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Abstract

Sclerotinia stem rot is an economically important disease of canola (Brassica napus) and is

caused by the fungal pathogen Sclerotinia sclerotiorum. This study evaluated the differential

gene expression patterns of S. sclerotiorum during disease development on two canola lines

differing in susceptibility to this pathogen. Sequencing of the mRNA libraries derived from

inoculated petioles andmycelium grown on liquid medium generated approximately 164 mil-

lion Illumina reads, including 95million 75-bp-single reads, and 69million 50-bp-paired end

reads. Overall, 36% of the quality filter-passed reads were mapped to the S. sclerotiorum ref-

erence genome. On the susceptible line, 1301 and 1214 S. sclerotiorum genes were differen-

tially expressed at early (8–16 hours post inoculation (hpi)) and late (24–48 hpi) infection

stages, respectively, while on the resistant line, 1311 and 1335 genes were differentially

expressed at these stages, respectively. Gene ontology (GO) categories associated with cell

wall degradation, detoxification of host metabolites, peroxisome related activities like fatty acid

ß-oxidation, glyoxylate cycle, oxidoreductase activity were significantly enriched in the up-reg-

ulated gene sets on both susceptible and resistant lines. Quantitative RT-PCR of six selected

DEGs further validated the RNA-seq differential gene expression analysis. The regulation of

effector genes involved in host defense suppression or evasion during the early infection

stage, and the expression of effectors involved in host cell death in the late stage of infection

provide supporting evidence for a two-phase infection model involving a brief biotrophic phase

during early stages of infection. The findings from this study emphasize the role of peroxisome

related pathways along with cell wall degradation and detoxification of host metabolites as the

key mechanisms underlying pathogenesis of S. sclerotiorum on B. napus.

Introduction

Sclerotinia sclerotiorum (Lib.) de Bary, is a very efficient plant pathogen that affects a wide

range of crops and is capable of infecting plant tissues above or below the soil surface. Diseases

caused by this pathogen are favored by cool wet conditions [1]. In canola (Brassica napus L.),
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this pathogen is primarily responsible for causing Sclerotinia stem rot (SSR), a yield-reducing

disease endemic to canola-producing areas worldwide. Each percent increase in SSR incidence

can reduce potential canola yield by 0.5% [2]. Diseases caused by S. sclerotiorum are currently

controlled by fungicides [3, 4], biological formulations [5, 6], and quantitative genetic disease

resistance [7].

Understanding the molecular mechanisms employed by the pathogen during the infection

process is essential for identifying novel targets for SSR management. As common with many

broad-host range pathogens, the molecular aspects of S. sclerotiorum pathogenicity generally

studied have concentrated on the roles of hydrolytic cell wall-degrading enzymes (CWDEs) [1,

8, 9]. S. sclerotiorum is known to produce several pectinases, including both endo- (Sspg1,

Sspg3, Sspg5, and Sspg6) and exo- (Ssxpg1 and Ssxpg2) polygalacturonases [9]. Apart from poly-

galacturonases, gene disruption mutants of an arabinofuranosidase/β-xylosidase precursor
(Ssaxp) and an endo-β-1, 4-xylanase (SsXyl1) showed either reduction or loss of virulence,

indicating their importance as virulence factors [10, 11].

Oxalic acid (OA) has by far been the most studied S. sclerotiorum virulence factor to date

[12, 13]. OA plays multiple roles in virulence of S. sclerotiorum, manipulating the host redox

environment [13], inducing programmed cell death [14], detoxifying calcium, and mediating

pH signaling [15, 16]. OA has long been considered an essential factor for pathogenicity of S.

sclerotiorum. Recent studies using targeted mutants of the oxaloacetate acetylhydrolase gene

(Ssoah1), responsible for biogenesis and accumulation of OA, showed that OA is required for

virulence, but not essential for pathogenicity on all hosts [17, 18]. The creation of an acidic pH

environment during host colonization rather than OA production per se has been suggested to

be primary requirement for the colonization stage of pathogenesis [17].

Several studies have reported the role of secreted effector genes in pathogenicity or viru-

lence of this pathogen. A small cysteine rich secreted cyanovirin-N-homology domain protein

encoding gene SsCVNH [19], and a gene encoding small secreted hypothetical protein Ssv263

[20] were shown to be essential for full virulence of S. sclerotiorum. A compound appressorium

formation related gene1 SsCaf1 [21] and an Rhs repeat-containing protein encoding gene Ss-

Rhs1 [22] were shown to be required for host penetration and initial hyphal infection. Secreted

effectors including an integrin-like protein SsITL [23], and a chorismate mutase SsCM1 [24]

are known to suppress host resistance by interfering with jasmonic acid/ethylene signaling

pathway and salicylic acid signaling pathways, respectively. Other secreted effectors, like the

necrosis and ethylene-inducing peptides SsNep1 and SsNep2 [25], a small secreted virulence-

related protein SsSSVP1 [26], and the cerato-platanin SsCP1 [27], are known to induce host

cell death and necrosis.

Until recently, most of the reports involving S. sclerotiorum and canola, were limited to

small scale EST studies [28, 29]; however, availability of the S. sclerotiorum genome sequence

and the advances in sequencing technologies, particularly RNA-Seq have facilitated the study

of global transcriptional changes occurring during pathogenesis [30, 31]. Transcriptome

sequencing has been used to study the interaction of S. sclerotiorum with various crop hosts

[19, 32–34] and recently with B. napus [35, 36] and B. oleracea [37]. In this study, for the first

time we investigated the global transcriptional changes in S. sclerotiorum during infection of

canola plants differing in their susceptibility to the pathogen.

In contrast to the widely accepted necrotrophic nature of the pathogen [1], a two-phase

infection model involving a brief biotrophic or basic compatibility phase characterized by host

resistance suppression and subverting of host defenses followed by a necrotrophic phase was

proposed based on cytological and molecular and genomic evidences [38–40]. This brief initial

phase appears to be partly facilitated by oxalic acid (OA) and by secreted effectors, which help

S. sclerotiorum evade host recognition and suppress host defense signaling pathways [23, 24,
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39]. The role of other effectors in avoiding host recognition and/or suppressing host defense

responses is yet to be determined. We initiated this transcriptome sequencing study to gain

better understanding of the molecular mechanisms underlying the interaction of S. sclero-

tiorum and canola and it provided insights into the temporal aspects of important mecha-

nisms/pathways employed by S. sclerotiorum for successful infection of canola.

Materials andmethods

Plant material and fungal strain

Two B. napus doubled haploid lines differing in their susceptibility to S. Sclerotiorum were

used in this study. Both lines, NEP32 (susceptible) and NEP63 (resistant) were developed via

microspore culture and were evaluated for their reaction to SSR [41]. The susceptible line

NEP32 was derived from spring type canola variety Helga (PI649136), and the resistant line

NEP63 was developed from a cross between Helga and winter type canola accession PI458940.

When inoculated using the petiole inoculation technique [42], the susceptible line develops

lesions on the stem that expand to>4 cm in length in length with 100% girdling within 8 days

post inoculation, eventually leading to wilting and death. Within the same period, the average

lesion size on the resistant line is limited to<1cm in length and<40% stem girdling, typically

surrounded by purple margins suggesting accumulation of anthocyanins. The highly aggres-

sive strain 1980 of S. sclerotiorum was used for inoculations and culture controls. Strain 1980

was chosen for this study as it is the genome sequenced strain [30, 31].

Plant growth and inoculation

The seeds of NEP32 and NEP63 were surface sterilized by soaking them in 3% NaOCl for one

minute followed by immersion in 70% EtOH for one minute and were rinsed three times in

sterilized deionized water for 1 minute. Seeds were planted in SunGro Sunshine mix #1 (Sun

Gro Horticulture, MA) in 4 x 10 plastic plots with one seed per pot and plants were grown for

4 weeks in a growth chamber with a 16 h photoperiod, 21˚ C/16˚ C day/night temperature,

and 60% relative humidity. Once germinated, seedlings were watered as necessary and fertil-

ized once a week with 20-20-20 fertilizer. Four weeks after planting, plants were infected fol-

lowing an established petiole inoculation technique [42]. Briefly, the petiole of one leaf per

plant was cut approximately 2.5 cm away from the stem and the stump was capped with PDA

plugs containing hyphal tips of an actively growing 2 days-old S. sclerotiorum colony using 1

mL pipette tip. Inoculated petioles (� 2.5cm) were harvested at 8, 16, 24, and 48 hours post

inoculation (hpi), flash frozen in liquid nitrogen and stored at -80˚ C until RNA extraction.

Each treatment—time point consisted of three biological replicates; petioles collected from 5

individual plants were pooled to constitute one biological replicate.

RNA extraction, library preparation and sequencing

Total RNA was extracted from inoculated petioles using RNeasy mini kit, and mRNA was

isolated using Oligotex mRNAmini kit (Qiagen Inc. Valencia, CA) following manufacturers’

instructions. cDNA libraries were constructed using NEBNext mRNA sample prep kit and

NEBNext Multiplex Oligos kit (New England Biolabs, Ipswich, MA). Similar procedure was

followed to construct cDNA libraries from S. sclerotiorummycelia grown on PDB in 10cm

petri plates for 48 h under the same conditions described above. For sequencing, RNA from 8

and 16 hpi were pooled and will be referred to as early infection stage (T1) henceforth. Simi-

larly, RNA from 24 and 48 hpi were pooled and are referred to as late infection stage (T2).

mRNA libraries were sequenced at the University of Minnesota Biomedical Genomics Center.
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Of the three biological replicates, two replicates per each treatment-time point were sequenced

on Illumina GA-IIx platform (1X 76 bp Single Reads), while one replicate was sequenced on

Illumina HiSeq 2500 platform (2X 50 bp Paired End).

Quality control and read mapping to the reference genome

Quality checks for the raw fastq files were conducted through a pipeline consisting of FastQC

[43] and FastX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) to retain reads that were at

least 50 bp long with a minimum quality score of 30. Reference genomes and the correspond-

ing annotations for S. sclerotiorum and B. napus were downloaded from ensemble fungi (ftp://

ftp.ensemblgenomes.org/pub/release-42/fungi/) and genoscope (http://www.genoscope.cns.fr/

brassicanapus/data/), respectively. The most recent full genome sequence of S. sclerotiorum

(Sclerotinia sclerotiorum_1980_uf_70_gca_001857865) [31] was used. Indexes for each refer-

ence genome were built and quality filter-passed reads were mapped to the reference genomes

using HiSat2 [44]. Raw read counts mapped to each gene from the HiSat2 generated align-

ments were obtained using the featureCounts command [45] of the Subread package [46].

Differential gene expression analysis

Differential gene expression (DGE) analysis was conducted using edgeR package [47]. The

raw count data were normalized with trimmed mean of means (TMM) normalization method

implemented in edgeR [48]. Principal component analysis (PCA) was conducted to determine

relatedness of the biological replicates. PCA plots were generated using scatterplot3d [49] pack-

age in R. Statistical analysis was performed using negative binomial distribution extended to

generalized linear models [50]. Pairwise contrasts were performed following quasi-likelihood F

tests [51]. A false discovery rate (FDR) cutoff of 0.05 was applied to account for multiple testing

correction. A gene was considered as differentially expressed when the change in expression

level was� 2-fold (absolute value of log 2fold change (l2fc)� 1), with an FDR-adjusted p-

value< 0.05.

Functional classification and enrichment analyses of DEGs

Gene ontology (GO) enrichment analysis was performed in Blast2GO [52]. GO terms were

assigned to S. sclerotiorum total genes list in Blast2GO, which were used as the background list

for enrichment analysis. Fishers’ exact test implemented in Blast2GO was used to identify sig-

nificantly enriched GO categories. A GO category was considered significantly enriched only

when the p-value for that category was< 0.05 after applying FDR correction.

Differential gene expression data validation

The RNA-seq differential gene expression data was validated by performing qRT-PCR on six

selected genes. Primers for qRT-PCR were designed using Primers-Blast [53]. QuantiTect

reverse transcription kit (Qiagen Inc. Valencia, CA) was used to synthesize cDNA from total

RNA. Real-time quantification was performed using two technical replications in a BioRad

CFX96 Real-Time system using iTaq Universal SYBR Green Supermix with the following

cycling conditions: 95˚ C for 30 s followed by 40 cycles of 95˚ C for 10 s and 60˚ C for 30 s.

Expression levels of the DEGs were normalized against the S. sclerotiorum actin gene

(sscle_14g099090) and the relative expression levels were calculated using the 2-ΔΔCtmethod.
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Results

Disease development

There were no observable phenotypic differences between the susceptible and resistant canola

lines at all sampling time points (Fig 1a). In both lines, necrotic lesions first appeared at point

of inoculation (petiole tip) at 16 hpi and gradually spread along the length of the petiole by 48

hpi. Non-inoculated controls never showed necrotic lesion. In the susceptible line, by 72 hpi

the lesions extended into stem. In the resistant line, the lesion growth was arrested at the

nodes, surrounded by purple margin and did not extend into the stem. The differences in

symptoms between the susceptible and resistant canola lines were clearly apparent four days

post inoculation (Fig 1b).

Sequencing and mapping

From the sequencing of in planta and in vitro cDNA libraries, approximately 164 million

reads, comprising 95 million 76-bp-long reads, and 69 million 50-bp-long paired end reads

were generated (Table 1). Approximately 87% of the reads from the in vitro libraries were

mapped to the S. sclerotiorum genome. In contrast, 5.4–9.5% of the reads from the in planta

libraries obtained from samples collected between 8 and 16 hpi, and approximately 38% of

Fig 1. Disease development on resistant and susceptible canola lines. (a). Comparison of the appearance of representative inoculated petioles from
both canola lines. The necrotic lesion spreads from the point of inoculation (i.e., petiole tip) along the length of the petiole. There are no apparent
differences between NEP32 and NEP63 canola petioles. (b). Appearance of resistant (NEP 63) and susceptible (NEP32) canola four days post
inoculation with S. sclerotiorum. Disease symptoms are more apparent in the susceptible line.

https://doi.org/10.1371/journal.pone.0229844.g001
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reads from the libraries obtained from samples collected between 24 and 48 hpi mapped to the

reference S. sclerotiorum genome. On average, 0.6–1.5% of the reads mapped to S. sclerotiorum

genome also mapped to B. napus genome, and these were excluded from the read counts for

differential expression analysis. The percentage of reads from samples collected between 24

and 48 hpi that were mapped to the reference genome was 4 and 8 times larger than that of

samples collected earlier for the susceptible and resistant lines, respectively. This difference

was somewhat expected as it was apparent from the phenotypic observations that the fungal

biomass at earlier stages was smaller compared to that at later stages (Fig 1a). Lower percentage

of alignments at earlier phases of infection have also been observed in other pathogen-host

interactions [34, 54, 55]. PCA results indicated that the differences in gene expression due to

variability between replicates were small (9.15%, PC3, data not shown) compared to sample

type (in vitro vs. in planta, PC1 63.1%) and time of sampling (T1 vs T2, PC2 15.4%) (Fig 2).

Differential gene expression analysis

DGE analysis was conducted to detect S. sclerotiorum transcriptome changes during pathogen-

esis of canola. A total of 1301 and 1214 S. sclerotiorum genes were found to be differentially

expressed at early (8–16 hpi) and late (24–48 hpi) stages of infection, respectively, during infec-

tion of the susceptible line (S1 File).

Of these, 528 and 773 genes were up- and down- regulated, respectively at T1, while 409

and 805 genes were up- and down- regulated, respectively at T2. When infecting the resistant

line, 1311 and 1335 genes were differentially expressed at T1 and T2, respectively (Fig 3, S1

File). In this interaction, 456 and 474 genes were up-regulated, 855 and 861 genes were down-

regulated at T1 and T2, respectively. At T1, 317 and 548 genes were common in up-regulated

and down-regulated sets, respectively, between the susceptible and resistant interactions (Fig

3a). Similarly, there were 371 up-regulated and 694 down-regulated S. sclerotiorum genes that

were common in both resistant and susceptible interactions at T2 (Fig 3b). When infecting the

susceptible line, 209 up-regulated and 457 down-regulated genes were common between T1

and T2 (Fig 3c). The corresponding numbers when infecting the resistant line were 237 and

493 (Fig 3d). Regulation of an endo-glucanase gene, sscle_14g099920, shifted from signifi-

cantly down-regulated at T1 to significant up-regulated at T2 in both susceptible and resistant

interactions.

The fold-change in gene up-regulation ranged from 2 to 1053 (l2fc 1 to 10.04). In suscepti-

ble line, 12 and 8 genes were up-regulated over 100-fold at T1 and T2, respectively. In resistant

line, 18 and 9 genes showed a similar 100-fold upregulation at T1 and T2, respectively. On

average, approximately 50 genes were up-regulated by 25-fold (l2fc 4.64) or more in both sus-

ceptible and resistant lines at both time points. We made a comparison of the 50 most highly

up-regulated genes from each of the interactions. Of these highly up-regulated genes, 22 were

Table 1. Summary of the Illumina sequence reads obtained from Brassica napus plant inoculated with S. sclerotiorum and frommycelium of S. sclerotiorum isolate
1980 grown on potato dextrose agar.

Time points Total reads1 Reads mapped to reference S. sclerotiorum genome (%)

In Vitro Culture 41665593 36323396 (87.18)

NEP32 (Susceptible) 8–16 hpi 37771674 2021544 (5.35)

24–48 hpi 25360044 9642926 (38.02)

NEP63 (Resistant) 8–6 hpi 28670528 2728735 (9.52)

24–48 hpi 31040632 11963775 (38.54)

1 Number of reads represent total of three biological replications

https://doi.org/10.1371/journal.pone.0229844.t001
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consistently up-regulated by 25-fold (l2fc 4.64) or more at both time points in both canola

lines signifying their importance in pathogenesis (Fig 4 and S2 File). Five and 13 genes were

common between susceptible and resistant lines at T1 and T2, respectively.

GO categories and enrichment analysis

Functional characterization and gene functional enrichment analysis are powerful tools for

analyzing DGE data to gain understanding of the important molecular pathways and functions

Fig 2. Principal component analysis of transcriptome expression. The PCA plot for RNA-Seq data shows the clustering of transcriptome by sample
type (culture vs in planta) and time of sample collection (T1 vs. T2).

https://doi.org/10.1371/journal.pone.0229844.g002
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underlying biological processes. Sclerotinia sclerotiorumDEGs were grouped according to

their putative roles in biological processes (BP) and molecular functions (MF) as established

by the Gene Ontology Consortium (http://www.geneontology.org/). S. sclerotiorumDEGs

were assigned to the following GO classes: metabolic process, cellular process, cellular compo-

nent organization, localization, biological regulation, response to stimulus, and signaling when

interacting with susceptible and resistant lines at both time points.

Fig 3. Venn diagrams showing differentially expressed Sclerotinia sclerotiorum genes during interaction with canola.Venn diagram shows the
number of common and unique genes at (a) T1 and (b) T2, between up and down regulated gene sets of NEP32 and NEP63. (c) and (d) shows the
comparison of up and down regulated genes at T1 and T2 gene sets of NEP32 and NEP63, respectively.

https://doi.org/10.1371/journal.pone.0229844.g003
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Fig 4. Heat maps showing expression patterns of the top 50 highly up-regulated Sclerotinia sclerotiorum genes
from each treatment.Genes are grouped according to hierarchical clustering based on their expression patternsT1
and T2 represents earlier (8 and 16 hpi) and later (24 and 48 hpi) time points of interaction. The color gradient
represents the log2 fold change in gene expression (up-regulation (red), down-regulation (green), and no change
(black)) compared to in vitro control.

https://doi.org/10.1371/journal.pone.0229844.g004
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GO enrichment analysis identified the key biological processes and molecular functions sig-

nificantly enriched during pathogenesis. The up-regulated genes were significantly enriched

with wide range of GO categories (S3 File). The significantly enriched categories included

those involved in degradation of various cell wall components (including catabolism of cellu-

lose (GO:0030245), xylan (GO:0045493), mannan (GO:0046355), pectin (GO:0045490)), pepti-

dase activity (GO:0008233), oxidation-reduction processes (GO:0055114), response to

xenobiotic stimulus (GO:0009410), fatty acid metabolic processes (GO:0006631), transmem-

brane transport (0055085), and binding (GO:0005488) activities.

GO enrichment analysis also provided insights into temporal aspects of pathogenesis.

Genes involved in transcriptional reprogramming, e.g. gene expression (GO:0006396), ribo-

some biogenesis (GO:0042254), translation (GO:0006412), and cellular amino acid metabolic

processes (GO:0006520) were enriched at the early infection stage, T1, in the up-regulated

gene set indicating rapid transcriptional changes to adopt to pathogenic phase from in vitro

phase. At the later infection stage, T2, many GO categories were overrepresented in the up-

regulated set compared to the earlier stage. The significantly enriched up-regulated GO catego-

ries at later stage can be broadly grouped into enzymes involved in degradation of cell wall

components (cell wall-degrading enzymes CWDE) and proteins, catabolism/detoxification of

xenobiotic compounds and peroxisome associated pathways including peroxisome biogenesis,

fatty acid catabolism and glyoxylate cycle.

Differential gene expression data validation

DGE data from RNA-seq analysis was validated by performing quantitative RT-PCR on five

up-regulated DEGs and one down-regulated DEG. A list of the genes used for validation, their

putative functions, and the primer sequences are presented in S4 File. The expression patterns

of the six genes agreed with DGE data, thus validating the results of DGE analysis (Fig 5).

Discussion

Both functional class enrichment analysis and the expression patterns of the highly up-regu-

lated genes indicated that successful pathogenicity of S. sclerotiorum depends on cell wall deg-

radation, detoxification and host defense evasion.

CWDE and proteolytic enzymes

The importance of cell wall degrading activity was emphasized by the fact that the genes

involved in this activity were both among the highly up-regulated and constituted many signifi-

cantly enriched up-regulated GO categories. Approximately one third (29/90) of the highly up-

regulated (top 50 genes up-regulated by 25-fold (l2fc 4.64) or more) S. sclerotiorum genes are

involved in cell wall degrading enzymatic activities. Similarly, the significantly enriched CWDE

GO categories included: hydrolases (GO:0016787) acting on: O-glucosyl bonds (GO:0004553),

including cellulase (GO:0008810), glucosidase (GO:0015926), galactosidase (GO:0015925),

polygalacturonase (GO:0004650), alpha-L-arabinofuranosidase (GO:0046556), beta-mannosi-

dase (GO:0004567); ester bonds (GO:0016788), including aspartyl esterase (GO:0045330), lipase

(GO:0016298), cutinase (GO:0050525), pectinesterase (GO: 0030599); peptidase (GO: 0008233),

including serine-type endopeptidase (GO: 0004252), tripeptidyl-peptidase (GO:0008240) and

serine-type carboxypeptidase (GO: 0004185) activities. The genome of S. sclerotiorum has a sig-

nificantly large repository of both plant cell wall and fungal cell wall active enzymes [19]. Many

of these enzymes were up-regulated in the current study (Table 2). Consistent with our findings,

previous comparative transcriptome analyses [19, 28–30, 34–36] have reported that a large

number of cell wall-degrading enzymes were up-regulated during pathogenesis, while at least
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Fig 5. qRT-PCR validation of the relative expression levels of selected S. sclerotiorum differentially expressed genes. Expression
profiles of six S. sclerotiorum genes as determined by a. qRT-PCR and b. RNA-Seq.

https://doi.org/10.1371/journal.pone.0229844.g005
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one functional study demonstrated that disruption of the cell wall-degrading enzyme arabino-

furanosidase/xylosidase (SS1G_02462) resulted in decreased virulence on canola [10].

Detoxification of xenobiotic compounds

Genes with known roles in detoxification and host defense evasion constituted the next

group of highly up-regulated genes after the CWDEs (Table 3). These include: two laccases

(sscle_03g023030, sscle_02g021570), nitrilase (sscle_16g108230), brassinin glycosyltransferase

(sscle_01g003110, SsBGT1), two glutathione-S-transferases (GST), two cytochrome P450 mono-

oxygenases, and three transporter genes, including two major facilitator superfamily transport-

ers, three S-adenosyl methionine (SAM) dependent methyltransferases including a thiol

methyltransferase.

Laccases are multicopper oxidase enzymes that are known to detoxify phenolic compounds

by oxidizing them [56]. Two of the seven predicted laccase genes in the S. sclerotiorum genome

were up-regulated. Sscle_02g021570 (sslacc6) was up-regulated only at T1 (15–70 fold-change,

l2fc 3.80–6.15). In contrast, Sslacc2 (sscle_03g023030) was consistently up-regulated (35–40

fold-change, l2fc 5.13–5.34) at both time points (Table 3). A similar expression pattern was

observed in soybean–S. sclerotiorum interaction byWestrick et al. [34]. In B. cinerea, laccase

gene BcLCC2, along with BcAtrB, an ABC transporter, was required for detoxification of the

antifungal phenolic antibiotic 2,4-diacetylphloroglucinol [57]. Significantly enriched GO cate-

gory xenobiotic metabolic processes (GO:0006805) also represented a catechol 1,2-dioxygen-

ase gene, sscle_04g037100, involved in detoxification of host phenolic compounds. Catechol

dioxygenases are induced in response to the phenolics produced by host plants [58]. The cate-

chol dioxygenase gene CCHD1 was induced by maize phenolics [59], and was shown to be a

virulence factor in the spruce pathogen Endoconidiophora polonica [60].

In addition to phenolic compounds, Brassica spp. are known to produce a wide range of

phytoalexins, plant secondary metabolites that are elicited by biotic/ abiotic stress [61]; and in

response to fungal pathogen attacks [62–64]. Production of phytoalexins has been considered

a resistance determinant in some host-pathogen interactions [65]. The metabolism of these

strongly antifungal compounds by pathogenic fungi, both in vitro and in planta, to less toxic

compounds has been well researched [61]. Detoxification of cruciferous phytoalexins by Scler-

otinia sclerotiorum involves glucosylation [66], a mechanism unusual for plant pathogens.

Through genome mining and transcriptional profiling, Sexton et al. [67] identified several can-

didate glucosyltransferases including a brassinin glucosyl transferase (SsBGT1,

sscle_01g003110). Consistent with Sexton et al. [67], the SsBGT1 gene was 17–70 fold up-regu-

lated (l2fc 4.10–6.13) in our study (Table 3). The increased activity of this gene has also been

reported by other researchers during infection of canola and soybean [34, 35]. Brassicas also

are known to produce phytoanticipins like cyanogenic glucosides and glucosinolates [61, 68]

which are produced as part of normal plant metabolism and could have strong antimicrobial

properties. Non-toxic glucosinolates, upon cellular injury are hydrolyzed to produce highly

toxic isothiocyanates (ITC) and nitriles [68]. In phytopathogenic fungi, nitrilases or cyanide

hydratases play a role in detoxifying HCN to the less fungitoxic formamide [69, 70], which

some fungi can utilize as a nitrogen source [71, 72]. In our study, the cyanide hydratase gene

sscle_16g108230 was up-regulated by 85–145 folds (l2fc 6.41–7.17) at both time points. Cya-

nide hydratases/nitrilases, detected in the secretomes of B. cinerea [73], were up-regulated dur-

ing infection of brassica hosts by A. brassicicola, L.maculans and S. sclerotiorum [35, 72, 74].

In L.maculans, increase in cyanide hydratase gene expression was induced in the presence of

potassium cyanide or derivatives of brassica glucosinolates [72]. In our study, another cyanate

hydratase gene, sscle_07g060330, was up-regulated at late stage only (> 2-fold in susceptible
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(l2fc 1.02),� 2-fold (l2fc 0.98) in resistant line). Late activation of this gene was also observed

by Seifbarghi et al. [35].

Glutathione-S-transferases (GSTs), are well known for their detoxification activity of xeno-

biotics and endogenous toxic compounds in fungi by their conjugation to glutathione [75, 76].

A GST gene, sscle_01g005000 was highly up-regulated (182–294 fold, l2fc 7.51–8.20) in our

study (Table 3). Similarly high levels of up-regulation of this gene were reported during infec-

tion of canola [35] and soybean [34]. Sscle_11g083650, another GST, a membrane-associated

protein in eicosanoid and glutathione metabolism (MAPEG), was also up-regulated by 12–

30-fold (l2fc 3.54–4.93) in our study. Another GST, sscle_06g053300 was also consistently

upregulated (4–5-fold, l2fc 1.83–2.36) (Table 3). In A. brassicicola, an ITC-inducible MAPEG

class GST, AbMAPEG1, was required for full virulence on B. oleracea [77]. Deletion of two

other A. brassicicola ITC-inducible GSTs, AbGSOT1 and AbUre2pB1, resulted in both hyper-

susceptibility to ITC as well as impairment in pathogenicity [77]. These observations empha-

size the importance of cyanogenic compound detoxification during pathogenesis.

SAM-dependent methyltransferases catalyze the transfer of methyl groups from SAM to

diverse range of substrates [78]. In our study, three SAM-dependent methyltransferases,

sscle_09g073010 (68–192-fold, l2fc 6.08–7.59), sscle_15g106060 (8.5–27-fold, l2fc 3.09–4.74)

and sscle_08g065070 (19–30-fold, l2fc 4.24–4.92), were highly up-regulated (S2 File). In wood

degrading fungus Phanerochaete chrysosporium, SAM transferases were involved in detoxify-

ing phenolics [79]. In Brassica and Arabidopsis, thiol methyltransferases are known to detoxify

glucosinolates [80].

Lysine motif, LysM, secreted effectors are proteins [81, 82] that contribute to mask the

presence of plant pathogenic fungi in plant tissues by binding to chitin on the fungal cell

walls [83–85] and interfering in this way with the plant’s ability to detect it [86–88]. In our

study, two chitin-binding domain protein genes, sscle_08g068200 (24–189-fold, l2fc 4.60–

7.56) and sscle_05g041720 (11–36-fold, l2fc 3.51–5.19) were found to be highly up-regu-

lated. In addition to these two highly up-regulated genes, two other genes with chitin

binding domain (sscle_01g004270 and sscle_07g062010) and a LysM effector gene

(sscle_03g024480) were also up-regulated (Table 3). Regulation of four of these six genes

followed a similar pattern, with highest up-regulation at T1 and gradually decreasing at T2.

Up-regulation of LysM and chitin binding domain genes also were reported in S. sclero-

tiorum interactions with B. napus [35] and G.max [34], respectively.

Oxidative burst, characterized by a rapid and transient accumulation of reactive oxygen spe-

cies (ROS) is one of the first plant defense responses to pathogen invasion [89], creating oxidative

stress conditions hostile for the pathogens. Thus, coping with ROS is essential for pathogen sur-

vival and successful infection of the host. Fungal pathogens have evolved various mechanisms

for tolerating or scavenging ROS, including peroxidases, catalases, superoxide dismutases (sod),

and NADPH oxidases (nox). In our study, three peroxidases, sscle_01g000730 (10–26-fold, l2fc

3.35–4.73), sscle_08g065740 (3–24-fold, l2fc 1.43–4.59), and sscle_04g035020 (6–29-fold, l2fc

2.58–4.86) were highly up-regulated (Table 3). Nitronate monooxygenases (NMOs), FMN

enzymes are known to play important role in oxidative detoxification of nitroalkanes [90].

Recently, Marroquin-Guzman et al. [91] showed that NMOs are involved in reactive nitrogen

species (RNS) stress tolerance and suppressing host immune responses by maintaining cell

redox status. In our study, two NMO genes, sscle_03g027760 and sscle_11g085500, were consis-

tently up-regulated throughout the course of infection in both susceptible and resistant lines. A

third NMO gene, sscle_12g087340 was down-regulated at T1 and up-regulated at only T2. There

is evidence suggesting a brief biotrophic phase of S. sclerotiorum during the infection process

and thus we speculate that apart from nitro-oxidative stress protection, S. sclerotiorum’s nitronate
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monooxygenases might have a similar role in suppressing host defenses during its interaction

with canola plants.

S. sclerotiorum is known to employ OA for suppressing host defenses by manipulating host-

redox environment [13]. OA, by far has been the most studied S. sclerotiorum virulence factor

to date. In addition to manipulating the host redox environment, OA also plays a key role in

virulence by acting in multiple ways: induction of programmed cell death [14], calcium chelat-

ing, and mediating pH signaling [15, 16]. We examined the expression of genes involved in OA

metabolism. The gene sscle_10g075560, an oxaloacetate acetylhydrolase (OAH, Ssoah1) that is

a key enzyme responsible for OA biogenesis and accumulation [92], was consistently up-regu-

lated during infection (Table 3). The oxalate decarboxylase (OxDC) gene sscle_09g069850 (Ss-

odc2), was also up-regulated in concert with Ssoah1. OxDC genes play an important role by

preventing OA from being accumulated in fungal cell and thus protect the pathogen from its

detrimental effects [93]. A similar expression pattern for Ssoah1 and Ss-odc2 was observed dur-

ing infection of B. napus and P. vulgaris, respectively [33, 35], but not on G.max [34]. However,

another OxDc gene, Ss-odc1 (sscle_14g099710) was not differentially expressed (1–2 -fold

change, l2fc 0.20–1.13). GO terms involved in production of OA precursors and oxidation-

reduction process (GO:0055114) were also found to be significantly enriched in the DE gene

sets.

Peroxisome associated pathways

In addition to the above two broad classes, genes associated with peroxisomal pathways were

consistently found to be significantly enriched in the up-regulated genes. The important

GO categories significantly enriched/overrepresented in this broad group are: peroxisome

organization (GO:0007031) including protein targeting (GO:0006625) and protein import

(GO:0016558) into peroxisome matrix, fatty acid β-oxidation (GO:0006635) including and

glyoxylate cycle (GO:0006097) (S3 File). Peroxisome-related metabolic functions are shown to

be essential for pathogenic development of several plant pathogenic fungi [94]. Peroxisome

biogenesis proteins, known as peroxins or PEX genes are involved in peroxisome biogenesis.

PEX genes have been shown to be essential for pathogenicity/ virulence in the fungal patho-

gensM. oryzae [95–97], C. orbiculare [98–100] and A. alternata [101]. Up-regulation of large

number of PEX genes in our study suggests a possible important role of these genes for S. scler-

otiorum pathogenicity/ virulence.

Fatty acid β-oxidation is a lipid metabolic pathway for degrading long chain fatty acids

for nutrient and energy generation [102, 103]. This is an enzyme mediated, four-step process

pathway which results in acetyl-CoA, which can be fed into glyoxylate cycle or transported to

mitochondria for energy generation through citric acid cycle. The carnitine acetyl transferase

gene pth2, an appressorium-associated gene which catalyzes the transportation of acetyl-CoA

is required for rice infection byM. oryzae [104]. Ss-pth2, a S. sclerotiorum ortholog of the pth2

gene was found to be essential for host colonization [105], suggesting an essential role for

peroxisomal pathways for host colonization and disease development. This gene

(sscle_03g031670) was up-regulated during early and late stages of infection in both suscepti-

ble and resistant interactions in this study.

The glyoxylate cycle is important for gluconeogenesis, generation of glucose under nutrient

scarce condition by assimilating the Acetyl-CoA generated via fatty acid β-oxidation. Isocitrate
lyase (ICL1) and Maleate synthetase (MSL1) are two important enzymes of glyoxylate cycle

[102]. ICL1 was found to be essential for the pathogenicity of another canola pathogen L.

maculans [106]; and was shown to be important for full virulence ofM. oryzae [107] and C.
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orbiculare [108]. Sclerotinia sclerotiorummalate synthase gene (mls1) was shown be condition-

ally essential for fatty acid metabolism and pathogenicity on tomato [109].

Secreted effectors

Secreted effector proteins play a key role in pathogenesis. Putative effector candidate genes

were identified in the S. sclerotiorum genome based on bio-informatic analysis [31, 110]. We

compared the expression of these S. sclerotiorum putative effector genes to determine specific

temporal changes in their regulation. In total, 64 putative effector candidates were differen-

tially regulated, of which 37 genes were up-regulated in at least one time point (Fig 6). The

majority of these genes were consistently up-regulated in both susceptible and resistant lines

at both time points. The up-regulated effector genes were mostly involved in CWDE activity,

a non-aspartyl acid protease (acp1, sscle_11g082980), Rhs repeat containing protein (Ss-rhs1,

sscle_06g049430), chorismate mutase (SsCm1, sscle_16g111080), and two chitin binding

domain proteins (sscle_08g068200, sscle_11g082980). The gene acp1 is induced in presence of

Fig 6. Heat maps showing expression patterns of Sclerotinia sclerotiorum effector genes.Genes are grouped
according to hierarchical clustering based on their expression patterns. T1 and T2 represents earlier (8 and 16 hpi) and
later (24 and 48 hpi) time points of interaction. The color gradient represents the log2 fold change in gene expression
(up-regulation (red), down-regulation (green), and no change (black)) compared to in vitro control.

https://doi.org/10.1371/journal.pone.0229844.g006
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cell walls and its expression is regulated by carbon, nitrogen starvation and pH [111]. Up-regu-

lation of this gene increased from 12.5 -fold (l2fc 3.64) at T1 to 48 -fold (l2fc 5.58) at T2. A sim-

ilar expression pattern was observed in S. sclerotiorum interactions with P. vulgaris, B. napus

and G.max [33–35]. Ss-Rhs1 was shown to be important for sclerotial development and initial

infection on B. napus and Arabidopsis [22]. This gene was highly expressed during initial

stages of sclerotial development and hyphal infection [22]. Ss-Rhs1 was found to be highly up-

regulated during the early infection stage (24 hpi) compared to the late infection (48–96 hpi)

stage on G.max [34], implying a possibly important role during early infection process. Simi-

larly, we also observed 26–48 -fold up-regulation (l2fc 4.72–5.56) of Ss-Rhs1 only at T1 in both

susceptible and resistant lines, respectively. In contrast, the gene SsCm1 was up-regulated by

4–8.5 -fold (l2fc 2.02–3.08) in our study, which is similar to previous reports of high levels of

expression in interactions with B. napus [24], and G.max [34] during early stages of infection.

The biotrophic pathogen Ustilago maydis chorismate mutase gene cmu1, was shown to

decrease SA levels in infected host tissue during infection of Zea mays, contributing to the vir-

ulence [112]. We speculate that SsCm1 is likely involved in host manipulation like the cmu1 in

U.maydis–Z.mays interaction by interfering with SA signaling in B. napus. The role of chitin-

binding proteins and LysM effectors in avoiding host recognition was discussed earlier. How-

ever, a few effector candidates (11) exhibited a shift in their regulation from down-regulation

at T1 to up-regulation at T2. Interestingly four of these genes coding for a cerato-platanin

(SsCP1, sscle_16g107670), CFEM domain containing (sscle_07g055350), a small secreted

virulence-related protein SsSSVP1 (sscle_01g003850, in resistant), and a necrosis and ethyl-

ene-inducing peptides SsNep1 (sscle_04g039420, in susceptible) are known to function as

necrotrophic effectors. Cerato-platanins are fungal specific, small secreted cysteine rich pro-

teins known to function both as elicitors of plant defenses and as well as effectors contributing

to virulence [113] by inducing localized necrosis of host tissue. In S. sclerotiorum, SsCP1 was

shown to contribute to its virulence by directly interacting with pathogenesis-related protein

PR1 [27]. In our study Sscp1 was down-regulated at T1 by 4.9 -fold (l2fc -2.39) and up-regu-

lated 1.8 -fold (l2fc 0.85) by T2. The CFEM, conserved fungal extracellular membrane proteins

domain is a fungal specific domain containing eight conserved cysteine residues [114, 115]

and are proposed to have role in fungal pathogenesis. The CFEM protein, pth11 inM. oryzae is

essential for appressoria development and pathogenesis [116, 117]. Kou et al. [117] showed

that deletion of pth11 results in disruption of redox homeostasis and thus affects appressorium

formation during pathogenesis. In B. cinerea, a closely related broad-host-range necrotroph,

BcCFEM1, a CFEM containing gene, plays a key role in stress resistance and virulence [118].

BcCFEM1 also has a potential elicitor role. Gene Sscle_07g055350 was 4.4 -fold down-regu-

lated (l2fc -2.13) at T1, followed by 9 -fold upregulation (l2fc 3.18) at T2. A similar expression

pattern (up-regulation only at late infection) was observed by Seifbarghi et al [35] and Guyon

et al. [110] during infection of canola and soybean [34] by S. sclerotiorum and by Thatcher

et al. [119] during Fusarium oxysporum andMedicago truncatula interaction. SsSSVP1,

another characterized S. sclerotiorum virulence factor, is a small cysteine rich secreted protein

essential for full virulence. SsSSVP1 interferes with the host mitochondrial respiratory pathway

by interacting with the QCR8 subunit of cytochrome b-c1 complex, resulting in plant cell

death [26]. Consistent with our study, expression of SsSSVP1 was not detected until late infec-

tion stage (96 hpi) in B. napus [35]. SsNep1 and SsNep2 are shown to induce necrosis in host

plants [25]. In this study, SsNep1 was not up-regulated until T2 (2.5 -fold up-regulation, l2fc

1.35), with gradual increase from early infection (15 -fold down-regulation, l2fc -3.89). A simi-

lar expression pattern was also observed for SsNep2 (-33 –-3 -fold change (l2fc -5.07 –-1.76)

from T1 –T2). These two genes were induced mid—late stages of infection in B. napus and G.

max [34, 35].
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In contrast to the widely accepted necrotrophic nature of S. sclerotiorum, recent molecular

and cytological evidences suggest a two-phase model involving a brief biotrophic or basic com-

patibility phase characterized by host suppression and subverting of host defenses following by

necrotrophic phase [38]. The temporal differential expression patterns of the effector candi-

dates in our study supports the two-phase infection model [38–40] proposed for S. sclero-

tiorum. Biotrophic effectors like chorismate mutase (SsCm1), chitin binding proteins, LysM,

and genes involved in ROS and RNS scavenging are up-regulated at early infection phase.

Effectors known to induce necrosis like SsCp1, SsSSVp1, SsNep1, SsNep2 were either not up-

regulated until late infection and/or down-regulated at early stages of infection. A similar

trend in expression of necrotrophic effectors was observed byWestrick et al in S. sclerotiorum

—G.max interaction [34]. Two characterized effector genes SsCVNH [19] and SsITL [23] were

significantly down-regulated at both time points, whereas another characterized effector gene,

Ssggt2 (sscle_09g068730), encoding γ-glutamyl transpeptidase was consistently up-regulated

(2–3 -fold, l2fc 1.12–1.65) at both time points.

Conclusions

This is the first study that examine global transcriptional changes in S. sclerotiorum during

infection of canola plants differing in their susceptibility to the pathogen. The findings from

this study emphasize the role of peroxisome related pathways, in addition to the cell wall deg-

radation and detoxification of host metabolites as the key mechanisms underlying pathogene-

sis of S. sclerotiorum on canola. Further, temporal changes in expression pattern of several

functional classes of genes, like expression of genes involved in avoiding host recognition or

suppressing host defenses at early infection stage (Chitin binding domains, LysM effectors,

ROS scavenging) and late onset of expression of necrosis inducing effectors (cerato-platanin,

SsSSVP1, CFEM domain, SsNep1 and SsNep2 genes etc.) provided support for the proposed

two-phase infection strategy involving a brief biotrophic phase during early infection. Func-

tional analysis of these genes would provide further insight on the events that lead to disease

development and colonization of plant tissues.
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