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Transcriptome analysis of human tissues and cell
lines reveals one dominant transcript per gene
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Abstract

Background: RNA sequencing has opened new avenues for the study of transcriptome composition. Significant
evidence has accumulated showing that the human transcriptome contains in excess of a hundred thousand
different transcripts. However, it is still not clear to what extent this diversity prevails when considering the relative
abundances of different transcripts from the same gene.

Results: Here we show that, in a given condition, most protein coding genes have one major transcript expressed
at significantly higher level than others, that in human tissues the major transcripts contribute almost 85 percent to
the total mRNA from protein coding loci, and that often the same major transcript is expressed in many tissues.
We detect a high degree of overlap between the set of major transcripts and a recently published set of
alternatively spliced transcripts that are predicted to be translated utilizing proteomic data. Thus, we hypothesize
that although some minor transcripts may play a functional role, the major ones are likely to be the main
contributors to the proteome. However, we still detect a non-negligible fraction of protein coding genes for which
the major transcript does not code a protein.

Conclusions: Overall, our findings suggest that the transcriptome from protein coding loci is dominated by one
transcript per gene and that not all the transcripts that contribute to transcriptome diversity are equally likely to
contribute to protein diversity. This observation can help to prioritize candidate targets in proteomics research and
to predict the functional impact of the detected changes in variation studies.
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Background

Although there are fewer than 22,000 protein coding

genes known in the human genome, they are transcribed

into over 140,000 different transcripts (Ensembl release

66 [1]), over 65% of which have protein coding potential

and thus may contribute to protein diversity. Recently,

applications of high throughput sequencing to RNA,

known as RNA-seq [2], have opened new avenues for the

study of transcriptome composition [3]. RNA-seq is

based on sequencing short fragments, thus making the

precise reconstruction of full-length transcripts a difficult

task; nevertheless, several methods have been developed

to deconvolute transcript abundance [4-6]. Significant

evidence has accumulated showing that approximately

95% of multiexon genes have more than one alternative

splice-form expressed (for example, [4,7-9]) and that

transcript expression is regulated [10,11]. On the other

hand, focusing on EST data, Taneri et al. [12] predicted

that there is a single dominant transcript per gene in pri-

mary tissues. Recently, the ENCODE project [13] showed

that indeed, in cell lines most genes have a major tran-

script, although at the same time noted that ‘genes tend

to express many transcripts simultaneously, and as the

number of annotated transcripts per gene grows, so does

the number of expressed transcripts’. However, despite

these observations, it is still not clear if and to what

extent major transcripts are dominating the transcrip-

tome and what proportion of the transcript diversity is

likely to contribute to protein diversity. In addition, given

the notable differences in gene expression between pri-

mary tissues and cell lines [11,14], transcriptome analysis

in cell lines can be extended to primary tissues only to

some extent.
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Here we intend to characterise the potentially coding

transcriptome from a functional perspective. By focusing

on protein coding genes, we show that in primary tissues

almost 85% of the total mRNA from protein coding loci

comes from major transcripts (76% in cell lines). It is

important to highlight that these major transcripts are not

always the longest possible for the gene (40% of the major

transcripts in primary tissues and 30% in cell lines are not

the longest annotated), nor always include the longest

CDS (Coding DNA Sequence; approximately 50% of the

cases in both tissues and cell lines). For instance, we iden-

tified the AES gene (amino-terminal enhancer of split), for

which we detect a ubiquitous major transcript that is

shorter than the current reference. We also show that the

ratio of the number of expressed transcripts to genes

in primary tissues is on average 1.12 (that is, just over

one transcript per gene). We further distinguish between:

(1) major transcripts - the transcript with the highest

expression level within a given gene; and (2) dominant

transcripts - a major transcript that is expressed at a con-

siderably higher level than any minor transcripts of the

gene. We show that most protein coding genes in most

conditions have one dominant transcript, for example, for

almost 80% of the expressed genes in primary tissues

the major transcript is at least twice as abundant as the

next one.

We further observe that about half of the ubiquitously

expressed genes (n = 4,801) have the same major tran-

script across all the 16 tissues studied here. We do, how-

ever, detect switch events for approximately 35% of the

genes, where the dominant and minor transcripts switch

between different tissues, while the total expression level

of the gene changes comparatively little. In around 100

genes we observe such a strong change that we can

hypothesise that the different transcripts are likely to be

translated into different proteins. One example is the MBP

gene (Myelin Basic Protein), which is a major protein con-

stituent of the myelin sheath. A shorter brain specific form

has been detected by this analysis and has been high-

lighted recently in the literature [15]. Finally, we observe

that for almost 20% of the studied protein coding genes

(n = 18,450) the major transcript does not code for a pro-

tein, and this percentage is considerably higher in nucleus

than in cytosol. Half of the noncoding major transcripts

can be explained by a retained intron, typically located

towards the 3’-end of the transcript.

We perform the analyses using three different computa-

tional methods [4-6], and additionally, where sufficient

coverage exists, we assess the alternative transcript abun-

dances directly from the reads spanning unique exon junc-

tions. We also use simulated data [16] to confirm that the

methods can reliably distinguish between two hypothetical

alternative scenarios - one dominant transcript per gene

vs. several transcripts per gene expressed to similar levels.

All those methods produce a consistent outcome, indicat-

ing robustness of the conclusions presented here.

Overall, our results show that, despite of the diversity

of the transcriptome, most protein coding genes have

one dominant transcript, which, when combined, com-

prise most of the potentially coding mRNA transcrip-

tome. Correlation between transcriptome and proteome

is not straightforward, with the best estimates pointing

at a range of 58% to 63% correlation [17]. However, the

strong overlap with a set of isoforms that are indepen-

dently predicted to be translated into proteins, together

with the clear separation in expression levels between

major and minor transcripts, add support to the hypoth-

esis that the dominant transcripts are likely to be the

main contributors to the proteome. Thus, our findings

may help proteome analysis by prioritising the candidate

proteins that are more likely to be present in a given

sample. At the same time, identification of changes in

the major transcript across conditions can lead to rele-

vant clinical findings (for example, [18]) and may also

be used to predict the functional impact of the detected

changes in variation studies. Nevertheless, this does not

imply that all minor transcripts do not have a biological

function, since some may still be translated into proteins

[19] or have a regulatory function as mRNAs [20].

Results and discussion

Here we quantify and analyse the overall contribution of

major transcripts to the potentially coding mRNA tran-

scriptome, in comparison to minor transcripts. The datasets

analysed comprise 16 primary human tissues - Illumina

Body Map dataset (BM), further referred to as tissue data -

and 5 ENCODE cell lines, including different cellular com-

partments (whole cell, cytosol and nucleus) - further

referred to as cell line data (see Methods).

Most protein coding genes express one dominant

transcript

First, examining only the tissue data, and similarly to pre-

vious RNA-seq-based transcriptome studies, we detect

more than one transcript for approximately 85% of the

studied genes (83.70% to 89.95%, SD = 1.84, Additional

File 2 - Table S1) and a total of 105,456 different tran-

scripts in at least one tissue, which corresponds to

approximately 90% of the studied transcripts (n =

117,759; see Methods). However, when quantifying all

the annotated transcripts within a gene based on their

relative abundance, we observe the existence of a predo-

minant transcript for most genes in most conditions,

rather than a subset of transcripts that are similarly

expressed (Figure 1a, Additional File 1 - Figure S1 and

Additional File 1 - Figure S2). This observation becomes

even more evident when grouping transcripts by Tran-

scription Start Site (TSS), which provides a scenario
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where all the different transcripts are under similar tran-

scriptional control and where most differences in their

abundance can be attributed to alternative splicing (AS;

Additional File 1 - Figure S4). In the same line, we

observe that the ratio of the number of expressed tran-

scripts to genes in primary tissues is 1.12 (0.98-1.40, SD

= 0.11; Additional File 2 - Table S2). Finally, we find that

in the studied samples approximately 85% (79.98% to

86.49%, SD = 2.17) of the mRNA pool from protein cod-

ing loci is comprised exclusively of major transcripts

(Figure 1b and Additional File 2 - Table S3). In order to

address the impact of our observations at the protein

level, we plotted the distribution of expression levels for

both major and minor transcripts (Figure 1c) and

observed that minor transcripts tend to be expressed

below 1 FPKM, a threshold that has been suggested as

the minimum expression required for protein detection

[21-23]. In addition, we calculated the overlap of our

major/minor transcript predictions with those obtained

from an independent study to assess which transcripts

are likely to be translated into proteins and detected a

higher overlap for major transcripts (see Additional File 4

- Supplementary Results).

We quantified transcript dominance by calculating for

every gene the ratio of the expression levels between the

major transcript and the second most abundant one

(Additional File 1 - Figure S4). Overall, we found that in

the studied tissues, 79% of the genes (74.21% to 81.94%,

SD = 2.16) have a two-fold dominant major transcript

(that is, expressed twice as much as the second most

abundant one), and that for 56% of the genes (43.39% to

61.60%, SD = 3.50) the major transcript is five-fold domi-

nant (Table 1 and Additional File 2 - Table S4). This indi-

cates that for most genes in a given sample there is one

dominant transcript. We estimate that dominant transcripts

account for most of the studied mRNA pool - 76.69%

(70.04% to 80.74%, SD = 3.48) for a two-fold dominance

and 67.47% (59.97% to 73.83%, SD = 4.81) for a five-fold

dominance (Figure 1b). GO enrichment analysis of genes

that consistently express a five-fold dominant transcript

across the 16 tissues in the tissue dataset indicated that

they are functionally involved in cellular respiration, protein

transport, transcription and transcription regulation (Addi-

tional File 2 - Table S5). We also calculated the fraction of

dominant major transcripts vs. non-dominant ones for dif-

ferent FPKM thresholds on total gene expression. The pro-

portion of dominant major transcripts increases with

Figure 1 Most protein coding genes express one predominant transcript. (a) Relative abundance of the subset of transcripts in each
position of the ranking for the primary tissues dataset. For each gene, transcripts were ranked based on their relative abundances. There is
generally one predominant transcript over the rest. (b) Percentage of the studied mRNA pool explained by each category of transcripts for the BM

dataset. The mean percentage for all samples is represented here. Major transcripts represent approximately 85% of the studied mRNA population and

were further classified into two-fold and five-fold dominant. (c) Expression distribution for major and minor transcripts in the tissue dataset. We
detect a total of 31,902 transcripts expressed above 1 FPKM in at least one tissue and 26,641 different major transcripts.

Table 1 Major transcripts tend to be predominantly

expressed.

Expressed
genes

Genes with a dominant major
transcript

Two-fold
dominance

Five-fold
dominance

1 FPKM 10,410 56.42% 8,179 78.51% 5,864 56.22%

5 FPKM 4,671 25.32% 3,898 83.64% 3,077 66.27%

10 FPKM 2,486 13.47% 2,146 86.54% 1,794 72.60%

Average number of genes with dominant major transcripts detected in the

primary tissues dataset. Different dominance ratios and gene expression

thresholds were considered in the quantification.

Gonzàlez-Porta et al. Genome Biology 2013, 14:R70

http://genomebiology.com/2013/14/7/R70

Page 3 of 11



higher FPKM thresholds, thus suggesting that transcrip-

tome diversity decreases for highly expressed genes (Addi-

tional File 1 - Figure S5). Focusing on genes that tend to

express several transcripts at a similar level, we identified

463 genes in the tissue dataset for which the major tran-

script was less than five-fold dominant in all the tissues

analysed, and only 17 for a two-fold dominance threshold.

GO enrichment analysis of those revealed that they are

involved in RNA splicing/processing, post-transcriptional

regulation of gene expression and regulation of translation

(Additional File 2 - Table S6).

We applied the same quantifications in cell line data,

including different cellular compartments, and observed

that major transcripts constitute approximately 80% of the

studied mRNA pool in cytosol (77.20% to 83.66%, SD =

1.98, Additional File 2 - Table S3). Overall, transcript dom-

inance was less accentuated than in primary tissues - 69%

(63.11% to 71.17%, SD = 2.40) of genes with a two-fold

dominant major transcript and 42% (35.16% to 44.76%, SD

= 2.90) with a five-fold dominant transcript in cytosol

(Additional File 2 - Table S4). These differences could

reflect higher transcription and splicing rates in cell lines,

although they could also be due to technical variability

between the two datasets.

Given that estimating transcript expression from short

reads is a challenging task, we performed additional ana-

lyses to test the reliability of our observations. First, we

simulated different RNA-seq datasets to test whether the

method used can distinguish between two hypothesised

scenarios - one dominant transcript per gene vs. similar

expression levels of the different transcripts in each gene

(see Methods) - and concluded that our method reliably

discriminates between those, even when taking into

account different sequencing depths (Additional File 1 -

Figure S6). In addition, this analysis reveals that the

method is not biased towards the identification of a single

transcript per gene (see Additional File 1 - Figure S6) and

reproduces our previous findings about transcript domi-

nance (Additional File 2 - Table S7). Second, we used

alternative methods to estimate transcript expression

levels and identify major transcripts, including direct evi-

dence from junction reads. All the methods have a strong

overlap in the predictions (see Additional File 2 - Table S8

and Methods). Third, we analysed the length distribution

of major transcripts to determine whether the identifica-

tion of major transcripts is biased towards the longest one

for each gene. We observe that the length of the major

transcript is distributed widely (Additional File 1 - Figure

S7) and that in >50% of the cases (50.98% to 55.46%, SD =

1.53) the major transcript is not the longest one annotated

(Additional File 2 - Table S9 and Additional File 3 - File

S1). The same trend is observed when taking into account

CDS length: we estimate that in approximately 50% of the

cases (44.42% to 48.23%, SD = 1.12) the major transcript

does not contain the longest CDS, thus not corresponding

to the ‘canonical’ transcript as annotated in UniProt (Addi-

tional File 2 - Table S9 and Additional File 3 - File S1). For

instance, we identified the AES (amino-terminal enhancer

of split) and CD47 (CD47 molecule) genes, for which we

detect a ubiquitous major transcript that is shorter than

the current reference (Figure 2 and Additional File 1 -

Figure S8). Finally, we addressed the impact of unnano-

tated transcripts in our observations by performing de novo

transcript identification using Cufflinks (see Methods). As

expected, we observe a higher number of transcripts per

gene (6.38 in GENCODE v11 vs. 12.84 using Cufflinks),

although the main message still prevails (Additional File 1

- Figure S9 and Additional File 2 - Table S10).

Major transcripts tend to be recurrent across samples

We next sought to quantify how often we detect the same

major transcript across different samples. Focusing on the

tissue dataset, and taking into account genes that are

expressed in at least two different tissues, we estimate that

this is the case for 35% of the genes (Figure 3a and Addi-

tional File 3 - File S2); while approximately 50% of the

genes that are ubiquitously expressed (that is, expressed in

all the 16 tissues) have the same major transcript (Figure

3a). For higher expression thresholds the overlap in the

major transcript increases to 79% (Additional File 2 -

Table S11). In addition, comparison of expression patterns

for major and minor transcripts revealed that the former

tend to be expressed in a recurrent fashion (Additional

File 1 - Figure S10). In the cell line dataset, we detected

similar major transcript expression patterns, with substan-

tial differences depending on the subcellular fraction

analysed (see Additional File 4 - Supplementary Results).

On the other hand, we still detect a significant fraction

of genes (>60%) for which the identity of major transcripts

changes across conditions. To quantify these differences,

we study switch events - changes of dominant transcripts

between samples. We define a gene to undergo a two-fold

(or five-fold) switch between two samples, if this gene has

two different two-fold (or five-fold) dominant transcripts

in the respective samples, while the overall expression of

the gene does not change abruptly between the two sam-

ples (see Figure 3b and Methods). From the pairwise com-

parison of the 16 tissues, we found that approximately

35% of the studied genes (n = 14,626) are involved in two-

fold switch events, and approximately 10% in five-fold

switch events. However if we additionally require the

dominant transcripts to be expressed over 5 FPKM and

the minor ones under 1 FPKM, thus increasing the chance

that the switch might have an effect at the protein

level, the number of such strong switches drops to <1%

(Figure 3a, Additional File 2 - Table S12 and Additional

File 3 - File S4). Further focusing on strong switch events

across tissues, we detected only 67 genes for which the
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Figure 2 Example of non-canonical major transcript common to all the 16 tissues analysed: AES (amino-terminal enhancer of split,

ENSG00000104964). Read coverage for the gene (a) and screenshot from the Zmap manual annotation interface (b). UTR exons and splice
variants with no annotated CDS are shown in red, coding exons are shown in green and the CDS portion of models annotated as NMD are
shown in purple. Clusters containing >8,000 CAGE tags defining transcription start suites are shown as small blue boxes, CpG islands are shown
as yellow boxes broken by horizontal red bars representing TSS predictions from EPONINE [59]. The short horizontal green bars represent
polyadenylation sites identified by polyAseq [60].

Figure 3 Expression patterns for major transcripts. (a) Percentage of genes with recurrent and non-recurrent major transcripts. Changes in the

identity of major transcripts across samples were quantified with switch events. (b) Concept of switch event. A gene is considered to be involved
in a switch event if we detect two different dominant major transcripts in two different samples. If the dominant transcripts involved in the
switch are expressed above 5 FPKM, while the minor ones are expressed below 1 FPKM, we define the event as a strong switch.
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switch implied a change in the protein sequence. Tran-

script expression profiles for this last subset of events can

be visualised in Additional File 1 - Figure S11. One exam-

ple is the MBP gene (Myelin Basic Protein), for which we

detect a brain specific major transcript (Figure 4 and Addi-

tional File 1 - Figure S12).

As our tissue dataset lacks biological replicates, we

cannot distinguish which of the switch events are tissue

specific, as opposed to individual specific or due to tech-

nical or biological noise. Reassuringly, we observed that

genes with high variability in splicing across tissues are

enriched for transit peptides, among other GO terms

(Additional File 2 - Table S13 and Methods), thus sug-

gesting that biological variability dominates above tech-

nical variability. In addition, in order to estimate to

what extent technical variability could influence our

estimates, we repeated the same analyses in the cell line

dataset, where we observed that the number of switch

events detected across cell lines is significantly higher

than the one detected across replicates (that is, 10 times

higher for five-fold switch events, Additional File 1 -

Figure S13). Overall, the proportion of switch events

detected in the cell line data is lower than the one

observed in the tissue data (Additional File 2 - Table

S12 and Additional File 3 - File S5).

Major transcripts do not always code for proteins

Functional classification of major transcripts revealed that

for 17% (15.26% to 20.64%, SD = 1.60) of protein coding

genes expressed in primary tissues the major transcript

lacks an annotated CDS as indicated by GENCODE (see

Additional File 4 - Supplementary Methods). Taking into

account expression levels, and focusing on cell line data,

we observe that major non-coding transcripts are more

abundant in the nucleus, where they represent approxi-

mately 15% of the studied mRNA pool (12.99% to 16.66%,

SD = 1.10, Figure 5a). Genes with major non-coding tran-

scripts are expressed at higher levels in the nucleus, com-

pared to those with major coding transcripts, while this

trend is inverted in the cytosol (Additional File 1 - Figure

S14). In addition, non-coding major transcripts are less

dominant than coding ones in both compartments (Addi-

tional File 1 - Figure S14): 61% (54.80% to 65.57%, SD =

3.07) of major coding transcripts are also five-fold domi-

nant, while this number goes down to 27% (15.71% to

35.34%, SD = 5.76) for non-coding major ones. Finally, the

annotation revealed that the major non-coding transcripts

correspond to retained introns and processed transcripts,

which lack an open reading frame (see Supp. Methods).

We observe a higher proportion of processed transcripts in

the cytosol and retained introns in the nucleus (Figure 5b).

In order to evaluate the hypothesis that incomplete spli-

cing could explain the higher proportion of major retained

introns in the nucleus, we compared intron expression

levels across cellular compartments (see Methods for

details on the calculation of intron expression). We

observe slightly higher intron expression in the nucleus

compared to the cytosol (Additional File 1 - Figure S15).

We also observe a general trend in the location of major

retained introns towards the transcriptional 3’-end (Addi-

tional File 1 - Figure S15); moreover this trend is more

accentuated in the cytosol than in the nucleus, where it is

possibly masked by the higher intronic expression levels.

Such 3’ intron retention has been previously linked to

Figure 4 Example of a switch event: MBP (myelin basic protein, ENSG00000197971). Read coverage for the gene in brain and kidney.
Further tissues, as well as transcript annotation information, can be visualised in Additional File 1 - Figure S12.
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nonsense-mediated decay (see Discussion). Alternatively,

the prevalence of retained introns as a major transcript

could point to a functional mechanism. We observe that

genes with retained introns as the major transcript both in

nucleus and cytosol are expressed at lower levels in the

later (Additional File 1 - Figure S15), which would be con-

sistent with a regulatory role for retained introns (see Dis-

cussion). We also detect that those genes are associated to

transit peptides and ribosomal components, which is con-

sistent with previous findings indicating that introns regu-

late the expression of ribosomal proteins in yeast

(Additional File 2 - Table S14, see Discussion). On the

other hand, the term ‘processed transcript’ constitutes an

ambiguous category. Manual inspection of a subset of pro-

cessed transcripts that were consistently identified across

all samples as the major transcript suggests that potentially

they could be re-annotated to protein coding, nonsense

mediated decay (NMD) or retained intron (Additional File

2 - Table S15). Together, this seems to suggest that the

true proportion of non-coding major transcripts for pro-

tein coding genes may be lower than the current annota-

tion suggests, and most of these result from retained

introns, which can be explained by incomplete splicing or

potentially have a regulatory role.

Conclusions
In this study we combine RNA-seq data from different pri-

mary tissues, cell lines and cellular compartments to char-

acterise the human protein coding transcriptome from a

functional perspective. We show that in a given condition

most protein coding genes not only express one major

transcript, as recently observed by Djebali et al. [13], but

in most cases the major transcripts are dominating the

transcriptome. This observation is accentuated when

grouping transcripts by TSS, a scenario in which differ-

ences in transcript abundance can be mostly attributed to

splicing. We are aware that transcript quantification from

short read sequences is not a trivial task, and that the cur-

rent annotation is continuously updated to include novel

transcripts. However, our findings are supported by several

quantification methods, including de novo transcript dis-

covery, they are consistent across all datasets, and are reas-

suringly supported by direct evidence from junction reads.

In addition, the single transcript dominance becomes

stronger for highly expressed genes, for which transcript

prediction and quantification have been reported to be

more reliable (RNA-seq Genome Annotation Assessment

Project - RGASP, J Harrow, T Steijger, F Kokocinski, JF

Abril, C Howald, A Reymond, A Mortazavi, B Wold, T

Gingeras, R Guigó, et al., in preparation). In the long term,

longer reads and single cell sequencing will shed more

light on the topic.

Changes in alternative splicing across conditions have

been widely reported, with many studies focusing on the

differences across tissues ([7,8,20], Merkin et al. Science

2012, [24]), where splicing is thought to control the inter-

actions of the protein products [25,26]. Here we quantify

changes in the major transcript across conditions by look-

ing at switch events. We detect a significant number of

genes that express several major transcripts across differ-

ent conditions. Relevant examples include the MBP gene,

PSEN1 (presenilin 1) and ILF3 (interleukin enhancer bind-

ing factor 3). However, in many cases the differences are

subtle. This would suggest that alternative splicing might

be more prevalent in dynamic processes such as develop-

ment and differentiation, rather than steady state. On the

Figure 5 Major non-coding transcripts in protein coding genes. (a) Proportion of the mRNA studied represented by different categories of

transcripts. Average proportions were calculated including all the samples from each dataset. Major non-coding transcripts are more abundant in

nucleus, where the proportion of major coding ones also becomes reduced. (b) Transcript biotype categories for the major non-coding transcripts.
Average proportions were calculated including all the samples from each dataset. Processed transcripts are more abundant in the cytosol, while
retained introns represent the major fraction in the nucleus. Other minor categories that represented <1% of the transcripts were also identified,
but are not visible in the plots.
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other hand, dominant transcripts that are recurrent in

many samples are also interesting, given that they can be

used to build a catalogue for the reference transcriptome.

A closer inspection of a set of recurrent major transcripts

revealed cases where they do not contain the longest CDS,

a criteria often used in resources like UniProt to define a

reference transcript [27], thus exposing some of the limita-

tions of the current definitions and pointing to potential

advantages of taking into account functional data. For

instance, the major transcripts detected for the AES gene

and the CD47 gene are ubiquitously expressed and do not

correspond to the current reference.

We were surprised to find that for a non-negligible frac-

tion of protein coding genes the major transcript is non-

coding and can be classified as retained intron or processed

transcript, which lack an open reading frame [28]. How-

ever, we observe higher prevalence of non-coding major

transcripts in the nucleus, specifically retained introns. Evi-

dence exists suggesting that unspliced or incompletely

spliced mRNAs are confined to the nucleus [29,30]; there-

fore we hypothesize that our observation could reflect

incomplete splicing, as suggested by the higher expression

levels of introns in nucleus. We also observe that retained

introns are preferentially located towards the transcrip-

tional end of transcripts, which has been previously linked

to nonsense mediated decay [31], a control mechanism

that leads to the degradation of unspliced transcripts when

they are transported to the cytosol [32,33]. Nevertheless,

several cases of functionally relevant retained introns have

been described, either as a mechanism to target mRNA

molecules (for example, [34,35], produce alternate protein

products [36] or regulate expression levels [37-39]. We

observe that genes with retained introns as the major tran-

script in both nucleus and cytosol are expressed at consid-

erably lower levels in the later, which could point to a

regulatory role. Finally, we also detected that those genes

are associated to ribosomal components, which is consis-

tent with previous findings indicating that introns regulate

the expression of ribosomal proteins in yeast [40]. On the

other hand, we were able to re-annotate some of the recur-

rent processed transcripts to either coding or retained

intron, thus illustrating a potential application of our ana-

lyses. For example, we revisited the annotation for one of

the transcripts from PARK7 (parkinson protein 7) to pro-

tein coding, from RNF40 (ring finger protein 40) to non-

sense mediated decay and from OSBPL2 (oxysterol binding

protein-like 2) to retained intron.

Overall, it is difficult to predict the impact of our

observations at the protein level. There have been several

studies addressing the relationship between protein and

transcript levels, which in general point at a modest, but

not insignificant correlation [17,21,41,42]. Translational

efficiency, mRNA and protein turnover rates are likely to

have an impact on protein levels [21]. On the other hand,

proteomics studies also show that observing a protein is

unlikely unless there are at least a certain number of

RNA molecules per cell [21-23]. This may be partly due

to insufficient sensitivity of the methods used; neverthe-

less this supports the hypothesis that the abundance of

proteins corresponding to minor transcripts is likely to

be lower than the one corresponding to dominant tran-

scripts. We evaluated this hypothesis by overlapping our

set of dominant transcripts with a set of transcripts pre-

dicted to be translated into proteins by entirely indepen-

dent means [43]. We detected a considerably larger

overlap for those transcripts that have a tendency to be

identified as major, compared to minor ones, suggesting

that major transcripts could be preferentially translated.

On the other hand, alternative splicing not only has an

impact on the proteome repertoire [44-46], but also at

the transcriptome level, cooperating in the control of

expression levels [20,32,47] and contributing to spatial

expression patterns through transcript localisation [46].

This brings in other potential roles for minor transcripts.

However, it is also possible that some of those minor

transcripts are simply the result from noisy splicing

[22,45,48].

The discovery of alternative splicing and many different

classes of non-coding RNAs, together with the establish-

ment of RNA-seq, revealed that the number of transcripts

exceeds many times the number of genes in the human

genome. This has been used to argue that alternative spli-

cing possibly explains the low number of genes compared

to what was believed before it was sequenced [45]. Despite

this diversity of transcripts, our findings indicate that most

protein coding genes express one dominant transcript in a

given condition and that most of the mRNA pool from

protein coding loci arises from major transcripts, thus sug-

gesting that those could be the main contributors to the

proteome. In addition, the ratio of the number of

expressed transcripts to genes in primary tissues is on

average 1.12 and many of the dominant transcripts are the

same across different conditions. Overall, these observa-

tions may help proteome analysis by prioritising the candi-

date proteins that are more likely to be present in a given

sample. At the same time, identification of changes in the

major transcript across conditions can lead to relevant

clinical findings (for example, [18]) and may also be used

to predict the functional impact of the detected changes in

variation studies.

Materials and methods

Datasets and mapping

We based our analyses on the Illumina Body Map (BM)

dataset and a subset of ENCODE cell lines [49] (ArrayEx-

press accession ids: E-MTAB-513 and E-GEOD-26284,

respectively), jointly covering a total of 21 different tissues

and cell lines, as well as different cellular compartments.
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Raw fastq files were retrieved from the European Nucleo-

tide Archive [50] using the accession numbers indicated in

Additional File 2 - Table S16. In addition to the publicly

available datasets, we simulated two RNA-seq experiments

using the Flux Simulator [16]. Details on the parameters

used in the simulation have also been listed in Additional

File 2 - Table S16.

Fastq files in the BM dataset were filtered before map-

ping by trimming the last five nucleotides of all reads. Raw

data were mapped to the human genome and transcrip-

tome (Ensembl 66; [1]) using TopHat v1.3.3 [51] and Bow-

tie v0.12.7 [52], respectively.

Gene and transcript study sets

Gene and transcript annotations used in the analyses cor-

respond to those in GENCODE v11 [28]. We focused on

protein coding genes and filtered out those for which at

least one of the annotated transcripts was shorter than

300 bp, given that those transcripts would be lost during

the size selection step in the RNA-seq experiment. In

total, our study set comprises 18,450 protein coding genes,

of which 14,902 have more than one transcript annotated.

Counting reads overlapping exonic and intronic regions

Exonic coordinates were retrieved from the annotation

and used to define intronic regions. Formally, our defini-

tion of intron encompasses those regions that are located

inside genic boundaries and are not overlapped by any

exon in any annotated transcript. We then computed the

number of reads overlapping known exons and introns

using dexseq-count (DEXSeq v1.5.5 [53]) and converted

read counts to FPKM values with custom scripts.

Estimation of gene and transcript expression levels

For each gene, expression levels were calculated as the

average FPKMs of all expressed exons. Independently,

transcript abundances were obtained using three different

tools: MISO v0.4.1 [6], Cufflinks v1.3.0 [4] and MMSEQ

v0.10.0 [5]. MISO and Cufflinks take as input alignments

to the genome, while MMSEQ requires mapping to the

transcriptome, thus the need to use two different mapping

strategies (see above). In all three cases we based the esti-

mates on the existing transcript annotation (see above),

cancelling any option for de novo inference, and converted

those to transcript relative abundances when necessary. In

this manuscript we are referring to the results obtained by

MISO and we use a default FPKM threshold of 1 to con-

sider a gene/transcript as expressed. This threshold has

been suggested as the minimum expression required for

protein detection [21-23] and is different from lower

thresholds that have been suggested to address transcript

detectability [54]. In addition, we include higher expres-

sion thresholds in the analyses (5 and 10 FPKM), since

transcript quantification has been reported to be more

reliable for those (RNA-seq Genome Annotation Assess-

ment Project - RGASP, J Harrow, T Steijger, F Kokocinski,

JF Abril, C Howald, A Reymond, A Mortazavi, B Wold,

T Gingeras, R Guigó, et al., in preparation). Finally, we

consider a transcript as detected independently of its

expression level, given that the gene is expressed.

mRNA pool estimates were calculated as introduced by

[54]. Briefly, the fraction of the studied mRNA pool that

can be explained by the expression of major transcripts

can be represented as the ratio of the sum of FPKMs for

major transcripts vs. the sum of FPKMs for all the tran-

scripts in our study set. All transcripts encoded within

protein coding genes were taken into account in the cal-

culation, independently of their transcript biotype, and

thus we refer to mRNA pool from protein coding loci.

Mitochondrial genes in our study set were discarded for

this analysis (n = 11 in our study set), since they are pre-

sent multiple times in the cell and could bias the quanti-

fication (for example, we found that six transcripts

arising from mitochondrial genes explain almost 50% of

the studied mRNA pool).

Direct evidence from junction reads

Starting with our gene study set (see above), we focused

on those genes for which all of the annotated transcripts

can be uniquely identified by at least one splice junction

(n = 2,306). We then proceeded to identify major tran-

scripts based on coverage evidence (that is, quantifying the

number of reads supporting each junction and taking the

average in case of several splice junctions). For each sam-

ple we calculated the overlap with MISO (Additional

File 2 - Table S8).

De novo transcript discovery using Cufflinks

We used Cufflinks v1.3.0 [4] to discover novel transcripts

in each tissue from the BM dataset and merged all the

obtained annotations using cuffmerge. We then focused

on the subset of transcripts that overlap with known pro-

tein coding genes and filtered out those genes with tran-

scripts shorter than 300 bp, as mentioned previously (see

Gene and transcript study sets). A summary on the num-

ber of genes and transcripts identified can be found in

Additional File 2 - Table S10.

GO analysis

GO analyses were performed with the DAVID software

[55,56]. The reference population was defined by our gene

study set (see above) and an adjusted P value of 0.05 (Ben-

jamini and Hochberg correction [57]) was used as a

threshold for the identification of significant GO terms.

Switch events

We performed a pairwise comparison of the samples in

each dataset and focused on those cases where we detect
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different major coding transcripts. Given a gene G, a pair

of transcripts Ik and Il and a pair of samples Si and Sj, we

say that gene G undergoes an x-fold switch between tran-

scripts Ik and Il in samples Si and Sj, if G is expressed in Si
and Sj and the ratio of the expression of Ii to the expres-

sion of Ij is at least x in Si and no more than 1/x in Sj.

Additionally, we looked at x-fold switch events that are

not accompanied by strong change in the overall gene

expression, to filter out the cases where the change is lar-

gely due to the overall expression change. A switch event

was considered to be expression dependent if the differ-

ence in the expression level of gene G between sample Si
and Sj was bigger than the mean, and expression inde-

pendent otherwise. Finally, we say that there is a strong

switch if the expression of Ik in Si and Il in Sj is at least 5

FPKM, while Ik in Sj and Il in Si less than 1. The intuition

behind the definition of strong switch is that we want to

maximise the chances of obtaining a protein in the first

sample and not in the second, and vice versa, and several

proteomics studies show that observing a protein is unli-

kely unless there are at least a certain number of RNA

molecules per cell [21-23]. Finally, given a sample S and a

switch (Ik, Il) we can calculate ratio r = expression(Ik)/

expression(Il) and its logarithm lr = log(r). Given a switch

(Ik, Il) and set of samples S1, ..., Sj, the vector (lr1, ..., lrj) of

these values is called the expression profile of the switch.

Variability in splicing across tissues

Variability in splicing relative abundances across tissues

was measured using the method introduced by [58].

Additional material

Additional file 1: Supplementary Figures

Additional file 2: Supplementary Tables
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