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Abstract

In nature plants are often simultaneously challenged by different biotic and abiotic stresses.

Although themechanisms underlying plant responses against single stress have been studied

considerably, plant tolerancemechanisms under combined stress is not understood. Also, the

mechanism used to combat independently and sequentially occurring many number of biotic

and abiotic stresses has also not systematically studied. From this context, in this study, we

attempted to explore the shared response of sunflower plants to many independent stresses

by using meta-analysis of publically available transcriptome data and transcript profiling by

quantitative PCR. Further, we have also analyzed the possible role of the genes so identified

in contributing to combined stress tolerance. Meta-analysis of transcriptomic data frommany

abiotic and biotic stresses indicated the common representation of oxidative stress responsive

genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar

pattern of changes in the oxidative stress related genes. Based on this a large scale screening

of 55 sunflower genotypes was performed under menadione stress and those contrasting in

oxidative stress tolerance were identified. Further to confirm the role of genes identified in indi-

vidual and combined stress tolerance the contrasting genotypes were individually and simulta-

neously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced

levels of stress damage both under combined stress and few independent stresses. Tran-

script profiling of the genes identified frommeta-analysis in the tolerant hybrid also indicated

that the selected genes were up-regulated under individual and combined stresses. Our

results indicate that menadione-based screening can identify genotypes not only tolerant to

multiple number of individual biotic and abiotic stresses, but also the combined stresses.

PLOSONE | DOI:10.1371/journal.pone.0157522 June 17, 2016 1 / 19

a11111

OPEN ACCESS

Citation: Ramu VS, Paramanantham A, Ramegowda

V, Mohan-Raju B, Udayakumar M, Senthil-Kumar M

(2016) Transcriptome Analysis of Sunflower

Genotypes with Contrasting Oxidative Stress

Tolerance Reveals Individual- and Combined- Biotic

and Abiotic Stress Tolerance Mechanisms. PLoS

ONE 11(6): e0157522. doi:10.1371/journal.

pone.0157522

Editor: Debasis Chakrabarty, CSIR-National

Botanical Research Institute, INDIA

Received: August 6, 2015

Accepted: June 1, 2016

Published: June 17, 2016

Copyright: © 2016 Ramu et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information files.

Funding: Combined stress tolerance projects at MS-

K lab are supported by National Institute of Plant

Genome Research (NIPGR) core funding and DBT-

Ramalingaswami re-entry fellowship grant (BT/RLF/

re-entry/23/2012). MUK lab is supported by Indian

Council of Agricultural Research niche area of

excellence program (F. No. 10-(6)/2005 EPD & F.

No.10 (15) 2012 EPD). VSR is currently Fulbright-

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0157522&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0157522&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0157522&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

Sunflower (Helianthus annuus) is one of the most important oilseed crops worldwide. Sunflower

growing regions are characterized by constant occurrence of not only multiple individual biotic

and abiotic stresses, but also simultaneous drought, pathogen infection and temperature stresses

resulting in substantial loss of crop productivity [1–4]. Adding to this, recent climate changes lead

to unpredictable rainfall pattern, temperature and pathogen spread [5–8]. This lead to increased

interaction of pathogens with different abiotic stresses in the plant interphase [9–10]. Research in

the past had largely focused on understanding plant responses to individual stresses with a limited

emphasis on combined stresses [11–15]. Importantly, the available combined stress related litera-

ture indicates both shared and unique physiological and molecular responses of plants between

combined and individual stresses [9, 16–18]. Therefore, uncovering the shared mechanisms using

information from large number of individual stress based studies will be useful for understanding

the role of commonly regulated genes under combined and individual stresses.

Transcript profiling data from drought, salt, abscisic acid (ABA), several fungal pathogens,

reactive oxygen species (ROS) and cold stress treated sunflower plants are available [19–24].

Such transcriptome profiling from individual stresses such as drought and low temperature has

been used to unravel the pathways associated with multiple individual stresses [25, 26]. In spite

of large scale transcriptome data available from different individual stresses, a comprehensive

effort to identify commonly regulated genes has not yet been made. These shared responses

might reveal complex signaling networks and pathways [27, 28] facilitating understanding of

both individual and combined stress tolerance mechanisms. From this direction meta-analysis

of available data is useful. Recently, meta-analysis of microarray data from rice (Oryza sativa)

and Arabidopsis thaliana exposed to drought and bacterial stress identified several commonly

regulated stress-responsive genes [29, 30]. In a similar study in rice and A. thaliana plants

exposed to drought and bacterial pathogen, ~3100 and 900 differentially expressed genes were

identified respectively. About 38.5% and 28.7% differential genes were common to drought

and bacterial stresses in rice and A. thaliana, respectively [31]. A large number of commonly

regulated genes belonged to ROS mediated signaling and free radical scavenging pathways.

ROS is implicated in complex regulatory networks governing both biotic and abiotic stress

responses [32, 33, 34] and also known to play role under combined stresses [35]. The ROS trig-

gered downstream signaling events are also part of shared hormonal responses and metabolic

pathways [36, 37]. These signalling networks interact as a part of ‘cross-talk’ and play role in

plant adaptation to multiple individual stresses [38–41] and combined stress [10, 11, 17].

Apart from role in signaling pathway, high levels of ROS cause cellular damage due to oxidative

stress. The antioxidant defense mechanism is one of the key pathways associated with number

of individual and combined stresses [26, 42]. For example, under combined drought and heat

stress tolerance, antioxidant enzyme cytosolic ascorbate peroxidase (APX1) plays critical role

in H2O2 scavenging [43]. Besides several mutants defective in ROS scavenging enzymes

showed increased susceptibility to both biotic and abiotic factors [34, 44, 45]. Catalase-deficient

barley showed leaf bleaching [46] and tobacco CAT1 antisense lines showed necrotic lesions

linked to the activation of certain pathogen responses [47,48]. In the recent past, many studies

have used exogenous ROS generating chemical compounds and ROS scavenging systems as a

potential tool to identify plants tolerant to multiple stresses [13, 49]. Genetic variability for oxi-

dative stress tolerance in crop plants has also been explored to identify multiple stress tolerant

crops [11, 44, 50, 51]. In our previous work we developed an empherical screening-based

approach for identification of individual abiotic stress tolerant crops [50, 52, 53, 54, 55]. The

selection criteria for tolerant seedlings during screening involved not only survival under stress

after acclimation treatment, but also their high growth rate during recovery.
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In the present study the major emphasis was to identify sunflower genotypes contrasting for

oxidative stress tolerance using menadione, an oxidative stress inducer and understand the

mechanisms involved in multiple individual and combined stress responses (S1 Fig). Initially,

meta-analysis was performed on sunflower transcriptome datasets selected from six publically

available biotic and abiotic stress experiments to identify commonly regulated genes with most

up- and down-regulation. The analysis led to the identification of 526 up-regulated and 4440

down-regulated stress responsive genes which are shared across the stresses. Further RT-qPCR

analysis of these genes confirmed their expression pattern observed in microarray. Subsequently

expression pattern of the identified genes was studied using the sunflower genotypes having

contrasting stress tolerance under multiple individual and combinations of stresses namely,

drought, cold, methyl viologen, NaCl and pathogen. Results from this study revealed the plant

responses to multiple individual and combined stresses and identified candidate genes for fur-

ther studies on development of broad-spectrum stress-tolerant sunflower in the future.

Materials and Methods

Plant material and growth conditions
The sunflower genotypes were obtained from different centers of All India Coordinated

Research Project (AICRP) for sunflower at University of Agricultural Sciences (UAS), GKVK

Bangalore, India. The genetic backgrounds and agronomic characteristics of these 55 lines are

described in S1. The sunflower seeds of var. Morden (an open pollinated heterogeneous popu-

lation) were procured from National Seeds Project, UAS, GKVK, Bangalore, India. Two-day-

old seedlings were grown on moist filter paper in Petriplates and incubated at 30°C in seed ger-

mination chamber. For the seedling level stress treatment, plants were grown in pots with 2 kg

of soil under greenhouse conditions with 10/14 h day/night cycle, 27°C temperature and 80%

relative humidity.

Data collection and meta-analysis
The transcriptomic data of individual biotic and abiotic stresses on sunflower was collected

from array express database (https://www.ebi.ac.uk/arrayexpress/) (S2 Table). This data

(http://www.ebi.ac.uk/arrayexpress/experiments/browse.html?keywords=&organism=

Helianthus+annuus&array) was manually curated using Microsoft Excel and control and treat-

ment files were separated. The curated data were used as input files for meta-analysis. Integra-

tive Meta-analysis of Expression data (INMEX) tool [56] was used for meta-analysis of

multiple gene-expression datasets for identifying commonly up- and down-regulated genes.

Stouffer’s model was used to integrate the data with treatments and controls, thereby com-

monly expressed (shared) genes among the different stress conditions were identified [57].

This method is used in meta-analysis of data across studies using p-value, sample size and esti-

mated direction of effect for each study. This method can easily execute meta-analyses even

when different analytical approaches were used in each individual study [58]. For the data

upload, input data (file format.txt or.zip) was arranged in Excel file with gene expression values

and corresponding probe ID or gene name in rows and samples or experiments in columns.

Each column or treatment was named as per specific treatments. Further the up- and down-

regulated gene IDs were converted from Affimetrix to Uniprot IDs. The different dataset were

merged together into a mega-dataset (S2 Fig). The functional annotation of the identified genes

was derived using Blast2GO tool [59]. Blast2GO identifies the function of a given sequence pri-

marily based on the gene ontology (GO) term. It optimizes the function of a given sequence

when compared to homologous sequences considering the similarity and the extent of homol-

ogy in the selected database (https://www.blast2go.com/).
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Individual stress imposition
Oxidative stress in seedlings by menadione. Menadione (2-methyl-1, 4 napthoquinone)

sodium bisulfite (Cat No. M2518-100G, Sigma Aldrich), a free radical inducer [50, 60] was

used in this study to impose oxidative stress in seedlings 48 h after germination. Menadione is

a quinone compound and upon auto oxidation and reduction process, it generates superoxide

radicals in the cell. It is suitable for imposing oxidative stress in non-photosynthesizing tissues.

Seedlings of 2.5–3 cm length were incubated at a particular concentration of menadione (0.25,

0.5, 1, 2, 3, 4, 5 mM) for 2 h at 30°C under constant shaking. After the treatment, seedlings

were washed thoroughly using distilled water. A subset of the control seedlings were trans-

ferred to Petriplates on moist filter paper and allowed to recover for 3 d at 30°C. After the

recovery period, survival and recovery growth were measured. Another subset of seedlings

were allowed to recover for 5 h at 30°C and used to estimate cell death [50, 61, 62]. In all the

experiments three replicates were taken and each replicate had 25 seedlings. The seedlings

maintained at 30°C throughout the experimental period, were used as absolute controls.

Reduction in growth of seedlings was calculated using the following formula.

Reduction in growth over absolute control ð%Þ ¼
Growth of seedlings after recovery

Growth of seedlings in absolute control
X 100

Ten-day-old sunflower seedlings were treated with 1 mMmenadione and after 2 h the tissue

from leaf, root and whole seedling were frozen. RNA from these tissues was extracted and

cDNA was synthesized using the protocol described under RT-qPCR. Expression of oxidative

stress responsive genes namely superoxide dismutase (SOD, accession number AY172569),

ascorbate peroxidase (APX, accession number AGU36670), catalase (CAT, accession number

L28740), and heat shock protein (HSP17, accession number U96641) were studied using RT-

qPCR.

Oxidative stress in leaves by methyl viologen. Methyl viologen (Paraquat dichloride;

M2254, Sigma Aldrich), a ROS generating herbicide in chloroplast was used to impose oxida-

tive stress under 1400 μmol m-2s-1 in sunflower leaves. This compound interferes with photo-

synthetic electron transport chain to produce ROS in photosynthesizing tissues under high

light. Oxidative stress was imposed by spraying 5 μMmethyl viologen on 7-day-old plants and

the tissue was collected after 12 h for different assays (S5 Fig).

Drought stress. Pots were filled with potting mixture of known weight and were irrigated

until all the soil macro and micro pores were filled and excess water was drained overnight.

Based on water holding capacity for this soil mixture total weight of pot with soil mix for 100%

field capacity (FC) was arrived. Drought stress was imposed by gravimetric approach [63].

10-day-old plants in pots were used for the experiment. Stress was imposed by withholding

irrigation and the plants meant for drought stress were maintained at 30–40% FC for one

week. At the end of stress period, stress responses were studied in the leaves.

NaCl stress. NaCl 200 mM was dissolved in water and irrigated to the pots having 7-day-

old plants. After 5 days of treatment the leaf tissue was frozen for gene expression and bio-

chemical studies (S5 Fig).

Cold stress. Plants (10-day-old) were subjected to cold stress by incubating at 4°C for 2 h

and tissue was frozen for further studies (S5 Fig).

Downy mildew pathogen infection. Field grown plants (45-day-old) were naturally

allowed to infect with Plasmopara halstedii. The uniformly infected symptomatic leaves were

used to rub on the 7-day-old plants grown in pots. At the University of Agricultural Sciences

downy mildew infected ‘sick plots’ are maintained for varietal trails [64]. The experiment was

carried out during spring (humidity 60–70%, 28°C day and 16°C night temperature). In spring
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P. halstedii infects sunflower seedlings through germination of overwintered sexual oospores.

For the systemic plant colonization by disseminating structures on various plant organs inter-

cellular hyphae play critical role under humid conditions [65]. This pathogen causes seedling

damping off, dwarfing of the plant, bleaching of leaves, and visible white sporulation on the

lower side of leaves [65]. Disease index was scored after 5 days and tissue was collected for gene

expression (S5 Fig). The pathogen infection incidence was assessed by scoring visible white

spores and bleaching symptoms. Scoring was done as follows: 0 = no symptoms on the leaves;

1 =<1%; 2 = 1–10%; 3 = 10–25%; 4 = 25–50%; 5 = 50–75%; 6 => 75% of total leaf area

affected. Disease index (DI) was calculated using the following formula [66]:

Disease index ðDIÞ ¼
Sum of numerical rating� 100

Total number of inoculated leaves � 6

Six in the formula indicates maximum disease grade.

Combined stress imposition
Ten-day-old plants were used for combined stress imposition. Two types of combined stresses

were imposed in this study. One is combination of drought and pathogen, in which plants were

initially exposed to drought stress by withholding the water for 3 days. The pathogen was inoc-

ulated on the first day of water withholding. The tissue was collected after 3 days of combined

stress treatment. Second type of combined stress involved subjecting plants to combination of

drought, NaCl, cold, oxidative and pathogen stress as per following procedure. Initially control

grown plants were irrigated with 200 mMNaCl and then water was with-held for 3 days. Dur-

ing same period plants were simultaneously exposed to cold stress for 2 h and sprayed with

5 μmmethyl viologen and inoculated with pathogen. All these process were carried out within

3 days period and tissue was frozen for further analysis. Minimum of three replicates were

maintained for each treatments. The overview of the combined stress experiment is presented

in S5 Fig.

Estimation of H2O2

The levels of H202 play critical role in signaling and act as substrate for reactive oxygen species

(ROS) [67] and we quantified the stress induced H202 using xylenol orange assay [68]. The

xylenol orange reagent was prepared in 50 ml of distilled water containing 1 mL of 50 mM fer-

rous ammonium sulphate in 2.5 M H2SO4 and 62.5 μL of 125 μM xylenol orange (Sigma chem-

icals, cat No. 52097-5G, Bangalore) and 0.9019 g sorbitol. The tissue sample was extracted in

phosphate buffer (pH 7.5). From this 25 μL supernatant was taken and mixed with 275 μL of

xylenol orange reagent. The reaction mix was incubated for 30 min at room temperature and

absorbance was measured at 560 nm against xylenol orange reagent only as blank [68]. Stan-

dards were prepared by dilution of reagent grade 30% H2O2.

Estimation of Melandialdehyde (MDA) content
Melandialdehyde (MDA) is the end product of lipid peroxidation. MDA levels are indicators

of extent of stress impact on plant cell membrane. Leaf tissue (1.0 g) was homogenized in 5 mL

of 5% (w/v) trichloroacetic acid and the homogenate was centrifuged at 12,000 g for 15 min at

room temperature. The supernatant was mixed with an equal volume of thiobarbituric acid

[0.5% in 20% (w/v) trichloroacetic acid], and the mixture was boiled for 25 min at 100°C, fol-

lowed by centrifugation for 5 min at 7,500 g to get clear solution. Absorbance of the superna-

tant was measured at 532 nm. MDA content in leaf tissue was calculated using standard graph

developed using MDA (Sigma chemicals cat No.63287-1G-F, Bangalore) [69].
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Real-time quantitative RT-PCR (RT-qPCR)
Total RNA was extracted according to the protocol described by Datta et al. [70]. First strand

cDNA was synthesized by oligo (18 mer dT) primers usingMolony murine leukaemia virus

reverse transcriptase (MMLV-RT; MBI Fermentas, Hanover, MD, USA) according to manu-

facturer’s instructions. The cDNA pool was used as a template to perform RT-qPCR analysis.

PCR reactions were performed in optical 96-well plates (Applied Biosystems) with an ABI

PRISM1 7900 HT sequence detection system, using SYBR1 Green to monitor the synthesis of

double-stranded DNA. A standard thermal profile with the following conditions was used,

50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for 15 s, and 60°C for 1 min. Amplicon dis-

sociation curves were recorded after cycle 40 by heating from 60 to 95°C with a ramp speed of

1.9°C min−1. The relative expression levels of the selected genes under a given stress condition

was calculated using comparative threshold method by comparing reference control gene [71].

Actin (FJ487620.1) and Ubiquitin (X14333.1) were used as internal controls to normalize RT-

qPCR. Details of all primers used in this study are given in S3 Table.

Statistical analysis
The data obtained was analysed using two-way analysis of variance (ANOVA) as per the proce-

dure given by Fischer [72]. Data points with ‘
�
’ indicate significant differences at P�0.05.

Results

Identification of commonly regulated genes under abiotic and biotic
stresses using meta-analysis of transcriptome data
The sunflower cDNA arrays used in this study were derived from transcriptomic studies avail-

able from the public databases. The data from plants exposed to drought, heat, NaCl, oxidative

stress, cold stress and an oomycete pathogen, Plasmopara halstedii (causal agent of downy mil-

dew in sunflower) infection were collected to identify stress responsive genes shared among

these stresses (S2 Table).

To identify the commonly up or down-regulated genes across the six stresses, meta-analysis

was performed. The overall experimental approach followed is detailed in S2 Fig. The analysis

showed 526 up-regulated, 4440 down-regulated genes and 1953 genes with similar expression

like control (Fig 1). The number of genes upregulated in drought and pathogen was higher

than all other stresses. Analysis of differentially expressed genes specifically under drought and

pathogen stress showed 3922 up-regulated and 119 down-regulated genes. This data indicated

that several genes are shared under multiple individual stresses (Fig 1b). The analysis showed

no genes shared between cold and oxidative stress (Fig 1c). On the contrary maximum number

of shared genes were found between pathogen stresses (two races of downy mildew pathogen)

and oxidative stress. Particularly, 1595 and 1586 genes were down-regulated and 462 and 445

genes were up-regulated in race 710 and race 334, respectively. Further, ABA-ROS and

drought-ROS comparison also revealed several commonly regulated genes.

The up-regulated genes shared across the stress were classified into different classes based

on their molecular function using Blast2GO tool. Large number of genes were found to be

involved in protein binding (9.8%), ATP binding function (7.3%), oxidoreductases (4.5%),

DNA and RNA binding (4.2 & 4%) in addition to hydrolases, ligases, zinc ion binding, kinase

activity, transcription factors and membrane transporters (S6 Fig). The remaining genes had

unknown function. Further 29 genes commonly up- or down-regulated in many stresses were

directly or indirectly involved in regulation of ROS and oxidative stress tolerance were short-

listed for further analysis (S4 Table). The upregulated genes were subjected to Agrigo tool to
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map the genes to identify associated pathways and based on biological function, those genes

were found to be involved in oxidation reduction process (S7 Fig). Similarly in the large num-

ber of down regulated genes were involved in developmental processes, hormone responses,

defense responses, transcription, translational events and protein modifications (S8 Fig). The

genes involved in plant development, including anatomical structure (23 genes), flower (8

genes), pollen (6 genes) and seed (8 genes) development responsive genes were downregulated.

The downregulated genes with response to stimulus include multicellular organismal process

(34 genes), responses to stress (34 genes), responses to chemical stimulus (28 genes), abiotic

stimulus (19 genes) and defense responsive (14 genes). The genes that were involved in many

biosynthetic process (57 genes), macromolecular biological process (82 genes), catabolic pro-

cess (16 genes), macromolecule modification (25 genes), protein modification (24 genes) and

post translational modification (20 genes) were downregulated. Based on these results and lit-

erature information [73] we hypothesised that oxidative stress tolerance mechanisms are linked

to tolerance of plants to multiple number of individual stresses and also combined stresses.

Menadione induces oxidative stress and broad-spectrum stress effects
Menadione, a compound that produces superoxide radicals, has been used to induce oxidative

stress in plants [50, 74, 75]. Seedlings (two day old) of var. Morden were treated with different

concentrations of menadione and response was recorded after recovery. Mild concentrations

of menadione (0.25 to 2 mM for 2 h) reduced the shoot and root growth compared to that of

water treated controls. Root and shoot growth was reduced at concentration higher than 3 mM

Fig 1. Meta-analysis of sunflower transcriptome data from 6 different experimental datasets. The raw
data were integrated in meta-analysis tool INMEX and differentially expressed genes were identified. The
number of differentially expressed genes under all stresses (a), between drought and pathogen stresses (b).
Based on individual stress comparisons, commonly up-regulated, down regulated and unchanged genes
were identified (c).

doi:10.1371/journal.pone.0157522.g001
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menadione treatment for 2 h (S9 Fig). Seedling survival and growth after recovery period were

reduced as the concentration of menadione and duration of incubation increased. However at

high concentrations of menadione (LD50 = 2 mM-3 h or 3 mM-0.5 h), the seedlings abruptly

collapsed due to the cell death as quantified by Evans blue staining (S9 Fig; S5 Table).

Further the expression of few known stress responsive genes was tested in the menadione

stressed seedlings (var. Morden). The expression levels for SOD, APX, CAT and HSP genes

were up-regulated compared to non-stress seedlings in roots and leaf. The transcript expres-

sion of these genes in seedlings was similar to the expression in roots (Fig 2). This indicated

that menadione-induced oxidative stress enhances the expression of genes involved in ROS

scavenging and stress adaptation.

Menadione stress screening identifies genotypes contrasting in stress
tolerance
To identify the contrasting genotypes, seedlings of 55 sunflower genotypes were subjected to

menadione stress and survival and recovery growth were recorded (Fig 3a & 3b). During the

national trials, these genotypes were grown in various geographical locations in India including

Akola, Bangalore, Coimbatore, Dholi, Hisar, Ludhiana, Nandyal, Nimpith and Raichur. Owing

to the characteristic abiotic stress occurrence in these locations, they were exposed to various

stresses during their growth season. Six genotypes were found to be extremely sensitive to oxi-

dative stress based on survival and recovery data (S6 Table). The Z-distribution analysis for

both survival and recovery growth was used to identify contrasting genotypes. Based on this,

two contrasting genotypes namely KBSH53 and KBSH42 were identified as tolerant and sus-

ceptible genotypes, respectively (Fig 3c). These two genotypes were also contrast for resistance

to powdery mildew (S1 Table). These two genotypes and another variety Morden identified

through temperature induced stress response is moderately tolerant and high yielding, were

used to study the effect of multiple individual and combined stresses.

Oxidative stress tolerant genotypes exhibits tolerance to multiple
individual and combined stresses
To test tolerant genotypes identified through menadione-based screening for their response to

multiple individual and combined abiotic and biotic stresses, these genotypes were subjected to

different stresses as shown in the S5 Fig. KBSH53 showed less disease index as compared to

Fig 2. Transcript expression profile of oxidative stress responsive genes in menadione treated
sunflower seedlings. Expression pattern of HaSOD, HaAPX, HaCAT, and HaHSP17were studied using RT-
qPCR. Sunflower seedlings were exposed to 1 mMmenadione for 2 h. RNA was extracted after the stress
period from root, leaf and whole seedling and cDNA was synthesized. ‘*’asterisks indicate a significant
difference from the control (two way ANOVA and Duncan’s multiple range test at P<0.05). Error bars indicate
standard error of mean of three biological replicates.

doi:10.1371/journal.pone.0157522.g002
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KBSH42 (Fig 4a). In these genotypes accumulation of ROS under drought plus pathogen com-

bined stress and all (pathogen, NaCl, drought, cold and methyl viologen) combined stresses is

significantly higher than the independent stresses as shown by NBT staining (S10 Fig).

KBSH53 showed less NBT staining under pathogen and other treatments and KBSH42 showed

higher accumulation of superoxide radicle and higher accumulation of H2O2 as compared to

KBSH53 in all stresses (Fig 4b & S10 Fig). Similarly, MDA levels showing lipid peroxidation

was high in KBSH42 and low in resistant genotype KBSH53 (Fig 4c). Consistently, susceptible

genotype KBSH42 showed higher lipid peroxidation. This confirms that the genotypes identi-

fied through menadione screening showed response similar to that exhibited under oxidative

stress under multiple individual and combined drought and pathogen stress. Taken together,

large scale screening of sunflower genotypes using menadione identified contrasting genotypes

KBSH42 and KBSH53 for individual and combined stress tolerance (Fig 4).

Gene expression analysis under individual and combined stress
explains the molecular basis for susceptibility and resistance of
genotypes
To study the gene expression pattern in contrasting genotypes under individual and combined

stresses, a total of 15 up- and 14 down-regulated genes that were selected from meta-analysis

were used for RT-qPCR (S4 Table). The transcript analysis showed that many genes identified

by meta-analysis were up-regulated in the tolerant genotype KBSH53 in all combined stresses

and drought plus pathogen stress. The transcript levels were higher for genes encoding DNA

topisomerase, aquoglyceroporin, cystathionine γ-synthase, envelope glycoprotein RL10, hexo-

kinase, and photosystem I reaction center proteins under both type (drought plus pathogen,

and pathogen, NaCl, drought, cold and methyl viologen all together) of combined stresses.

Fig 3. Genetic variability of sunflower genotypes under menadione-induced oxidative stress.
Frequency distribution of genotypes based on survival (%) (a) and, reduction in recovery growth (%) (b) and
seedlings were classified using Z- distribution analysis for the 55 genotypes (c). The first and fourth quadrant
indicates susceptible and resistant genotypes respectively. The seedlings were exposed to acclimation
stress of 1 mMmenadione at 30°C and subsequently exposed to a higher concentration of menadione.

doi:10.1371/journal.pone.0157522.g003
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However, the majority of the transcripts upregulated either one fold or less in individual

stresses. Many genes upregulated in meta-analysis data also upregulated in the drought plus

pathogen combined stress (Fig 5).

In the susceptible genotype KBSH42 several genes showed reduced transcript levels under

individual and combined drought plus pathogen stresses. OnlyMicrosomal oleic acid desatur-

ase (O-6FAD) gene showed up-regulation in all combined stress. The DnaJ gene found to be

down-regulated in meta-analysis results showed up regulation under combined drought plus

pathogen stresses (Fig 5). Similarly, the genes encoding acid phosphatase 1, lipid transfer pro-

tein isoform 3, ethylene responsive transcription factor 3 and late embryogenesis abundant 4

were up-regulated in combined drought plus pathogen stress which showed similar trend of

transcript levels as predicted by meta-analysis. In nutshell, the transcript profiling of selected

genes both under individual and combined stresses showed that the transcriptome response in

KBSH53 is different from KBSH42 (Fig 5).

Discussion

Meta-analysis is a useful tool to identify shared genes among multiple
individual and combined stresses
Understanding the shared mechanisms contributing to two or more individually or simulta-

neously occurring stresses is important to improve crop productivity under foreseeable

Fig 4. Individual and combined stress response of the three genotypes varying in oxidative stress
tolerance. Disease score on plants exposed to P. halstedii (a) 7-day-old sunflower plants were exposed to
pathogen spores for 5 days and. Score was assigned from 1–10 based on low to high infection. H2O2 levels
were assessed from leaves of different biotic and abiotic stressed plants (b). The leaf tissue was ground in
PBS buffer and aliquots were used for estimation of H2O2 levels by using a modified ferrous oxidation-xylenol
orange (FOX) assay. MDA levels in stressed plants (c) was quantified by TBARS assay to study the extent of
damage on lipids. ‘*’ indicate a significant difference from the control (Student’s t test, P<0.05). Error bars
indicate standard error of mean. Data were pooled from two independent experiments representing three
biological replicates.

doi:10.1371/journal.pone.0157522.g004
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complex stress situations. But, adaptation of plants to such individual and combined stress is

imparted through a complex, yet to be fully understood mechanisms. To dissect molecular

mechanism behind multiple individual stress and combined stress tolerance in sunflower,

meta-analysis approach was employed [29] using publically available transcriptome datasets

from individual stress studies. The analysis revealed 526 genes up-regulated and 4440 genes

down-regulated among P. halstedii infection, ROS treatment, drought, ABA treatment and

cold stresses. Most of the commonly up- or down- regulated genes identified from meta-analy-

sis showed similar expression pattern under all combined stresses. Between ROS and cold

stress response no commonly regulated genes were found. A simple explanation is either the

genes responsive to cold and ROS are independent or the levels of stress imposed was not suffi-

cient to trigger the shared responsive genes. Role of several of these genes under multiple indi-

vidual and combined stresses are largely unknown (S4 Table). The genes encoding C2H2 zinc

finger, MYB, MYC/bHLH and ethylene responsive factor (ERF) belong to specific family of

transcription factors. These transcription factors are known to regulate several downstream

functional genes in response to different environmental stresses [9, 11]. Another interesting

class of genes found were those encoding H2A, DNA topoisomerase 2, DNaJ and DEAD

box helicases. Apart from these, genes involved in histone relaxation, DNA repair and RNA

secondary structure removal under stress were also found [76, 77, 78, 79]. Further the down-

stream genes encoding chitinase, pathogen resistance 5 (PR5), autophagy related protein and

myo-inositol-1-phosphate synthase that are involved in plant defense against pathogens were

identified along with several chlorophyll and light harvesting complex protein encoding genes.

Fig 5. Transcript profiling of sunflower genotypes varying in stress tolerance under individual and
combined stresses.Morden, KBSH42 and KBSH53 plants were subjected to individual stresses namely,
methyl viologen-induced oxidative stress, cold, salt, drought and pathogen. Another batch of plants were
subjected to two type of combined stresses, namely drought and pathogen and all stresses combined. The
stress protocol is described in S5 Fig. From these stressed plants total RNA was isolated and cDNA was
prepared and used for RT-qPCR. Three replicates were maintained. The expression was normalized to
HaActin and fold change was calculated against the control samples. Two way ANOVA and Duncan’s
multiple range test at P<0.05 was carried out using three biological replicates.

doi:10.1371/journal.pone.0157522.g005
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A similar group of genes identified through microarray profiling of sunflower leaves exposed

to cold and NaCl stress showed dynamic changes in transcript levels of transcription factors,

genes related to translation, protein degradation/folding and ROS production or scavenging

mechanisms [80]. Similarly comparative gene expression analysis under highlight (HL), high

temperature (HT) and combined HL and HT stresses in sunflower leaves and seeds revealed

differential expression of 89, 113 and 186 genes, respectively [81]. Meta-analysis of 6 experi-

mental datasets under different stresses revealed several genes belonging to ATP-, DNA-,

RNA-, protein- binding, hydrolase, ligase, oxidoreductase, serine threonine kinase, transcrip-

tion factor, zinc ion binding and transporter activity. The data suggests that meta-analysis

approach can be potentially employed to identify shared stress responsive genes, which can

reveal the mechanism of combined and multiple stress tolerance.

Owing to the complexity involved in handling all combined stresses, we further focused on

pathogen and drought combination for detailed systematic confirmation of the meta-analysis

results and to dissect the shared mechanism between individual and combined stresses. Inter-

estingly the meta-analysis showed that a large number of commonly regulated genes belong to

the ROS-responsive or oxidative stress scavenging system (S7 Fig). ROS scavenging proteins

are shown to act as early sensors to prevent potential oxidative stress damage [82]. The

response of 187 nuclear encoded ROS responsive genes and 1880 transcription factors showed

rapid and coordinated expression under H2O2 [83]. This prompted us to further examine the

role of ROS pathway related genes using RT-qPCR under combined stress. Under combined

drought and pathogen stress, the genes identified as up-regulated by meta-analysis consistently

showed higher transcript levels in var. Morden. Interestingly most of the genes identified from

the analysis were also induced in sunflower seedlings treated with menadione-induced oxida-

tive stress (Fig 5). Since these genes were also separately confirmed for their up-regulation

under combined drought and pathogen stress, we speculated the strong overlap in some gene

expression between the methyl viologen or menadione-induced oxidative stress and the com-

bined stress. This overlap can be attributed as shared response of plants among the combined

and oxidative stresses. Meta-analysis of drought, bacterial stress response in rice and A. thali-

ana revealed 38.5% (1214) and 28.7% (272) differentially expressed genes (DEGs) respectively

and a majority of these showed conserved expression status in both stresses (30). These studies

suggests that several genes act as part of shared response between combined and individual

stresses.

Tolerant genotypes identified through menadione-based screen showed
multiple individual and combined stress tolerance
We hypothesized that menadione-based screening of genetically diverse sunflower genotypes

could identify tolerant and susceptible groups not only for oxidative stress tolerance, but also

for tolerance to combined stresses (S5 Fig). Specifically, menadione-based screen has been ear-

lier demonstrated as one of the methods suitable for screening and identification of contrasting

stress tolerant genotypes in sunflower [50]. Moreover, owing to highly cross- pollinated nature

of sunflower, the selected 55 genotypes are expected to have genetic variability for multiple

individual and combined stress tolerance. The pool of genotypes used in this study represent

genetic background with tolerance to various abiotic stresses, namely drought, temperature

extremes and salinity apart from superior agronomical characteristics (S1 Table). Our screen-

ing process identified KBSH53 and KBSH42 as tolerant and susceptible genotypes, respectively.

Interestingly, the susceptible genotype also showed susceptibility to combined drought and

pathogen stress (Fig 4). Consistently, the resistant genotype showed improved performance

under individual drought and pathogen stress and also combined stress. Taken together, these
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evidences support our hypothesis and show that the approach used in this study can identify

not only genes responsible for multiple individual stress tolerance, but also for the combined

stress. The usefulness of data from individual stress studies to identify genes for combined

stress tolerance is possible because of crosstalk between many signalling pathways during mul-

tiple stresses [32, 33, 84, 85].

Meta-analysis identified genes in multiple individual and combined
stress tolerance
Meta-analysis of sunflower transcriptome datasets revealed 526 up and 4440 down-regulated

genes in all combined stresses. RT-qPCR results for selected 29 genes in the tolerant genotype

KBSH53 revealed candidate genes for combined stress tolerance. Amongst these genes, 17 were

induced under all combined stress (pathogen, NaCl, drought, cold and methyl viologen stress)

in tolerant genotype KBSH53, but susceptible genotype did not show transcript changes over

control. In general, under any of the independent stresses the identified genes did not show sig-

nificant fold change in both up- or down-regulated gene category. Overall the data suggest that

under combined or multiple stresses, the meta-analysis can identify candidate shared stress

responsive genes.

Cross-talk and role for identified genes
Several genes showed up-regulation in the tolerant genotype KBSH53 including increased tran-

script levels of transcription factors C2H-ZF, MYB, MYC2, ERF12 and ERD6. Overexpression

of some of these transcription factors resulted in multiple stress tolerance [86]. Since the litera-

ture information on validation is scarce, many other genes identified in the meta-analysis

could not be verified for their functional relevance. However, we subsequently review few other

evidences that support correlation between meta-analysis identified genes and their validation

in literature. The induction of transcription factors under combined stress has been reported in

a previous study, wherein it was observed that combined heat and drought stress lead to upre-

gulation of WRKYs and ERFs [87]. One of our previous study also showed the overexpression

of AtWRKY28 in A. thaliana enhances drought and NaCl stress tolerance [88, 89]. The tolerant

genotype also showed up-regulation of transcriptional regulators such as DNA topoisomerase

6, DEAD box helicases, ribosomal protein L10 (RPL10), ROS detoxification enzyme encoding

genes like dehydrogenases, genes involved in protein stability such as chaperonins, late

embryogenesis abundant 14 (LEA14), myo inositol phosphate synthase, calcium induced pro-

tein kinase (CIPK), lipid transport proteins and histidine kinases. It is evident that under com-

bined stress, receptor like kinases, protein kinases (MAPK and CIPK), small GTP- binding

proteins and membrane intrinsic proteins (MIP) are up-regulated [90]. Further, PR and chiti-

nases also showed up-regulation in tolerant genotype and these genes are independently

known to impart resistance to different pathogens [84]. These genes up-regulated under com-

bined stress have potential to improve stress tolerance through complex network mode of

mechanisms. Taken together, our data demonstrated that the meta-analysis can efficiently

identify the potential candidate genes for combined stress tolerance.

In conclusion, salient features of this study include, one, menadione-based screening can be

used as means to generate oxidative stress and explore genetic variability in agronomically

superior genotypes for oxidative stress tolerance. Second, meta-analysis can be potentially

employed to identify candidate genes for multiple and combined stress tolerance. Third, identi-

fied genes are the potential candidates for genetic engineering of plants to combat multiple

environmental stresses.
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