldwide. Al-

though genetic and hormone oestrogen are the most im-

portant risk factors for breast cancer, factors like high iron

content significantly contribute towards tumorigenesis

[1–6]. Studies suggest strong co-relation of iron with vari-

ous cancers [7–10]. Increased and decreased iron content

in post and premenopausal women has been explored to

be associated with increased breast cancer risk through

pathways like oxidative stress and angiogenesis respect-

ively. Wormwood (Artemisia annual) plant derived

extract artemisinin is chemically a sesquiterpene lactone

with a 1,2,4-trioxane ring system. The endoperoxide moi-

ety of artemisinin forms free radicals on reaction with iron

that is essential for cell division and proliferation. Com-

pared with non-cancerous cells, depending on the tumor
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aggressiveness, cancer cells have a higher number of cell

surface transferrin receptors, which pick up iron via inter-

action with the plasma iron-carrying protein transferrin. By

virtue of a higher rate of iron uptake, cancer cells would be

selectively more vulnerable to the cytotoxicity of artemisi-

nin [11, 12]. Natural products such as artemisinin and

many other have been tested for their cytotoxic effect on

breast cancer cells [13–15]. Various in-vitro and in-vivo

studies have been done to investigate the role of transferrin

and its conjugates in iron-mediated effect of artemisinin in

breast cancer [16–20]. Artemisinin derivatives and com-

pounds bearing skeleton of artemisinin have also been

investigated for their anti-cancerous effects [21–27].

Various nano-formulations of artemisinin is tested for ef-

fective artemisinin targeting breast cancer both in-vitro

and in-vivo [28–36]. Also, combinational therapies have

been done to study and compare the synergistic effect of

artemisinin in breast cancer [37–42]. In-vivo studies show

the potential benefits of artemisinin in breast cancer treat-

ment [43–50] Pharmacokinetics and toxicity of artemisinin

has also been tested in breast cancer patients during phase-

I study [51–53]. Mechanisms underlying artemisinin-

mediated anti-proliferative and apoptosis inducing role in

breast cancer have also been explored [54–63]. Role of

artemisinin in drug resistance has been studied as

well [64, 65].

Role of transcription factor E2F and its target genes in

the anti-proliferative activity of artemisinin in breast can-

cer is reported [57]. In present study, we first checked the

effect of artemisinin treatment on cancer cell viability,

proliferation, migration, invasion and apoptosis. We then

report the involvement of relevant genes in the respective

signaling pathways in an effect of artemisinin treatment.

Taken together, our results demonstrate the molecular

basis of anti-proliferative, migratory, invasion and apop-

tosis inducing effect of artemisinin in breast cancer. Also

for the first time we have reported the HDAC inhibitory

effect of artemisinin.

Methods

Drug

Artemisinin (C15H22O5) was a kind gift from IPCA

(International pharmaceutical company, Mumbai, India).

The stock solution of artemisinin was prepared in

Dimethyl Sulfoxide (DMSO). The final DMSO concentra-

tion during treatment in the culture medium was main-

tained below 0.01%.

Cell culture

Breast cancer cell lines MCF-7, T47D and MDA-MB-231

were purchased from National Centre for Cell Sciences

(NCCS), Pune, India. The MCF-7 cells were cultured in

Dulbecco’s Modified Eagle’s Medium (DMEM) whereas

T47D and MDA-MB-231 cells in Roswell Park Memorial

Institute medium (RPMI) supplemented with 10%

fetal bovine serum (FBS) and penicillin-streptomycin

(MP Biomedicals) at 37 °C, 5% CO2 and 95% humid-

ity. MCF10A, a kind gift from Dr. Annapoorni Ran-

garajan (IISC, Bangalore, India) was maintained in

DMEM F12 containing horse serum supplemented

with hydrocortisone, EGF, insulin, cholera toxin and

penicillin-streptomycin at 37 °C, 5% CO2 and 95%

humidity. The cells were grown until 70-80% conflu-

ence and then sub cultured with Trypsin-EDTA. All

experiments involving treatment were performed in

cells kept in phenol red free medium containing char-

coal treated fetal bovine serum supplemented with

penicillin-streptomycin for 48 h.

Cell viability assay

The effect of artemisinin on viability of cells was checked

by 3-(4,5-Dimethylthiazol-2-yl)-2,5 Diphenyltetrazolium

Bromide (MTT) assay. MCF10A, MCF-7, T47D and

MDA-MB-231 cells were seeded at a density of 3 × 103

cells/well in 96 well plates. The cells were treated with

different concentrations of artemisinin (500 nM, 1, 10, 50

and 100 μM) and incubated for two different time periods

(12 and 24 h). After appropriate time period, 10 μL of

MTT (MP Biomedical) (5 mg/mL in PBS) was added into

each well and incubated at 37 °C, 5% CO2 atmospheric

condition for another four hours. After incubation, the

medium was removed and 100 μL of DMSO was added to

dissolve thus formed formazan crystals. The solubilized

crystals were then quantified by scanning the plates at

570 nm using Varioskan™ Flash Multimode Reader

(Thermo Scientific). Three independent sets of experi-

ments were performed to evaluate the effect of artemisi-

nin. The percent viability was calculated by the formula-.

% viability = A/A0 X 100 where A0 and A are the

absorbance of vehicle control and artemisinin treated

cells respectively.

The IC50 value of artemisinin was calculated for different

cell types using the nonlinear regression curve fit XY

analysis of GraphPad prism software.

Colony forming assay

For colony forming assay 0.6 X 103 of MCF10A, MCF-7,

T47D and MDA-MB-231 cells were seeded in triplicates in

12-well plate (Falcon Becton Dickinson) and after 24 h of

cell attachment, the cells were treated with 1 μM of arte-

misinin. The plates were under incubation for 10 days at

37 °C, 5% CO2 to allow the growth of colonies (~50 cells/

colony). During long-term incubation, fresh complete

growth medium with 1 μM of artemisinin was replaced

after every three days. The cells were washed twice with

1X PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4

and 2 mM KH2PO4), fixed with 10% (v/v) formalin and

then stained with 0.01% (w/v) crystal violet solution. The
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excess stain was removed by washing with 1 X PBS. The

plate was air-dried and image was captured using Gel

Doc™ XR+ Imager (Bio-Rad). To quantify the rate of

colony formation, the stained cells in the form of colonies

were dissolved in 10% (v/v) acetic acid and the absorbance

was quantified at 540 nm using Varioskan™ Flash

Multimode Reader (Thermo Scientific). The values is

presented using the formula-.

Colony formation rate = 100% X (experimental absorb-

ance value / control absorbance value).

Wound healing assay

1 X 104 MCF-7 cells were plated and grown up to 90%

confluence in 12-well plate (Falcon Becton Dickinson). To

restrict proliferation and to study only the migration of

cancerous cells, the plated cells were kept in serum free

media for 48 h. Cells were then scratched with a sterile

200 μL pipette tip (two vertical and two horizontal lines) in

each well. The cells were washed twice with 1X PBS and

the image was captured such as cells at stage 1 that is 0 h.

Cells were treated with 1 μM artemisinin. Images of the

cells undergoing migration were then taken at different

time points at a magnification of 4X. Quantitation of

migrated cells was done by calculating the decrease in area

at all the observed time points with the help of ImageJ

software.

Transwell migration and invasion assay

Transwell-migration assay was performed following manu-

facturer’s protocol (BD Falcon, USA). Appropriately arte-

misinin (1 μM, 72 h) treated MCF-7 cells were seeded at a

density of 2.5 × 104 cells in upper chamber of 12 well

transwell system in 500 μL of serum and phenol red free

DMEM. Medium supplemented with 5% serum was used

as chemoattractant in the lower chamber. After 24 h the

cells on both side of the membrane were fixed with 10%

formalin and stained with 0.01% crystal violet stain. The

cells were scrubbed on the seeded side to quantify the per-

cent of migrated cells only. The membrane was then

washed with PBS and the cells attracted towards the serum

were visualized under light microscope and pictured (10X)

under different field views. The number of migrated cells

in control and artemisinin treatment in 10 different fields

was calculated using ImageJ software and the average

value was represented in the graph. For invasion assay, the

transwell migration chamber was coated with matrigel

(2 mg/ml) (BD Biosciences). The cells present towards the

lower side of the chamber were considered as invaded cells

and were fixed and stained with crystal violet dye similar

to migration assay.

Apoptosis detection assay

MCF-7 cells were seeded at a density of 5 X 104 cells/well

in 35 mm plates. Further the cells were treated with 1 μM

artemisinin and incubated for 24 h at 37 °C in 5% CO2.

Cells were stained using a PE Annexin VApoptosis Detec-

tion Kit (BD Pharmingen, San Diego, CA, USA) according

to the manufacturer’s protocol. Acquisition was performed

using BD FACS Calibur (San Jose, CA, USA). 1X104 cells

were analyzed using FL3 filter for 7-AAD-positive cells

and FL2 filter for the PE-annexin V-positive cells. Plumba-

gin (5-hydroxy- 2-methyl-1, 4-naphthaquinone) was taken

as positive control due to its role in induction of apoptosis

at higher rate [66].

qRT-PCR array

The Human Cell Motility RT2 Profiler PCR Array

purchased from Qiagen was employed to study the effect

of artemisinin on genes associated with movement of cells.

The array contained 84 genes including genes associated

with development, growth factors, receptors important for

chemotaxis and mobilization. Total RNA was isolated

using Trizol from appropriately artemisinin (10 μM,72 h)

treated and control MCF-7 cells. Equal amount of properly

DNase I treated RNA was used to prepare cDNA using

first stand cDNA synthesis kit (Invitrogen). Real time assay

was performed with the array plate. mRNA level and fold

change for each gene compared to control was calculated

using value of cycle threshold. The alteration in the expres-

sion of genes was validated by qRT PCR and/or western

blot assay. β2 microglobulin and 18S was used for

normalization.

Western blot analysis

For western blot whole cell lysate of appropriately treated

cells was prepared using RIPA buffer [20 mM Tris-HCl

(pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA,

1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyro-

phosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4 and

1 μg/mL leupeptin]. The lysed samples were collected after

centrifugation for 30 min at 12,000 rpm, 4 °C. Equal

amount (40 μg) of protein was loaded after Bradford

method of protein quantification. The samples were run in

10% SDS-PAGE gel, transferred on PVDF membrane

(Millipore) and blocked with 5% (w/v) non-fat milk (Sigma).

Blots were then incubated with primary antibody overnight

[Cytochrome c (1:5000), p21 (1:5000), β catenin (1:5000),

α-tubulin (1:1000), Bcl2 (1:1000), caspase 9 (1:1000, Cell

Signaling), p53 (1:500, Calbiochem), p21 (Cell signaling

1:1000), E-cadherin(Cell signaling 1:1000) and HDACs

(1:1000, HDAC Ab Sampler Kit, Cell Signaling)]. There-

after, 1 h with their respective HRP conjugated secondary

antibody [anti rabbit (1:5000, Sigma Aldrich) or anti mouse

(1:5000, Sigma Aldrich)], the blots were then subjected to

chemilumenescent detection reagent (GE Healthcare) for

visualization and the bands were detected by using Gel

Doc™ XR+ Imager. Densitometric analyses of the protein

bands was calculated by using ImageJ software.
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Immunofluorescence

Cells at a density of 3 X 104 were grown in 0.2% gelatin

coated coverslips in 35 mm plates. The 10 μM artemisi-

nin treated cells were washed with ice-cold 1X PBS,

fixed with methanol:acetone (1:1) and kept at -20 °C for

30 min-1 h. The cells were then blocked with blocking

buffer [0.1% (w/v) bovine serum albumin, 0.3% (v/v) Tri-

ton™ X-100 in 1X PBS] for 2 h and then incubated with

primary antibodies [Cytochrome c antibody (1:500, Santa

Cruz), β catenin (1:5000)] overnight at 4 °C. Next day

the cells were washed with TBST (1X TBST: 50 mM

Tris.HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20.), then

incubated with flourocrome conjugated anti-mouse anti-

body (1:1000, Alexa Fluor® 594, Life Technologies) for

1 h. The cells were then washed with TBST and further

incubated with DiOC6 (3,3′-Dihexyloxacarbocyanine

Iodide), a mitochondrial stain (1:1000, Life Technolo-

gies). Finally the coverslip was mounted on a slide using

Prolong ® Gold Antifade Reagent (Life Technologies) and

the images were captured using confocal microscope

(Leica Microsystems CMS GmBH, Mannheim, Germany)

using LAS AF application suite (Leica Application Suite

Advanced Fluorescence).

Statistical analysis

Data analysis was performed by unpaired t test or by

one way ANOVA using GraphPad Prism® software where

the p-values ≤0.05 were considered as significant.

Results

Reduced cell growth and colony formation of breast

cancer cells upon artemisinin treatment

Cell viability assay performed using MTT suggested

that during the initial stage of artemisinin treatment

(12 h) there is no significant reduction in viability of

the cells but after 24 h of artemisinin treatment the

viability of both MCF-7 and T47D breast cancer cells

was inhibited in a dose dependent manner (Fig. 1A).

The effect of artemisinin as found in the breast can-

cer cells was not observed in normal breast epithelial

cells MCF10A. When the assay was carried out in

triple negative MDA-MB-231 breast cancer cells, the

reduction in viability of the cells was reduced and

was found to be less effective in the same range. IC50

value of artemisinin upon 24 h of treatment was

found to be 60.55 μM, 32.14 μM and 88.08 μM for

MCF7, T47D and MDA-MB-231 respectively. 1 μM

dose of artemisinin which is physiologically relevant

was used in further experiments. Next to explore the

effect of artemisinin on proliferation of breast cancer

cells as well as normal breast epithelial cells, clono-

genic assay was performed. On the day of harvest,

50% inhibition in colony formation was observed in

1 μM artemisinin treated both MCF-7 and T47D cells

while MCF10A cells remained unaffected. In MDA-

MB-231 cells, 36% less colonies were detected upon

artemisinin treatment (Fig. 1B).

Artemisinin restricted breast cancer cells migration &

invasion and induced apoptosis

The ability of a cancer cell to undergo rapid migration

allows it to change position within the tissues. Thera-

peutic compounds with the ability to inhibit the motility

of cancer cells are important for preventing cancer me-

tastasis which may be achieved by a potent drug [67].

Here we have examined the effect of artemisinin on mi-

gration of MCF-7 breast cancer cells by wound healing

and transwell assay. Monolayer culture of untreated

MCF-7 cells, showed 50% reduction in the wound area

within 48 h, whereas the reduction in the wound area

was significantly less in 1 μM artemisinin treated cells.

Artemisinin treated MCF-7 cells migrated at a lower rate

and only one quarter of the wound was found to be

healed after 96 h, whereas during that interval in un-

treated MCF-7 cells, about 75% percent of the wound

was found to be healed (Fig. 2A I and II). When cancer

cells become metastatic, it loses epithelial and gains

mesenchymal characteristics which is accompanied by

loss of cell-cell adhesiveness, leading to enhanced migra-

tory capacity [68]. Transwell migration assay confirmed

the anti-migratory effect of artemisinin on MCF-7 breast

cancer cells (Fig. 2B I and II).

One of the major hallmarks of cancer cells is their in-

vasive property. To check the effect of artemisinin on

invasive property of breast cancer cells, matrigel migra-

tion assay was performed. Significant reduced invasion

was evident in MDA-MB-231 aggressive breast cancer

cells (Fig. 2C I and II) upon artemisinin treatment.

Apoptosis is as a natural barrier to cancer develop-

ment and serves as a marker event for chemotherapy [8,

11]. Artemisinin is reported to induce apoptosis in can-

cer cells. To study the involvement of genes in

artemisinin-mediated apoptosis, we first validated the

apoptosis inducing effect of artemisinin in MCF-7 breast

cancer cells. Annexin V-PE apoptosis detection assay

was carried out in control and artemisinin treated MCF-

7 breast cancer cells. The flow cytometry data showed

30% increase of PE-Annexin V positive/ 7-AAD negative

early apoptotic cells in artemisinin treated with respect

to control MCF-7 cells (Fig. 2D I and II).

Artemisinin-mediated anti-cancerous effects is a result of

alteration of relevant genes associated with cancer cell

progression

In an attempt to reveal the involvement of genes in

artemisinin-mediated reduced proliferation, migration,

invasion and increased apoptosis, we studied the alter-

ation of genes associated with cancer cell motility upon
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artemisinin treatment (10 μM, 72 h). In this study PCR array

consisting of 84 genes were included. 47 genes out of 84

were found to be upregulated by more than 1.1 fold and re-

duced expression of 36 genes was observed. 47 upregulated

genes included tumor suppressor genes such as well-known

BRCA 1, BRCA2, Ras association (RalGDS/AF-6) domain

family member 1 (RASSF1), GATA3, RARB, BCL2-

associated agonist of cell death (BAD), MUC1 and others as

shown in the Fig. 3a with the observed fold change. To val-

idate the alteration in the genes upon artemisinin treatment

we checked the expression of genes involved in mammary

cell development leading to increased proliferation. Estrogen

receptor alpha and beta are well studied for their effect in

breast cancer progression. Reduced ERα expression and its

associated anti-proliferative effect upon artemisinin is re-

ported [59]. As orphan nuclear receptors ERRα, ERRβ, ERRγ

and PgR are significantly involved in increased cancer cell

proliferation [69–71], we studied their possible contribution

in anti-cancerous effects of artemisinin. Reduced expression

of ERRα, ERRβ, ERRγ and PgR was observed in artemisinin

treated MCF-7 cells (Fig. 3b and c). At the same time in-

creased expression of tumor suppressor ERβ [72] was found.

Although expression of HER family is reported to be down-

regulated in artemisinin derivative treated breast cancer cells

Fig. 1 Artemisinin inhibits growth and colony forming ability of estrogen receptor positive breast cancer cells. (A) Viability assay in MCF10A, MCF-7, T47D

and MDA-MB-231 breast cancer cells showing the effect of artemisinin treatment in a dose and time dependent manner where artemisinin concentration

is indicated in X axis and percentage viability compared to control is indicated on the Y axis. The mean + SEM for three independent experiments was

calculated. Statistically significant difference was found between the absorbance of control and artemisinin treated samples ***p (<0.001), **p (<0.0078)

and ns p (>0.05). B (I) Representative image of colony forming assay of artemisinin treated MCF10A, MCF-7, T47D and MDA-MB-231 breast cancer cells. (II)

Graph represents mean + SEM of control, and treated samples in three separate experiments performed in triplicate, *p(<0.05), ***p (<0.001)
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[36], expression of oncogene HER2 was amplified in artemi-

sinin treated cells at both RNA and protein level but at the

same time HER 1 protein expression was reduced

significantly. Abrogated expression of oncogenes associated

with increased cell proliferation such as cyclin D1, D2 [73]

GRB7 [74], AKT [75], Ki67 [76], FOXA1 [77] and Myc [78]

was detected. Also, an up-regulated expression of tumor

suppressors such as Rb [79], GATA3 [80] and PTEN [81]

associated with cancer cell proliferation was evident (Fig. 3d

and e). Significantly reduced expression of growth stimulat-

ing proteins Cyclin dependent kinases 2 and 4 were found

in artemisinin treated cells. At the same time reduced p21

Fig. 2 Artemisinin exhibits anti-migratory, anti-invasion and apoptosis inducing property in breast cancer cells. A (I) Picture represent relative cell

migration in both control and treated MCF-7 cells at different time intervals. (II) Graph represents the quantification of the decrease in the area as

wound healing progresses at the observed time points. Significant differences were observed between control and treated cells at different time

points p (<0.0001). B (I) Image depicts the cell migration in control and artemisinin treated MCF7 cells as observed in transwell migration assay.

(II) Graph depicts the average number of migrated cells. C (I) Diagram represents relative invasion in control and artemisinin treated aggressive

breast cancer cells. (II) Relative invasion in depicted in the graph. D (I) Dot plot representing PE Annexin V positive, 7AAD negative MCF-7 cells

after 24 h of treatment with 1 μM artemisinin, control (DMSO < 0.01%)μ and plumbagin (5 μM) as positive control. The lower left quadrants of

each panels show the viable cells and 7-AAD negative, lower right quadrants represent the early apoptotic cells (PE Annexin V positive and 7-AAD

negative). (II) Graph represents the percentage of early apoptotic cells in control and artemisinin treated MCF-7 cells computed from three biologically

different set of experiments. Significant differences were observed between control and treated cells, *p < 0.05
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Fig. 3 Artemisinin alters the expression of genes associated with growth promoting activities. a Heat map showing the fold change expression of

genes under study. b and c qRT PCR and western blot assay respectively showing the expression of genes associated with mammary gland development

upon artemisinin treatment. d and e Respective RNA and protein expression of cell proliferation associated genes in control and artemisinin treated MCF7

cells. f and g Bar diagram and immunoblot respectively showing the expression level of proteins involved in migration, invasion and

apoptosis in artemisinin treated and control cells
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showed its contributing role towards artemisinin mediated

reduced cell proliferation validating the previous reports.

Epithelial markers such as E-cadherin are key mediators

of cell–cell adhesions in epithelial tissues loss of which

can promote invasiveness and metastatic behavior in

many epithelial tumors [82]. In accordance with this ob-

servation, artemisinin treated cells showed enhanced ex-

pression of epithelial cell markers E-cadherin, H-cadherin

and TGFβ [83], reduced level of mesenchymal proteins

Twist and Slug. Reduced level of β-catenin [84] was

showed in artemisinin treated cells (Fig. 3f and g). Apop-

tosis inducing genes BAD and P53 were found to be up

regulated whereas anti-apoptotic BCL2 expression was de-

creased upon artemisinin treatment. Artemisinin medi-

ated reduced invasion is a result of altered MMP2

expression as previously described [85].

Increased β-catenin cytoplasmic localization contributes

toward artemisinin mediated reduced cell migration

β-catenin is reported to function as an oncogene through

Wnt signaling pathway. Its increased cytoplasmic

localization results in reduced gene expression necessary

for epithelial to mesenchymal transition. Artemisinin treat-

ment in MCF-7 cells resulted in increased cytoplasmic

β-catenin protein which indicates its contributing role

towards reduced epithelial to mesenchymal transition

through Wnt signaling pathway (Fig. 4a and b).

Increased cytochrome c release and caspase 9 cleavage

contributes towards artemisinin mediated increased

apoptosis in breast cancer cells

Cytochrome c is a key component of the electron

transport chain that is reported to translocate from

the mitochondria to the cytosol in cells undergoing

apoptosis. A significant increase in the level of cyto-

chrome c expression was found in artemisinin treated

cells as compared to control (Fig. 5a and b). The con-

focal image showed release of cytochrome c into the

cytosol, which seemed to sequential caspase 9 activa-

tion. Caspase 9 is an important player in apoptosis. It

is an initiator caspase playing important role in pro-

grammed cell death [86]. Caspase 9 cleavage acts as

Fig. 4 Cytoplasmic localization of Beta-catenin increases upon artemisinin treatment in MCF-7 breast cancer cells. a Immunofluorescence assay

shows the expression and localization of beta-catenin upon artemisinin treatment. b Immunoblot against beta-catenin shows the increased

cytoplasmic beta-catenin protein expression upon artemisinin treatment. α-tubulin and histone H3 used as loading control
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an apoptosis marker. Artemisinin treatment resulted

in an enhanced cleavage of caspase 9 in MCF-7

breast cancer cells (Fig 5b).

Artemisinin acts as an inhibitor for histone deacetylases

(HDACs)

Recently, HDAC inhibitors have been investigated as pos-

sible target for cancer treatment. While exploring the

possible modes of action of artemisinin in cancer cells, we

checked the alteration in the expression of epigenetic

modifiers HDACs in breast cancer cells upon its treat-

ment. Upon artemisinin treatment, reduced level of

HDACs was evidenced. HDAC 1, 2 and 6 were found to

be decreased significantly in both the breast cancer cells

MCF-7 and T47D (Fig. 6). In MDA-MB-231 cells, HDAC6

level was increased. Expression of HDAC 3 was different

in cell types, was found to be increased in MCF-7 at the

same time diminished in T47D and MDA-MB-231.

Discussion

Studies have shown that artemisinin has a potent antimal-

arial and anticancer activity in many cancer cell lines in

vitro [87] and in vivo [88], but its direct role in inhibiting

breast cancer cell migration and invasion of breast cancer

cells has not been studied in depth. Artemisinin treatment

altered the expression of relevant genes involved in mam-

mary gland development, cancer cell proliferation, migra-

tion, invasion and apoptosis. Our study shows that a

dosage of 1 μM, which is of micromolar range and hence

physiologically relevant, causes cancer cell growth inhib-

ition. Migratory behavior of cancer cells have been shown

to be related to metastasis, which has always been one of

the major challenges in cancer treatment [89], also being

one of the key target to improve a patient’s prognosis.

Artemisinin induces anti-migratory and reduced invasive

effect in breast cancer cells through master regulators such

as cadherins and matrix metalloproteinases. Increased β-

catenin cytoplasmic localization inhibited EMT in artemi-

sinin treated MCF-7 breast cancer cells. Tumor growth is

evident because of uncontrolled proliferation and reduced

apoptosis. Thus, reduced proliferation and induction of

cancer cell apoptosis is a key strategy in anticancer therapy

[90]. Through cyclins and CDKs artemisinin inhibits cell

proliferation. Inducing apoptosis contributes to cancer

treatment through various mechanisms, inhibiting resist-

ance to immune based cytotoxicity. In current study, role

of increased Cytochrome c release and caspase 9 cleavage

in artemisinin induced apoptosis was found which

validated previous reports suggesting involvement of

mitochondrial pathway of apoptosis upon artemisinin

Fig. 5 Artemisinin induced apoptosis in MCF-7 cells is also through increased Cytochrome c release and Caspase 9 cleavage. a Confocal images

of cytochrome c release. Cells stained with mitotracker DiOC6 [91], Cytochrome c (red), merged image shows Cytochrome c release (yellow).

b Immunoblot against cytochrome c, and caspase 9 showing increased cleaved caspase 9
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treatment in MCF-7 breast cancer cells. Also western blot

assay evidenced artemisinin as HDAC inhibitor. HDAC 1,

2 and 6 were significantly reduced upon artemisinin treat-

ment in breast cancer cells.

Conclusions

Taken together, our data apparently point out to the fact

that in response to artimisinin treatment HDACs con-

tributes towards altered expression of tumor suppressor

genes and oncogenes resulting into reduced breast can-

cer cell proliferation, migration, invasion and increased

apoptosis. Our data also suggest the role of epigenetics

in anti-cancerous activity of artemisinin in cancer. Fur-

ther exploration is required to establish the contribution

of epigenetics in artemisinin-mediated reduced breast

tumorigenesis. The obtained findings provide rational

insight for the further evaluation of artemisinin as a safe,

efficient and selective drug in the treatment and preven-

tion of human breast cancer.
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