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Leaf color is a crucial agronomic trait in ornamental kale. However, the molecular
mechanism regulating leaf pigmentation patterns in green and white ornamental kale is
not completely understood. To address this, we performed transcriptome and pigment
content analyses of green and white kale leaf tissues. A total of 5,404 and 3,605
different expressed genes (DEGs) were identified in the green vs. white leaf and the green
margin vs. white center samples. Kyoto Encyclopedia of Genes and Genome (KEGG)
pathway enrichment analysis showed that 24 and 15 common DEGs in two pairwise
comparisons were involved in chlorophyll metabolism and carotenoid biosynthesis,
respectively. Seventeen genes related to chlorophyll biosynthesis were significantly
upregulated in green leaf tissue, especially chlH and por. Of the 15 carotenoid
biosynthesis genes, all except CYP707A and BG1 were lower expressed in white leaf
tissue. Green leaf tissue exhibited higher levels of chlorophyll and carotenoids than
white leaf tissue. In addition, the DEGs involved in photosystem and chlorophyll-binding
proteins had higher expression in green leaf tissue. The PSBQ, LHCB1.3, LHCB2.4,
and HSP70 may be key genes of photosynthesis and chloroplast formation. These
results demonstrated that green and white coloration in ornamental kale leaves was
caused by the combined effects of chlorophyll and carotenoid biosynthesis, chloroplast
development, as well as photosynthesis. These findings enhance our understanding of
the molecular mechanisms underlying leaf color development in ornamental kale.

Keywords: transcriptome, chlorophyll, carotenoid, chloroplast development, photosynthesis

INTRODUCTION

Ornamental kale (Brassica oleracea L. var. acephala), also known as “leaf peony,” is a variety of B.
oleracea (Liu et al., 2020). In recent years, this ornamental plant has gained wide popularity as an
attractive decorative plant and used in potted or cut form due to its colorful leaves of various shapes
and having strong resistance to cold (Feng et al., 2020). Usually, the rosette period is the best viewing
period, as the ornamental kale leaves grow vigorously during this period. Ornamental kale is also
edible, and it contains many bioactive compounds such as glucosinolates, phenolic compounds, and
carotenoids. These compounds have long been considered to have strong antioxidant capacities and
are beneficial to human health (Jeon et al., 2018; Jin et al., 2018; Guo et al., 2019; Liu et al., 2020).
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One of the most important agronomic characteristics of
ornamental kale is the color of its leaves, which can be green,
white, pink, purple, or other colors, with the colors sometimes
arranged in complex patterns (Zhang et al., 2008; Ren et al.,
2015; Feng et al., 2021). Some ornamental kale varieties exhibit
changes in leaf color patterns during different developmental
stages and under different environmental conditions (Jin et al.,
2018). Plant pigments play an important role in plant coloration.
The major classes of these pigments include chlorophylls,
carotenoids, anthocyanins, and betalains. Of these, chlorophylls
and carotenoids also play essential roles in photosynthesis
(Simon, 1997).

In recent years, an increasing number of studies have focused
on leaf color in ornamental kale. Zhu et al. (2016) localized the
pink-leaf gene (Pi) to the top of chromosome C3. Liu et al. (2017)
performed fine mapping of the purple leaf gene BoPr, and Zhang
et al. (2012) found that BoPAP1 is important for anthocyanin
accumulation in purple kale. Jeon et al. (2018) demonstrated that
red kale contains more anthocyanins and phenylpropanoids than
green kale, whereas green kale has higher carotenoid content.
However, most of these studies have focused on the mechanisms
underlying the formation of pink, purple, and red leaf coloration,
only a few studies on the white leaf. The white ornamental
kale is a temperature-sensitive chlorophyll mutant. The color
of the cultivar will turn completely white when under low-
temperature conditions, and can turn green again under normal
temperature conditions (>16◦C). Recent studies have shown that
the white phenotype might be caused by inhibiting chlorophyll
biosynthesis and chloroplast development (Zhou et al., 2013;
Yan et al., 2020). However, the study on the color development
detailed molecule mechanism of white and green leaf ornamental
kale has not been reported.

In the current study, we explored the molecular mechanism
underlying white and green leaf color formation in ornamental
kale. To investigate this mechanism in detail, we performed the
transcriptome profiling to compare the transcript profile of ‘G02’
with that of ‘1631’, and the transcript profile of the green margin
with that of the white center in ‘D11’ leaves. We also measured
the contents of major pigments in the leaves and identified key
different expressed genes (DEGs) in green vs. white leaf tissue.
Our findings provide important transcriptomic information to
help uncover the molecular mechanism regulating green and
white leaf coloration in ornamental kale.

MATERIALS AND METHODS

Plant Material
The green ornamental kale cultivar ‘G02’, white cultivar ‘1631’,
and white-green bicolor cultivar ‘D11’ (green margin and white
center) used in this study were obtained from the germplasm
nursery of Shenyang Agricultural University and grown in a
greenhouse located in Shenyang, China. The materials were
planted in August 2019 and harvested at the rosette stage
(December 2019). During this period, the color of ornamental
kale is stable and it is the best viewing period. Sample of leaves
without the main vein was collected, including whole ‘G02’ leaves,

the white center of ‘1631’ leaves, the green margin of ‘D11’
leaves, and the white center of ‘D11’ leaves (Figure 1). After
measurement of the chlorophyll and carotenoid contents, the
samples were immediately frozen in liquid nitrogen and stored
at −80◦C for later RNA isolation. Three independent biological
replicates per sample were used for analysis.

RNA Extraction, cDNA Library
Construction, and Sequencing
Total RNA was extracted from mixed leaf tissue samples from
four individual plants using RNAiso reagent (TaKaRa Shuzo
Co. Ltd., Japan) according to the manufacturer’s instructions.
The integrity and purity of the RNA were examined by
agarose gel electrophoresis and measured with a NanoDrop 8000
spectrophotometer (Thermo Scientific, United States).

High-quality RNA from each sample was used for library
construction following the manufacturer’s protocol (Illumina,
United States). Briefly, oligo (dT) magnetic beads were used
to obtain purified poly-A mRNA, which was fragmented into
small pieces in fragmentation buffer. These small fragments
were used as templates for first-strand cDNA synthesis with
random hexamer primers. Second-strand cDNA was synthesized
using DNA polymerase I, RNase H, dNTP, and buffer. Short
cDNA fragments were purified with a QiaQuick PCR extraction
kit. Following end repair and the addition of poly(A), the
cDNA fragments were attached to adapters (Illumina). After
selecting suitable ligated cDNA fragments, PCR amplification
was performed and the PCR products were purified. The cDNA
libraries were sequenced on the Illumina HiSeqTM 2000 platform.

Analysis of RNA Sequencing Data
To obtain high-quality clean reads, the adaptor sequences,
unknown bases (>10% N bases), repeats, and low-quality reads
(>50% bases with quality value ≤5) were removed from the
raw reads obtained by RNA sequencing (RNA-seq). The reads
were aligned to the B. oleracea reference genome1 using HISAT
software (Kim et al., 2015).

Different expressed genes were identified using DESeq.
Q-value < 0.01 and | log2(fold change)| > 1 were selected as
thresholds determining the significance of differential expression.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genome (KEGG) were used for functional annotation,
classification, and pathway enrichment analysis of the DEGs.

Quantitative Real-Time PCR
To validate the reliability of transcriptome sequencing results,
12 DEGs (log2FoldChange ≥ 2 in G vs. W or G1 vs. W1) were
selected for quantitative real-time PCR (qRT-PCR) validation.
Among them, were eight porphyrin and chlorophyll metabolism
genes (Figures 7A–H), and four carotenoid biosynthesis genes
(Figures 7I–L).

The gene-specific primer sequences are shown in
Supplementary Table 1. AMV First Strand cDNA Synthesis
Kit (Shanghai Sangon Biotechnology Co., Ltd.) was used for

1http://plants.ensembl.org/Brassica_oleracea/Info/Index

Frontiers in Plant Science | www.frontiersin.org 2 April 2022 | Volume 13 | Article 769121

http://plants.ensembl.org/Brassica_oleracea/Info/Index
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-769121 April 20, 2022 Time: 14:27 # 3

Zhou et al. Ornamental Kale Coloration-Related Transcriptome

FIGURE 1 | Phenotypes and sampling sites of the three ornamental kale cultivars investigated. (A) Phenotype of ‘G02’. (B) Phenotype of ‘1631’. (C) Phenotype of
‘D11’. The white ovals indicate the sampling sites: G, ‘G02’ plant; W, white center of ‘1631’ plant; G1, green margin of ‘D11’ plant; W, white center of ‘D11’ plant.
Scale bar represents 1 cm.

the first-strand cDNA synthesis. The 21 µL of reaction mixture
included total RNA (6 µL), Oligo dT primer (1 µL), RNase-free
water (5 µL), five Reaction buffer (4 µL), Rnase Inhibitor (1 µL),
dNTP Mix (2 µL), and AMV RT (2 µL). qRT-PCR reactions
were performed with Roche LightCycler 480 (Roche, Bazel,
Switzerland) thermocycle under the following conditions: 95◦C
for 30 s, 40 cycles of 95◦C for 5 s, and 60◦C for 30 s. The reactions
comprised of 10 µL of 2TB Green Premix Ex Taq II (Takara,
Dalian, China), 2 µL of cDNA template, 1 µL of forward/reverse
primers, 0.4 µL of ROX Reference Dye, and 5.6 µL of RNase-free
water. The gene relative expression level of the selected gene was
analyzed by the 2−11CT method (Livak and Schmittgen, 2001).
Each experiment was conducted with three technical replicates.

Measuring Chlorophyll and Carotenoid
Contents
The chlorophyll and carotenoid contents of the samples were
measured as described by Zhu et al. (2017), with minor
modifications. Fresh samples (0.5 g) were ground with 3 mL of
95% ethanol solution and a little calcium carbonate and quartz
sand in a mortar. After rapid grinding, the mixture was filtered
and the mortar was continuously rinsed. Finally, added 95%
ethanol solution to the supernatant to 15 mL. Pigment contents
were measured in a spectrophotometer based on absorbance (A)
at 470, 649, and 665 nm, using the following equations:

Chlorophyll content
(
mg g−1FW

)
= (Cchl × V × n)/m

Cchl = Ca + Cb

Chlorophyll a content
(
mg g−1FW

)
= 13.95A665 nm

− 6.88A649 nm

Chlorophyll b content
(
mg g−1FW

)
= 24.96A649 nm

− 7.32A665 nm

Carotenoid content
(
mg g−1FW

)
=

(1000A470 − 2.05Ca − 114.8Cb)× V × n/245m

where Ca is chlorophyll a, Cb is chlorophyll b, V is the total
volume of extract (mL), n is the dilution multiple, and m is the
sample weight (g). Three technical replicates were conducted
for each sample.

Statistical Analyses
The data for pigment contents and gene relative expression levels
represent the mean ± standard deviation (SD). SPSS software
(version 22.0, SPSS Inc., United States) was used to perform
an LSD test to compare the pigment contents and gene relative
expression levels of the four groups of samples. Differences were
considered to be statistically significant at P < 0.05.

RESULTS

RNA Sequencing and Different
Expressed Gene Analyses
To gain a global view of the transcriptome profiles of ornamental
kale in different colors, 12 cDNA libraries from three biological
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TABLE 1 | Summary of sequencing and assembly statistics for the 12 transcriptome data from different ornamental kale samples.

Samples ID Total raw reads (×106) Total clean reads (×106) Total clean bases (Gb) Clean reads Q30 (%) Total mapping (%) Uniquely mapping (%)

G_1 50.16 48.98 7.27 94.45 90.22 87.34

G_2 46.53 45.32 6.71 94.53 89.71 85.72

G_3 51.56 50.24 7.39 94.86 90.12 87.09

G1_1 40.36 39.6 5.87 94.74 91 87.02

G1_2 43.94 43.06 6.34 94.85 90.38 86.04

G1_3 48.71 47.53 7.00 94.68 89.86 86.08

W_1 44.90 43.96 6.46 94.85 90.12 87.06

W_2 44.63 43.79 6.49 94.74 89.77 86.18

W_3 43.41 42.24 6.21 94.54 89.23 85.64

W1_1 44.67 43.44 6.43 94.45 89.64 86.16

W1_2 43.22 42.32 6.28 94.38 89.71 85.97

W1_3 42.81 42.14 6.26 94.72 90.09 86.84

Total 544.90 532.62

replicates of ‘G02’ (G), ‘1631’ (W), the green margins of
‘D11’ leaves (G1), and the white centers of ‘D11’ leaves (W1)
were constructed. We obtained 544.90 million raw reads.
After filtering, 532.62 million high-quality clean reads were
obtained (Table 1).

We selected DEGs from two comparison groups (G vs. W
and G1 vs. W1) based on FPKM values. A total of 5,404 DEGs
(2,170 upregulated and 3,234 downregulated genes) and 3,605
DEGs (1,115 upregulated and 2,490 downregulated genes) were
identified in G vs. W and G1 vs. W1, respectively (Figure 2A).
Among these, 1,626 DEGs were common to both comparison
groups, 3,778 were specific to G vs. W, and 1,979 were specific
to G1 vs. W1 (Figure 2B). We performed GO analysis to
classify the DEGs into three GO categories: biological process
(BP), cellular component (CC), and molecular function (MF).
The DEGs in both comparisons were assigned to similar GO
terms (Figures 2C,D). The most highly enriched term in the BP
category was “metabolic process,” followed by “cellular process”
and “single-organism process.” In the CC category, the most
highly enriched term was “membrane.” Among the MF category,
the most highly enriched GO term was “binding,” followed by
“catalytic activity.”

To further analyze the functional differences in the DEGs
identified by pairwise comparisons, we performed KEGG
enrichment analysis. The DEGs in G vs. W and G1 vs. W1
were enriched in 277 and 263 KEGG pathways, respectively. The
top 20 most highly enriched pathways were shown in Figure 3.
Both “Porphyrin and chlorophyll metabolism” and “Carotenoid
biosynthesis” related to pigments and were significantly enriched
in the two comparison groups. Thus we investigated these two
pathways in our subsequent analysis.

Chlorophyll and Carotenoid Contents
The G, W, G1, and W1 groups exhibited distinct chlorophyll and
carotenoid contents (Figures 4A,B). These two pigments were
much more abundant in green leaf (G and G1) vs. white leaf
tissue (W and W1); the G group had notably higher chlorophyll
and carotenoid levels than the three other groups (P < 0.05).

There was no significant difference in chlorophyll and carotenoid
content between two white leaf tissue samples (P > 0.05).

Analysis of Genes Involved in Porphyrin
and Chlorophyll Metabolism
We identified 35 and 29 DEGs involved in porphyrin and
chlorophyll metabolism in G vs. W and G1 vs. W1, respectively.
Of these, 24 common DEGs are involved in chlorophyll
biosynthesis, the chlorophyll cycle, and chlorophyll degradation
(Supplementary Table 2 and Figure 5). DEGs involved
in the chlorophyll biosynthesis pathway encode HemA
(glutamyl-tRNA reductase), HemD (uroporphyrinogen-
III synthase), HemE (uroporphyrinogen decarboxylase),
chlH (magnesium chelatase subunit H), chlI (magnesium
chelatase subunit I), bchM (magnesium-protoporphyrin
O-methyltransferase), chlE [magnesium-protoporphyrin
IX monomethyl ester (oxidative) cyclase], DVR (divinyl
chlorophyllide a 8-vinyl-reductase), por (protochlorophyllide
reductase), chlG (chlorophyll/bacteriochlorophyll a synthase),
and chlP (geranylgeranyl diphosphate/geranylgeranyl-
bacteriochlorophyllide a reductase). DEGs involved in the
chlorophyll cycle encode chlG, CAO (chlorophyllide a
oxygenase), NOL [chlorophyll(ide) b reductase], and chla
(chlorophyllase). Finally, DEGs involved in chlorophyll
degradation encode chla, PAO (pheophorbide a oxygenase),
PPD (pheophorbidase), and RCCR (red chlorophyll catabolite
reductase). All these DEGs were expressed at significantly
higher levels in G and G1 than that in W and W1. In the G
group, the gene PAO was expressed at the lowest level, followed
by HemD, RCCR, and PPD. The gene PAO was expressed at
the lowest level in the G1 group. The genes chla and chlP
(Bo2g082130) were expressed at the highest levels in W and W1,
respectively. The gene BCM1 (BALANCE of CHLOROPHYLL
METABOLISM, Bo3g028240 and Bo4g038770) involved in
chlorophyll degradation also showed higher expression in
green leaf (Table 2). No significant difference was found in the
expression of the STAY-GREEN (SGR) gene (Bo3g045460) in two
pairwise comparisons. Based on the above results, we concluded
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FIGURE 2 | (A) Numbers of up- and downregulated DEGs identified in pairwise comparisons. Red, upregulated DEG; blue, downregulated DEGs. (B) Venn diagram
of DEGs identified by pairwise comparisons. GO classifications of DEGs in the (C) G vs. W and (D) G1 vs. W1 comparisons.

that the green leaf tissue had a higher chlorophyll metabolism
level, and chlorophyll biosynthesis played a critical role.

Analysis of the Genes Involved in
Carotenoid and Abscisic Acid
Biosynthesis
We identified 20 and 23 genes related to carotenoid biosynthesis
that were significantly differentially expressed in G vs. W
and G1 vs. W1, respectively (Supplementary Table 3). Fifteen
common DEGs related to carotenoid biosynthesis in two
pairwise comparisons were screened (Figure 6). Most were
expressed at higher levels in G and G1 vs. the white leaf
tissue groups, except for genes CYP707A [(+)-abscisic acid

8′-hydroxylase] (Bo4g065810, Bo9g061360) and BG1 (β-D-
glucopyranosyl abscisate β-glucosidase). Notably, BG1 was the
most highly expressed level in G, W, and W1, and ZEP
(encoding zeaxanthin epoxidase) (Bo7g064130) was the most
highly expressed in G1. These results could suggest that
green leaf tissue had more active carotenoid biosynthesis than
white leaf tissue.

Expression Analysis of Different
Expressed Genes
As shown in Figure 7, the tested genes that participate in
the porphyrin and chlorophyll metabolism demonstrated low
expression levels in white leaf tissue samples (W and W1),
compared to green leaf tissue samples (G and G1). Genes
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FIGURE 3 | The top 20 enriched KEGG pathways of the DEGs between green and white kale leaf tissues. (A) G vs. W and (B) G1 vs. W1.
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FIGURE 4 | Chlorophyll and carotenoid differed significantly between green and white kale leaf tissues. (A) Chlorophyll contents. (B) Carotenoid contents. Vertical
bars represent the standard deviation of the means (n = 3). Different letters: statistically significant differences (P < 0.05).

FIGURE 5 | Genes encoding enzymes involved in chlorophyll metabolism are differentially expressed in green vs. white kale leaf tissues. (A) Diagrammatic
representation of the chlorophyll metabolism pathway involving the DEGs in G vs. W and G1 vs. W1. (B) Heatmap of the expression patterns of DEGs involved in
chlorophyll metabolism in the four samples. Red and blue tiles indicate higher and lower FPKM values, respectively.

of PSY (Bo3g012430 and Bo9g161470) had higher expression
levels in the G and G1 than that in the W and W1, but
CYP707A (Bo4g065810) and BG1 had higher expression levels
in the W1 than that in the G1. The expression patterns of
12 genes measured via qRT-PCR were similar to the RNA-seq
results, although relative expression levels displayed a slightly
inconsistent. Overall, consistent regulation patterns were found
in qRT-PCR and RNA-seq indicated the data was reliable.

Analysis of Genes Involved in
Chloroplast Formation
To further explore potential candidate genes involved in
leaf color formation, DEGs [|log2(fold change)|>2] encoding

photosystem proteins, chlorophyll binding proteins and others
for two comparison groups are listed in Table 2. Genes
involved in photosystem and chlorophyll binding proteins were
downregulated expression in white leaf tissue samples (W
and W1); however, HSP70 were upregulated. In photosystem
proteins, 14 genes were involved in encoding photosystem I
proteins and 17 genes were involved in encoding photosystem
II proteins. It is worth noting that six genes encoding
PSBQ (Photosystem II subunit Q) had significantly different
expression levels in both comparison groups. Genes annotated
as GOLDEN2-LIKE (GLK) (Bo7g003410, Bo2g122230, and
Bo7g067200) were downregulated expression in white leaf tissue
samples (W and W1) (Table 2). The lower expression level
of these genes may inhibit the chloroplast development in
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TABLE 2 | Genes encoding photosystem proteins, chlorophyll binding proteins and others.

Unigene ID Log2 (W/G) Log2 (W1/G1) Up-down Description

Photosystem proteins

Bo5g019300 −9.691 −3.328 Down PSBQ (Photosystem II subunit Q)

Bo1g158910 −7.195 −6.36 Down PSBQ (Photosystem II subunit Q)

Bo5g155140 −6.647 −5.832 Down PSBQ (Photosystem II subunit Q)

Bo8g021860 −4.458 −4.553 Down PSBS (Photosystem II subunit S)

Bo6g034780 −4.307 −3.226 Down PSAG (Photosystem I subunit G)

Bo6g003410 −3.5 −3.406 Down PSBS (Photosystem II subunit S)

Bo1g024020 −3.491 −3.444 Down PSBQ (Photosystem II subunit Q)

Bo9g017950 −3.449 −2.649 Down PSAN (Photosystem I subunit N)

Bo5g018220 −3.431 −3.589 Down PSBQ-Like (Photosystem II subunit Q)

Bo3g148990 −3.289 −3.855 Down PSAK (Photosystem I subunit K)

Bo6g105200 −3.053 −2.292 Down PSBY (Photosystem II subunit Y)

Bo8g114480 −2.976 −2.436 Down PSBP1 (Photosystem II subunit P1)

Bo6g098700 −2.92 −3.412 Down PSBY (Photosystem II subunit Y)

Bo1g017150 −2.861 −2.092 Down PSAE1 (Photosystem I subunit E1)

Bo4g134490 −2.749 −2.454 Down PSAL (Photosystem I subunit L)

Bo3g102750 −2.625 −2.002 Down PSAN (Photosystem I subunit N)

Bo5g007740 −2.617 −2.89 Down PSBW (Photosystem II subunit W)

Bo8g034270 −2.581 −2.642 Down PSAL (Photosystem I subunit L)

Bo9g076240 −2.547 −2.023 Down PSBQ2 (Photosystem II subunit Q2)

Bo2g056130 −2.541 −2.541 Down PSBY (Photosystem II subunit Y)

Bo8g007190 −2.521 −2.3 Down PSBP1 (Photosystem II subunit P1)

Bo9g021880 −2.422 −2.233 Down PSBO1 (Photosystem II subunit O1)

Bo6g122520 −2.376 −3.08 Down PSBR (Photosystem II subunit R)

Bo8g011060 −2.315 −2.549 Down PSAO (Photosystem I subunit O)

Bo8g112500 −2.291 −2.049 Down PSAO (Photosystem I subunit O)

Bo6g051400 −2.291 −2.267 Down PSAG (Photosystem I subunit G)

Bo5g062900 −2.283 −2.343 Down PSAK (Photosystem I subunit K)

Bo8g054500 −2.269 −2.34 Down PSAE1 (Photosystem I subunit E1)

Bo3g181110 −2.161 −2.259 Down PSAH2 (Photosystem I subunit H2)

Bo3g185460 −2.002 −2.408 Down PSAG (Photosystem I subunit G)

Bo2g167690 −2.001 −2.014 Down PSBO1 (Photosystem II subunit O1)

Chlorophyll binding proteins (LHC: light-harvesting chlorophyll)

Bo7g044900 −11.955 −3.61 Down LHCB1.3

Bo7g085890 −5.681 −3.508 Down LHCB2.4

Bo2g110390 −5.466 −2.069 Down LHCB5

Bo9g008350 −5.453 −3.424 Down LHCB2.4

Bo2g144900 −5.435 −3.869 Down LHCB2.4

Bo4g039810 −4.75 −2.866 Down LHCB1.4

Bo8g096010 −4.37 −2.678 Down LHCA2

Bo4g101180 −4.217 −2.283 Down LHCA2

Bo4g086780 −4.034 −2.258 Down LHCA3

Bo3g085600 −4.034 −2.4 Down LHCB2.2

Bo3g027740 −3.84 −2.728 Down LHCB1.4

Bo4g039820 −3.758 −2.651 Down LHCB1.4

Bo3g146480 −3.733 −2.266 Down LHCB1.3

Bo8g105860 −3.731 −2.459 Down LHCB6

Bo5g061110 −3.261 −2.069 Down LHCB1.1

Bo3g134510 −3.205 −2.311 Down LHCA4

Bo5g139650 −2.963 −2.101 Down LHCB4.2

Bo3g044670 −2.948 −2.063 Down LHCB5

Bo2g001220 −2.893 −2.244 Down LHCB4.1

Bo8g068320 −2.84 −2.807 Down LHCA6

(Continued)
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TABLE 2 | (Continued)

Unigene ID Log2(W/G) Log2(W1/G1) Up-down Description

Bo6g068340 −2.814 −2.232 Down LHCA1

Bo9g088290 −2.533 −2.005 Down LHCB5

Bo8g087140 −2.53 −2.448 Down LHCA1

Bo9g042070 −2.365 −2.246 Down LHCA3

Bo4g027600 −2.074 −2.198 Down LHCB5

Bo4g025550 −2.001 −2.588 Down LHCB4.3

Others

Bo1g037850 13.859 3.155 Up HSP70-7 (heat shock protein 70)

Bo1g139130 5.019 2.087 Up HSP70 (heat shock protein 70)

Bo4g038770 −2.576 −2.175 Down BCM1 (BALANCE of CHLOROPHYLL METABOLISM1)

Bo3g028240 −2.109 −1.576 Down BCM1 (BALANCE of CHLOROPHYLL METABOLISM1)

Bo7g003410 −2.472 −1.871 Down GLK1 (GOLDEN2-LIKE1)

Bo2g122230 −2.118 −1.481 Down GLK2 (GOLDEN2-LIKE2)

Bo7g067200 −1.455 / Down GLK2 (GOLDEN2-LIKE2)

FIGURE 6 | Genes encoding enzymes involved in carotenoid metabolism are differentially expressed in green vs. white kale leaf tissues. (A) Diagrammatic
representation of the carotenoid biosynthesis pathway involving the DEGs in G vs. W and G1 vs. W1. (B) Heatmap of the expression patterns of DEGs involved in
carotenoid biosynthesis in the four samples. Red and blue tiles indicate higher or lower FPKM values, respectively.

the white leaf, and the HSP70 was a negative regulator of
chloroplast formation.

DISCUSSION

Ornamental kale is both an attractive landscape plant and a
nutritious vegetable. Because its beautiful colors remain vibrant
at 15–20◦F, ornamental kale has a long-lasting ornamental period
(Zhu et al., 2016; Jin et al., 2018). In general, leaf coloration
in kale is mainly due to the accumulation of chlorophylls,
carotenoids, and anthocyanins. Zhou et al. (2013) have found
that the inhibition of chloroplast development and chlorophyll
biosynthesis results in the formation of the white leaf. However,

little is known about the different patterns of gene expression
of green vs. white ornamental kale leaves. In the current study,
we performed transcriptome analysis to explore the molecular
mechanism underlying green and white leaf color variation. To
obtain a comprehensive dataset, we selected a green cultivar
(G02) and a white cultivar (1631), as well as the green margin
and white center of ‘D11’ leaves, as two comparison groups to
identify differences in common gene modules. After confirming
the reliability of the data, we conducted further analyses.

We identified 5,404 and 3,605 DEGs in G vs. W and
G1 vs. W1, respectively. Fewer DEGs were identified in the
G1 vs. W1 comparison, perhaps because the G1 and W1
samples were taken from the same plant. Interestingly, most
DEGs were downregulated in G and G1 and upregulated in
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FIGURE 7 | Quantitative real-time PCR validation of eight DEGs (A–H) related to porphyrin and chlorophyll metabolism and four DEGs (I–L) related to carotenoid
biosynthesis in four sample groups. Vertical bars represent the standard deviation of the means (n = 3). Different letters: statistically significant differences (P < 0.05).

W and W1. A total of 1,621 and 1,188 DEGs were grouped
into the metabolic process category in the two comparison
groups, implying that metabolic processes play vital roles in
regulating leaf pigmentation-unsurprisingly, given that leaf color
is generally associated with pigment metabolism. In the present
study, we identified two pathways related to color variations
that were enriched in both comparison groups: the “porphyrin
and chlorophyll metabolism” and “carotenoid biosynthesis”
pathways. We examined the expression patterns of common
DEGs in these two pathways in more detail to explore the
molecular mechanism underlying pigmentation formation in
green and white leaves.

Chlorophyll, a crucial photosynthetic pigment, is responsible
for green pigmentation in ornamental kale (Ren et al., 2019; Liu
et al., 2020). Much is known about chlorophyll metabolism in
plants, including chlorophyll biosynthesis, the chlorophyll cycle,
and the chlorophyll degradation pathway (Eckhardt et al., 2004).
We identified 24 common DEGs involved in porphyrin and
chlorophyll metabolism in the two comparison groups, all of
which were upregulated in green (G and G1) vs. white samples.
These results suggested that chlorophyll metabolism occurred at
higher levels in green leaf tissue, which may contribute to its
higher chlorophyll content relative to white leaf tissue.

Among these 24 DEGs, 17 are involved in chlorophyll
biosynthesis, 5 in the chlorophyll cycle, and 4 in chlorophyll
degradation. HemA, HemD, and HemE are upstream genes
of chlorophyll biosynthesis. Previous reports have found in
HemA mutants, chlorophyll level was reduced (Janina et al.,
2014). Mutations in chlH, chlD, and chlI cause disruptions in
chlorophyll biosynthesis. chlH mutation is common in many

chlorophyll-deficient mutants such as the golden leaf Chinese
cabbage and yellow-leaf Brassica napus (Fu et al., 2019; Zhao
et al., 2020). bchM and chlE play major roles in divinylproto-
chlorophyllide biosynthesis (Gibson and Hunter, 1994; Tottey
et al., 2003). The downstream chlorophyll biosynthesis enzymes
por and chlG/P catalyze chlorophyll a biosynthesis (Armstrong
et al., 1995; Tanaka et al., 1999; Shalygo et al., 2009). Earlier
results have found that por may be a key regulator of chlorophyll
biosynthesis in Chinese cabbage (Xie et al., 2018). In this study,
all 17 genes were low expressed in the white leaf tissue, and chlH
and por showed obvious different expressions in both comparison
groups. These findings suggested that chlorophyll biosynthesis
was blocked in the white leaf.

CAO is involved in chlorophyll cycle. In the Chinese cabbage
mutant (hy) with yellow-green leaves, the mutation of CAO
caused a decrease in chlorophyll content (Liu et al., 2018).
Generally, loss of green color in leaves is also the result of
chlorophyll degradation (Park et al., 2007), chla, PAO, PPD, and
RCCR are key enzymes of chlorophyll degradation (Matile et al.,
1999). BCM plays a conserved role in attenuating chlorophyll
degradation (Wang et al., 2020). In this study, these genes were
more highly expressed in green tissue than in white tissue. These
results suggested that the lower chlorophyll levels in white leaf
tissue were due to the lower expression levels of chlorophyll
biosynthesis genes (both upstream and downstream) and the
chlorophyll degradation gene did not be a decisive role. These
findings were consistent with the observation that the inhibition
of chlorophyll biosynthesis was the main reason for the change
in leaf color from green to white in ornamental kale (Zhou et al.,
2013; Liu et al., 2020) and cauliflower mutant (Zhou et al., 2011).
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Carotenoids are naturally occurring pigments found in plants,
algae, fungi, and bacteria. These compounds can be synthesized
in nearly every type of plastid and are responsible for red,
orange, and yellow coloration in plants (Cazzonelli and Pogson,
2010; Zhang et al., 2014). Carotenoids play a variety of key
roles in photosynthesis, including harvesting light, protecting
chlorophyll from photooxidation, and acting as photoprotectors
to help plants adapt to high-light stress (Young, 1991). In
the present study, we identified 15 common DEGs involved
in carotenoid biosynthesis via pairwise comparisons. Most of
these DEGs were upregulated in green samples compared to
white samples, which likely contributes to the higher carotenoid
contents in green vs. white leaf tissue. Moreover, our data
displayed that the decreasing trend of carotenoid and chlorophyll
content was consistent, which indicates that the decline in
content of carotenoids may lead to photooxidative damage to
chlorophyll. These observations were consistent with the Chinese
kale yellow mutant (Sun et al., 2020).

Carotenoids play essential roles in the biosynthesis of abscisic
acid (ABA; Li et al., 2003), a phytohormone that plays a critical
role in plant adaptation to various abiotic stresses. ABA has
been shown to regulate chlorophyll degradation (Yang et al.,
2020a). CYP707A is an ABA 8′-hydroxylase that degrades ABA
(Okamoto et al., 2006). BG1 is a β-glucosidase that catalyzes
the production of active ABA (Lee et al., 2006). In this study,
CYP707A and BG1 presented different expression trends in
carotenoid biosynthesis. These results suggested that ABA may
play a role in leaf color formation, and genes CYP707A and
BG1 represent good candidate genes for involvement in ABA
metabolism in ornamental kale. In recent years, only a few
studies have investigated the regulating effect of ABA in the color
formation of ornamental kale. Ren et al. (2019) found that the red
leaves contained higher ABA content than that in green leaves.
However, the role of ABA in green and white leaf formation is
still poorly understood.

Chloroplast is regarded as the site for photosynthesis
and chlorophyll biosynthesis (Yang et al., 2020b). Abnormal
chloroplast development is a major reason for the formation
of chlorophyll-deficient mutants (Zhang et al., 2020). Previous
studies have shown that the white leaf of ornamental kale
formation was mainly due to chloroplast deficiency (Zhou
et al., 2013; Yan et al., 2020). Chloroplast biogenesis involved
several functional processes including thylakoid formation,
pigment synthesis, plastid divisions, retrograde signaling, etc.
(Zhou et al., 2011). Photosynthesis and photosynthesis antenna
proteins are important components of chloroplasts (Liu et al.,
2020). A large number of proteins have also been found to
be essential for chloroplast development, such as including
light-harvesting chlorophyll and transcription factors (Waters
and Langdale, 2009). In this study, the top three most highly
enriched pathways were “Photosynthesis,” “Photosynthesis-
antenna proteins,” and “Carbon fixation in photosynthetic
organisms” (Figures 3A,B). All DEGs involved in photosystem
and chlorophyll-binding proteins were highly expressed in the
green leaf tissue. Ornamental kale exhibits a chlorophyll defect
under low-temperature conditions. HSP70 is closely related

to heat stress and is thought to mediate protein import in
chloroplasts (Zhang and Glaser, 2002; Yue et al., 2021). There
was a significantly higher expression level of HSP70 in white
leaf tissue, indicating that HSP70 may be potential candidate
genes related to temperature. GLK plays an important role in
the regulation of chloroplast development (Xie et al., 2018).
Genes of GLK1 and GLK2 were also highly expressed in the
green leaf tissue. These results demonstrated that a disruption
in chloroplasts development and function lead to white leaf
formation, furthermore confirming previous reports.

The photosynthesis process relies on the cooperative
interaction of two photosystems: photosystem I (PS I) and
photosystem II (PS II). PS I and PS II contain several subunits,
such as PSAE, PSAG, PSBQ, and PSBO, and these extrinsic
proteins of PSII are known to be targets of stress (Sasi et al., 2018;
Liu et al., 2021). PSBQ is responsible for multiple interactions
with both PSII intrinsic and light-harvesting proteins (Sasi et al.,
2018). In this study, higher PSBQ expression levels were observed
in the green leaf tissue, indicating PSBQ may be an important
factor affecting the green and white leaf formation of ornamental
kale. Only a few studies have found PSBQ participated in leaf
color regulation. Zhao et al. (2014) showed that Bra040517 may
be a candidate gene for B. napus chlorophyll-deficient mutant.
PS I and PS II receive excitation energy from the light-harvesting
complex (LHC) (Kohorn et al., 1986). The LHC antenna system
of PS I and PS II is LHCA and LHCB, respectively. LHCs can
greatly improve the efficiency of photosynthesis (Kargul and
Barber, 2008). Our study showed that the genes encoding LHC
were downregulated in the white leaf, especially LHCB1.3 and
LHCB2.4. Similar results were found by Zhou et al. (2011). These
results indicated that the interference of photosynthesis results
in leaves lacking green coloration.

The molecular mechanisms of white leaf formation are
complex and related to multiple biochemical processes and
genes in different ornamental kale cultivars. Yan et al. (2020)
identified the cytochrome P450 gene (Bol015404) as the most
likely candidate gene for white leaf formation of ornamental kale
by using BSR-seq. In this study, this gene was a significantly
high expression in white leaf tissue than that in the green leaf
tissue [log2(W/G) = 12.071, log2(W1/G2) = 1.322]. These results
are consistent but seem to be more closely with the comparison
group of G02 vs. 1631. It is worth mentioning that in the study
of Yan et al. (2020), a single peak occurred in chromosome
C01, which may correspond to the PSBQ gene (Bo1g158910).
This result further indicated that PSBQ may be involved in the
formation of the white leaf.

CONCLUSION

Summary, we performed transcriptomic analysis of ornamental
kale cultivars with three different phenotypes via high-
throughput Illumina sequencing. Results indicated that 24
chlorophyll metabolism and 15 carotenoid biosynthesis common
DEGs were almost upregulated in green leaf tissue. In addition,
green leaf tissue had higher levels of chlorophyll and carotenoids
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than white leaf tissue. Several genes related to chloroplast
development and photosynthesis were expressed at high levels
in green leaf tissue. Genes of chlH, por, PSBQ, HSP70, LHCB1.3,
and LHCB2.4 were potential candidate genes involved in leaf
color formation. In conclusion, chlorophyll and carotenoid
biosynthesis, chloroplast development and photosynthesis are
the main metabolism process that affects the formation of green
and white leaf tissue. These findings increase our understanding
of the molecular mechanisms regulating green and white leaf
pigmentation in ornamental kale.
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