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Abstract

Extreme altitude can induce a range of cellular and systemic responses. Although it is known that hypoxia underlies the
major changes and that the physiological responses include hemodynamic changes and erythropoiesis, the molecular
mechanisms and signaling pathways mediating such changes are largely unknown. To obtain a more complete picture of
the transcriptional regulatory landscape and networks involved in extreme altitude response, we followed four climbers on
an expedition up Mount Xixiabangma (8,012 m), and collected blood samples at four stages during the climb for mRNA and
miRNA expression assays. By analyzing dynamic changes of gene networks in response to extreme altitudes, we uncovered
a highly modular network with 7 modules of various functions that changed in response to extreme altitudes. The
erythrocyte differentiation module is the most prominently up-regulated, reflecting increased erythrocyte differentiation
from hematopoietic stem cells, probably at the expense of differentiation into other cell lineages. These changes are
accompanied by coordinated down-regulation of general translation. Network topology and flow analyses also uncovered
regulators known to modulate hypoxia responses and erythrocyte development, as well as unknown regulators, such as the
OCT4 gene, an important regulator in stem cells and assumed to only function in stem cells. We predicted computationally
and validated experimentally that increased OCT4 expression at extreme altitude can directly elevate the expression of
hemoglobin genes. Our approach established a new framework for analyzing the transcriptional regulatory network from a
very limited number of samples.
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Introduction

At extreme altitudes (.5500 m above sea level) the partial

pressure of oxygen is less than a half of the sea level. At these

conditions, humans experience hypobaric hypoxia, which can

induce a range of normal or adverse responses at cellular and

systemic levels. At the cellular level, there is increased expression of

genes that participate in anaerobic energy supply and decreased

expression of those involved in ATP consumption processes [1]. At

the systems level, the major physiological responses include

increased heart and ventilation rate and rapid erythrocyte

expansion [2,3]. Normally, symptoms of increased heart rate and

hyperventilation would appear within the first few hours when

ascending to high-altitude, which is due to stimulation of the

peripheral chemoreceptors by hypoxia. In the following days,

increased hemoglobin concentration and erythrocyte numbers

would be observed in the blood, which is more likely to be a

gene-level regulation of the body. These signs together with other

response of different systems of the body comprised altitude

acclimatization. When maladapted, a person can develop high

altitude illnesses that range from mild, acute mountain sickness

(AMS), which occurs in 50–90% of the populations, to fatal high-

altitude cerebral edema (HACE) and high-altitude pulmonary

edema (HAPE), which have much lower frequencies [4,5]. Field

studies on these physiological aspects have generated a great deal of

valuable data for understanding these processes, including ECG

measurements [6,7], arterial blood gases, and oxygen content [8].

The molecular mechanisms of hypoxia and high altitude acclima-

tization are more limited and primarily include information about

hypoxia-induced factors (HIFs) and the role of erythropoietin in the

high altitude response [1,2,3]. The signaling pathways and

molecular functions that mediate such responses (especially those

that modulate or are independent of HIFs and erythropoietin) are

largely unknown.
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To obtain a more complete picture of the transcriptional

regulatory landscape and networks involved in extreme altitude

response, we accompanied four individuals on a climbing

expedition and measured the transcriptome (mRNA and miRNA

expression levels) using RNA-seq from blood samples taken before,

during, and a month after climbing Mount Xixiabangma

(Figure 1A). To the best of our knowledge there has been so far

no study on genome-wide expression changes in human high-

altitude response and that ours is the first one and is therefore

important in shedding lights on this very important human

acclimation process and prevention of the pathological effects

associated with it.

We chose to collect blood samples mainly because of its easy

accessibility, which is extremely important if gene expression

changes revealed were to be used as biomarkers for diagnosing

maladaptation and pathological response in the future. Mean-

while, we can monitor the transcriptome changes in both

nucleated erythrocytes and white blood cells by measuring the

blood samples, which is very important as both the increased

erythropoiesis and inflammatory response are known to have a

close link with hypoxia [2,3,9,10,11].

Due to the large individual variations and the limited sample size,

we developed a novel network-based analysis approach to identify

the differentially expressed network modules and important

regulators in response to extreme altitude. By doing so, we

uncovered a highly modular network with seven modules of various

functions, with the erythrocyte differentiation module being the

most prominently up-regulated, indicative of shifted differentiation

of hematopoietic stem cells to increase erythrocyte fate at the

expense of other alternative cell fates. The network modules also

revealed a coordinated down-regulation of genes involved in

translation elongation at extreme altitudes. Network topology and

flow analyses further uncovered both known and novel regulators of

hypoxia responses and erythrocyte development.

Results

Climbers’ information
Four climbers participated in this study, including two ,55-

year-old males (A and B, A is a frequent climber of Mount

Xixiabangma), a 44-year-old, well-trained male mountaineer (C),

and a 33-year-old female (D). The four individuals did not travel

above 3,000 m in the past six month, and they did not suffer from

any severe altitude sicknesses after they arrived in Lhasa and

during the mountain-climbing. Blood samples were taken at Lhasa

(LS, 3,650 m above sea level) during the ascent and the base camp

(ABC, .5600 m), at Dingri (DR, 4,400 m), during the descent,

and at Shenzhen (SZ, 100 m) a month later (Figure 1A, Methods).

General profiles of transcriptome in response to extreme
altitudes
Principal Component Analysis (PCA) of the data showed there

was large variance within the expression profiles of different

individuals at lower altitudes (100 m and 3,650 m), especially for

the older individuals, but at higher altitudes (5,600 m and

4,400 m) the expression profiles of different individuals look quite

similar (Figure 1B). Hierarchical clustering of the samples clearly

separated the profiles into two major clusters according to the high

(4,400 m and 5,600 m) and low altitudes (100 m and 3,650 m)

(Figure 1C, Figure S1A), indicating extreme altitude induces a

common transcriptional regulatory program. Moreover, within

the 100 m and 3650 m sample cluster, the expression profiles

grouped by individual rather than by altitude, whereas those at

extreme altitudes were more uniform, indicative of decreased

individual variances at extreme altitudes (Figure 1C). Climber C as

a well-trained mountain climber had low-altitude profiles that

were closest to the clustering seen in the extreme-altitude profiles

(Figure 1B).

Although .3000 m is typically defined as being of high altitude,

the expression profiles we obtained at 3,650 m from the climbers

were more similar to those at 100 m than those at 4,400 m and

5,600 m. These profiles, however, do not necessarily indicate the

environmental factors of the 3,650 m are more similar to the sea

level (100 m) than those of the two higher altitudes (4,400 m and

5,600 m). In fact, it may be very likely due to the climbers’ lack of

acclimatization time at 3,650 m (1 day) compared with 5,600 m

and 4,400 m which have more than 15 days exposure at high

altitude (Figure 1A), and/or due to the climbers’ intense physical

activities (climbing) at 4,400 m and 5,600 m compared with

100 m or 3,650 m.

It should also be noticed that the observed differential gene

expression might not be merely caused by the environmental factors

at different altitudes, e.g. the partial pressure of oxygen, the amount

of exposure to the ultraviolet light, the temperature, etc. It could also

be caused by other factors of the climbers, e.g. different food, intense

physical activities, dehydration, etc. Due to the limitation of our not

fully controlled experiment design, which is difficult to achieve given

the extreme nature of the environment studied, we could not

exclude the possibility of other factors and suggest the high altitude

alone has a causal role for the differential expression.

We performed the RankProd package [12] to identify

differentially expressed genes (DEGs). In total, 723 DEGs

including 380 up- and 343 down-regulated genes were found in

response to extreme altitudes (Methods, Table S1). Then we

identified the enriched Gene Ontology (GO) terms [13] and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways [14] in

response to extreme altitude using the Fisher’s exact test and Gene

Set Enrichment Analysis (GSEA) [15] (Methods). We found that

the most significantly up-regulated gene sets are ‘‘hemoglobin

complex’’, ‘‘inflammatory response’’, ‘‘cytoskeleton’’, ‘‘myeloid

cell differentiation’’, and ‘‘oxidoreductase activity’’, whereas the

most significantly down-regulated ones are ‘‘ribosome’’, ‘‘platelet

alpha granule lumen’’, and ‘‘killing of cells of another organism’’

(Table S2, Table S3, Table S4 and Figure S2).

Modular network responsive to extreme altitudes
To obtain robust analysis results, we based our analysis at the level

of functional interactions, which are defined as the union of the

interactions from 3 sources: KEGG [14], STRING [16] and

IntNetDB [17] (Supplementary Methods S1). First, we constructed

an altitude-responsive network (hereafter referred to as the ARN for

short) that includes 310 genes among the 723 DEGs (Methods,

Table S1, Figure S3A). To further distinguish the functions that are

up- or down-regulated, we separated the ARN into 172 up-regulated

genes with 341 edges and 89 down-regulated genes with 250 edges in

the up- and down-regulated networks, respectively (Figure S3B).

Visualization of the up- and down-regulated networks revealed

the obvious existence of network modules (clusters of tightly

connected subnetworks) in each of the networks (Figure S3B,

Table S5). Due to the high density of interactions in ARN, the

modules could hardly be manually separated. However, they could

be clearly delineated using a Markov Clustering algorithm

(Methods, Figure 2A and B).

By examining enriched GO terms and KEGG pathways using

the Fisher’s exact test, we found that the up-regulated network

contained five modules corresponding to the functions ‘inflamma-

tion’, ‘erythrocyte development/oxygen binding’, ‘ribosome’,

‘cytoskeleton’, and ‘oxdoreductase’, respectively. In the down-
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regulated network, we found two modules that were enriched for

the functions ‘ribosome’ and ‘defense response to bacterium’,

respectively (Figure 2A and B, Table S6, Table S7). These

modules’ functions were very similar to the findings of all the

DEGs (Table S2, Table S3, Table S4 and Figure S2). Although

the ribosome genes appeared in both an up-regulated module and

a down-regulated module, the down-regulated ribosome module is

much larger than the up-regulated one (23 versus 8 genes,

respectively, Figure 2A and B), indicating the translation

elongation is generally decreased in response to extreme altitude.

This is accompanied with the increase of erythrocyte and

inflammatory genes which are known to be related with high

altitude response and hypoxia [1,2,3,9,10,11]. Thus, various genes

routinely expressed in different individuals are turned off or down

at the translation level and the gene expression landscape is

reshaped toward those necessary to respond to hypoxia and other

extreme altitude induced stress. This might explain the reduction

in the gene expression variation among different individuals at

extreme altitudes (Figure 1).

We wondered whether this reflected the increased erythrocyte

differentiation from the hematopoietic stem cells at the expense of

differentiation into other cell lineages in response to hypoxia and/or

extreme altitudes, in which case we should see genes that are

preferentially expressed in erythrocytes up-regulated, whereas those

preferentially expressed in other cell lineages repressed at extreme

altitudes. We examined a published gene expression dataset [18] on

four differentiated hematopoietic cell lineages and their parental

hematopoietic stem cells (HSCs). Indeed, genes that are specifically

expressed in erythrocytes are significantly up-regulated (P=4.316

1022) and those expressed in CD8+ cells are significantly repressed

(P=2.8461023) at extreme altitudes (methods). In addition, looking

at mRNA obtained from different cell types, we found that the

extreme-altitude-induced genes are significantly up-regulated in

erythrocytes and down-regulated in T cells, whereas the suppressed

genes are moderately up-regulated in the CD8+T cells compared to

HSCs (Figure 2C). In particular, when compared to the HSCs,

genes in the ‘erythrocyte development/oxygen binding’ module are

significantly up-regulated in nucleated erythrocytes, whereas those

in the down-regulated ‘ribosome’ module were significantly up-

regulated in the CD4+ and CD8+ T cell lineages, but down-

regulated in erythrocytes (Figure 2C). This finding is of particular

interest as decreased immunity has been reported as a common

response to high altitudes [19].

Identifying transcriptional regulation of altitude response
To find the key transcriptional regulators of the ARN, we first

examined whether the weight of nodes (Table S1) in the ARN was

an indicator of the degree of association of the genes with

‘hypoxia’ or ‘high-altitude’. We found that the frequency of

literature co-citation of a gene with these keywords increased with

the weight of a node in the network (Figure 3A). Then to find

potential transcriptional regulators giving rise to the differential

gene expression networks, we searched for potential transcription

factors (TFs) of the DEGs and differentially expressed miRNAs

(Supplementary Methods S1).

We evaluated the relatedness of the TFs to the ARN by weighting

the TFs to reflect their prestige centrality [20] (Supplementary

Methods S1). Although the weights of TFs did not require the TFs

themselves to be significantly up- or down-regulated at extreme

altitudes, they still correlated well with the frequency of literature co-

citation with hypoxia or extreme-altitude (Figure 3A). When the

TFs were similarly weighted as the DEGs according to the

significance of their own expression changes, the weight of the

TFs is less correlated with the frequency of literature co-citation

(data not shown). The overall co-citation frequency (Figure 3A) and

the average number of co-citation times (Table S1) of the top 10%

weighted TFs (here after referred to as hub TFs and were used for

the further analysis) were 6.6 and 20.4 times those of the DEGs,

indicating these hub TFs we found through the network analysis are

more likely to be mechanistically responsible for the extreme-

altitude response than are the DEGs. This is consistent with the

notion that transcription factors do not need to be significantly up-

or down-regulated in order to induce significant downstream gene

expression changes, and that a network-based search for transcrip-

tional regulators of a complex trait is more powerful than simple

differential gene expression analysis.

As miRNA suppression of target genes is generally dependent

on a stoichiometrically high dosage of miRNA expression, we

defined and weighted differentially expressed miRNAs similarly to

the coding genes (Supplementary Methods S1). All the functional

interactions in the ARN together with the potential regulatory

interactions constitute the altitude regulatory network (hereafter

referred to as the Full Regulatory Network or FRN for short)

(Methods, Table S8). Such a network allows us to find important

network motifs, regulatory nodes, and pathways that mediate the

altitude response.

Key regulators and their action in the altitude-responsive
network
The correlation between the percentage of co-citation and the

TFs’ weights indicate that the weights do reflect the importance of

the TFs in the extreme altitude response. We therefore examined

the hub TFs (Table S1).

OCT4 (encoded by the POU5F1 gene), one of the most

important factors for stem cell reprogramming), SP1/2/3, TCF3,

CEBPB, and HIF1B (ARNT), had the most significant weights

and were thus predicted to be the most important transcription

regulators of the network. The weights of these TFs are consistent

with their central positions in the regulatory networks (Figure 2A

and B). The POU5F1 gene itself was also 4.48 fold up-regulated at

extreme altitude among the four people (RankProd P=0.0012). In

the regulatory network, it appears to be activated by SP1/2 and

regulate the erythrocyte differentiation/oxygen binding network

module through transcriptional activation of hemoglobin gamma

2 (HBG2) and hemoglobin beta (HBB) (Figure S4B).

For the miRNAs, miR-629, miR-1308, miR-124 and miR320c

were the most concordantly up-regulated, and miR-33b, miR-

301a, miR-142-3p, miR-21* and miR-487b were the most

concordantly down-regulated at extreme altitude. With both a

large number of targets and a high average weight of target genes,

miR-124, miR-320b/c/d, miR-340 and miR-142-3p seem to be

important regulators of both the up- and down-regulatory

networks (Figure 2A and B). We also found that the miRNAs

predominantly target the TFs rather than the DEGs, indicating

Figure 1. RNA expression pattern changes in samples from climbers at four different altitudes. (A) Illustration of the climbing path and
the sampling locations with average SpO2 and HR of four subjects. (B) PCA of all samples based on expression profiles of all genes measured by RNA-
seq. The four colors represent the four different altitudes. (C) Hierarchical clustering of all samples based on expression profiles of all genes measured
by RNA-seq. Samples are named in the format of ‘Climber ID-altitude’. The expression value for each gene is indicated by color intensity, with red
representing high expression and green representing low expression.
doi:10.1371/journal.pone.0031645.g001
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they may regulate genes’ expression indirectly in response to

extreme altitude (Figure 2A and B).

Pathways responding to extreme altitudes
As shown in Figure 2A and B, even using very stringent cutoffs

to search for potential regulators of the gene expression changes in

response to high altitude, we are still left with too many of such

possible regulatory TFs and miRNAs. Therefore, to globally and

unbiasedly identify which of the regulators are the most critical

ones for further experimental validations, we employed an flow

optimization algorithm called ResponseNet [21] (Methods).

This analysis captured the significantly high ranked nodes and

delineated their potential molecular relationships in interactive

pathways (Figure 3B and Table S9). In total, 6 out of the 34 hub

TFs (17.6%) and 30 out of 501 (6.0%) non-TF DEGs from the

FRN are included (Table S9). In addition, the TFs of very high

weights, especially SP1 and POU5F1, were indeed high-flow

nodes passing information down to the essential set of only 20

genes commonly up- or down-regulated in all four individuals (the

sink nodes, shown in the graph as terminal nodes at the bottom of

the hierarchy) (Figure 3B).

As a depiction outlining pathways with the most important

information flow, nodes in this highly distilled flow network

showed the overall highest rate of co-citation with hypoxia or

altitude, even when compared to the rest of the FRN (Figure 3C).

The nodes in these pathways are primarily regulators that are

known to be induced by hypoxia and to mediate hypoxia

responses, such as SP1 and HIF1B (ARNT), or are important to

erythrocyte development, such as ALAS2 and ERAF. The

ResponseNet further delineated potential pathways that were

formed by these genes to mediate the extreme altitude response.

Of interest, this analysis also pinpointed previously unsuspected

regulators, such as OCT4 (encoded by POU5F1), onto these

pathways. The identification of these provides a more complete

and unbiased map of the high-altitude response pathways. Our

analysis predicted that OCT4 is downstream of SP1 and upstream

of hemoglobins HBB, HBG1, and HBG2 (Figure 3B). As OCT4 is

normally lowly expressed and is assumed to have no function in

differentiated cells, it is very surprising that OCT4 was predicted

by our model to increase the expression of hemoglobins HBB,

HBG1, and HBG2 and hence promote erythrocyte development.

We therefore visually confirmed the existence of the OCT4

binding motifs on these genes (Figure 4A) and tried to verify these

regulatory relationships experimentally. By overexpressing the

OCT4 gene in HeLa cells, we found that the level of transcripts for

HBG1 and 2, which are not distinguishable and denoted HBG1/

2, were indeed significantly up-regulated 2- to 3-fold compared to

vector-transfected cells (Figure 4B).

Discussion

Our data and analyses revealed that at extreme altitudes the

most significant up-regulation occurred for the erythrocyte

development module and the inflammation module whereas

coordinated down-regulation occurred for modules involved in

translation elongation. This might reflect a shift of hematopoietic

stem cell differentiation towards erythrocyte production at the

expense of other differentiated cell lineages. Our regulatory

network analysis identified feedback loops involving both miRNA

and TFs that were potential mechanisms for altering network

homeostasis (Figure S5). Pathway analysis by flow optimization

further revealed regulators that were previously known to be

induced by hypoxia and to mediate hypoxia responses, including

SP1 and HIF1B (ARNT), or important to erythrocyte develop-

ment, such as ALAS2 and ERAF. We were also able to identify

regulators that had not previously been suspected as important for

these response networks, such as OCT4 (POU5F1), and validated

the predicted regulation of c-globin by OCT4.

Previous studies indicated OCT4, which is best known for its

critical role in regulating embryonic stem cell pluripotency, is

expressed in somatic stem cells (including HSC and other bone

marrow derived stem cells) but not in somatic tissues [22]. Since we

measured the transcripts in whole blood, our finding of OCT4 up-

regulation might be due to an increase in the number of HSCs or

erythroid progenitor cells being released into peripheral blood

circulation under extreme altitude. Given the very small fraction of

HSC in the whole blood, we cannot formally exclude this possibility

despite that the HSC specific genes identified by Chambers et al. [18]

were either not changed or significantly down-regulated at high

altitude in the four different climbers (data not shown). HIF-2a

(EPAS1) has been shown to be able to increase OCT4 expression

under hypoxia [23], and certain variants of HIF-2a have been found

by several recent studies to be associated with high-altitude adaptation

and low hemoglobin concentration in Tibetans [24,25,26,27].

According to Chambers et al’s data [18], HIF-2a also expresses in

nucleated erythrocytes. It should be noted that the activation of HIFs

by hypoxia is not through the induction of their gene expression but

through posttranslational modifications on the encoded proteins [23].

This may explain the lack of HIF-2a in our network.

Although our data in this study showed that the gene expression

profiles of different individuals become more similar at extreme

altitude, given their large initial variation at low altitudes, some of

the changes in gene expression between low and extreme altitudes

must be non-homogeneous. Indeed, we found that even the most

concordantly changed functional gene sets identified by GSEA

sometimes varied in the extent of changes (Figure S2). As a case in

point, the well-trained young climber (C), who has many times of

8000-meters climbing experiences, showed the greatest deviation

from the consensus changes (Figure S2). For instance, unlike the

other three climbers, climber C showed no gene expression

changes in the myeloid cell differentiation and cytoskeleton, and

only displayed moderate up-regulation of inflammatory response,

which is shown to have a close relationship with hypoxia and

underlies the pathogenesis of high-altitude pulmonary edema

(HAPE) [9,10,11] (Figure S2). It indicates that these functions,

especially inflammatory response, might reflect secondary re-

sponses that could probably be avoided through training and/or

experiences of mountaineering.

Figure 2. Modular network reponse to extreme altitude. (A and B) The regulatory networks for up- (A) or down-regulated (B) gene expression
at extreme altitude as compared to low altitudes illustrating the number of genes, gene density, function, regulations and structures of the modules
and structures of the modular organization of the networks. TFs are visualized in the upper left circle, miRNAs in the upper right circle, and network
modules in the up- or down-regulated altitude-responsive networks are each visualized as a circle. The color intensity of a node denotes the weight
of the node, with red representing a positive weight value and up-regulation, and green representing a negative weight value and down-regulation.
The width of an edge indicates the weight of the edge. The color of an edge indicates the expression correlation between the two genes connected
by the edge. All other network graphs are similarly annotated except for the ResponseNet (Figure 3B). Graphic keys include node size, edge width,
node and edge colors and shapes. (C) Expression level changes of up- and down-regulated network modules when differentiated hematopoietic cell
lineages are compared to hematopoietic stem cells (HSCs).
doi:10.1371/journal.pone.0031645.g002
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It remains unclear what changes occur in white blood cells at

high altitude [28], and, due to the limitations imposed by the

environment, we did not perform a blood cell count. However, the

fact that we extracted less total RNA in samples taken at extreme

altitudes may indicate a decrease in the number of white blood

cells as RNA from blood samples are primarily derived from white

blood cells with our experimental procedure. This would be

consistent with our proposal that there is a compensatory decrease

of white blood cells due to the developmental shift of HSCs to an

erythrocyte cell fate. Given the impact of changes in blood

composition and compensatory activity, more detailed assessment

of the impact of high altitude on blood cell development would be

of interest for future study.

Climbing an 8,000-meter-high mountain is an arduous human

endeavor by itself, let alone performing blood sampling and

processing under such primitive conditions, including the need to

carry the necessary equipment (e.g. a blood centrifuge) up the

mountain. Thus, the samples we could collect were limited. Yet

our gene expression and network analysis on the obtained

peripheral blood of only four individuals of different age, sex,

and mountaineering experience still revealed a common highly

organized transcriptional regulation program under extreme

altitude despite individual variance. We think our analysis can

efficiently return network modules and regulatory pathways

because we used many noise reduction procedures: 1) our

networks were constructed based not only on the significance of

over/under-expression. To remove the noise due to variations

given by the limited number of individuals, we first restricted the

analysis to only functionally related molecular interactions from

several high-confidence interaction databases, and then searched

for significantly co-interacting/tight connected and co-regulated

modules to focus on functional modules. 2) The predicted

regulatory functions were again based on not only the knowledge

of TF binding motif, but also the interaction strength between TF

and target genes, the significance of target gene differential

expression and the total number of putative differentially regulated

target genes and so on. All these, as demonstrated by literature co-

citation validation, were necessary to reliably retrieve coherent

biological information from the noisy data initially thought to be

unanalyzable due to the large individual variations unrelated to

altitude response, which given the limited sample size cannot be

removed by routine multivariate analysis.

In reality, in both clinical practice and routine bench-side

experiments, it is hard to obtain hundreds or thousands of samples

to do standard association tests. Even then it is not easy to

interpret the molecular network underneath a biological response

or phenotype. To meaningfully interpret biological networks from

a few samples is therefore even more challenging. So far, there is

no effective analysis framework available to tackle this problem.

Although in order to move the analysis from bench to bedside to

realize the goal of personal medicine, such a problem must be

addressed. The concordance of our analysis results, their

consistency with the current literature and the experimental

validation of the predicted OCT4 regulation on c-globin gene

expression fully demonstrated the power of the new analysis

approach we established and provided a much needed analysis

framework for inferring molecular networks from a very limited

number of samples.

Materials and Methods

Ethics statements
The research protocol was approved by the Ethics Committee

of BGI Shenzhen and written informed consent was obtained from

each climber.

Figure 3. Nodes and pathways important to extreme-altitude response. (A) The frequency of literature co-citation with keywords ‘‘hypoxia’’,
‘‘hypoxic’’, and ‘‘altitude’’is plotted for the top N percent of all 335 TFs (triangles) that have motif position weight matrix (PWM) in TRANSFAC or
JASPAR database (left y-axis), or of all 17,365 genes (diamonds) detected by mRNA-seq (right y-axis) ranked by their nodes weight (x-axis). The 723
DEGs and the 34 hub TFs are marked by the red and green vertical lines, respectively. (B) ResponseNet from differentially expressed miRNAs to the
genes unanimously up- or down-regulated at extreme altitude. Node and edge colors are annotated as the scaled weights. Node size and edge width
are proportional to the amount of flow passing through a node or an edge. (C) The frequency of the literature co-citation among genes in the
ResponseNet compared to those in the full regulatory network and the whole transcriptome.
doi:10.1371/journal.pone.0031645.g003

Figure 4. OCT4 binding sites and regulatoion of HBB, HBG1,
and HBG2. (A) The OCT4 binding motif logo shows the position
weight matrix of the OCT4 in the TRANSFAC database. The predicted
OCT4 binding sites on HBB, HBG1, and HBG2 are listed for comparison
to the censensus motif. (B) Fold change of HBG1 and 2 (HBG1/2) mRNA
expression level upon OCT4 overexpression. HeLa cells were transfected
with 1, 2 and 4 mg of control GFP-containing vector or OCT4, each time
three wells of cultured cells were measured separately by qPCR. Error
bars represent standard deviations (marked by the wiskers). OE
standands for overexpression.
doi:10.1371/journal.pone.0031645.g004
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Sample preparation
We collected 10 ml blood samples from four individuals at four

different locations along the climb to and descent from Mount

Xixiabangma (8,012 m above sea level). In total, we obtained four

samples for each climber A, B, and C, and three samples for

climber D (no sample was taken for this individual in Lhasa

(3,650 m) because she had a cold). We measured the transcripts in

the nucleated cells of the peripheral blood. Erythrocytes were

immediately removed with erythrocyte lysis buffer (Tris-NH4Cl).

Then the samples were homogenized in Trizol reagents and frozen

in liquid nitrogen. The blood sampling was processed within

20 minutes. To avoid other factors that may affect the blood gene

expression, such as circadian rhythm and physical activity, the

blood samples were collected in the morning soon after waking.

Meanwhile, we also recorded other physiological indices, including

heart rate, blood oxygen saturation, systolic blood pressure, and

diastolic blood pressure for each volunteer at each sampling

location to ensure the consistency of physiological parameters at

the time of sample collections (Table S10).

RNA sequencing and data processing
RNA sequencing and data processing are finished in BGI

ShenZhen and performed according to Digital Gene Expression

Pipeline of BGI ShenZhen. Detailed methodology was described

in Supplementary Methods S1 (Figure S6, Table S11, Table S12,

Table S13, Table S14).

Gene expression analysis
Gene expression values were summed from normalized RNA-

seq reads. Hierarchical clustering of gene expression was based on

pair-wise distances of 1-PCC (Pearson correlation coefficient)

between gene expression values of each pairing sample with 15

data points, using ‘‘average’’ linkage as for agglomeration.

We compared the extremely high (4,400 m and 5,600 m) and

relatively low altitudes (100 m and 3,650 m) to identify differentially

expressed genes (DEGs) in response to extreme altitudes. As an

approach to identify DEGs, our first attempt using the classical

single t-test or ANOVA using all four individuals together turned

out to be not appropriate for the data (Supplementary Methods S1).

Therefore, we performed the RankProd package [12], which is a

non-parametric statistical method to estimate significance levels of

genes’ differential expression (rank) based on a gene permutation

mode. The Benjamini-Hochberg corrected FDR#0.1 was used as a

cutoff to define the DEGs. And we also applied the same method to

identify differentially expressed miRNA. More details were

provided in Supplementary Methods S1.

For the data of hematopoietic cell lineages [18], RankProd

P#0.05 was used as a cutoff to define the specifically expressed

genes in a certain differentiated cell lineage compared to HSC.

GO and KEGG annotation enrichment
Annotation enrichments were calculated as described previously

[29]. Basically, the enrichment of GO terms (http://www.

geneontology.org/) and KEGG pathways (http://www.genome.

jp/kegg/) were calculated by the Fisher’s exact test on the 380 up-

or 343 down-regulated genes in response to the extreme altitude

(Table S2 and S3). The Benjamini-Hochberg corrected FDR#

0.05 was used to determine the enriched functions.

We also performed the gene set enrichment analysis (GSEA)

[15] on all the genes detected by the RNA-seq, which were ranked

by their RP values given by the RankProd package [12]. A cutoff

of FDR#0.25 was used to define the enriched up- and down-

regulated functions (Table S4 and Figure S2).

Constructing the networks
To construct the altitude-responsive network (ARN), we first

searched for functional interactions among the 723 DEGs responsive

to the altitude change. We weighted the nodes (genes) to reflect their

significance of differential expression, and also developed an edge

weighting formula similar to a previously published one [30]. By

taking only the most highly weighted interactions between the DEGs

(empirical P#0.1), we obtained the ARN that includes 310 genes

with 938 functional interactions (Table S1, Figure S3A).

The full regulatory network (FRN) were constructed by simply

adding the regulatory interactions (hub TFs and differentially

expressed miRNAs to their targets among the DEGs) to the ARN.

The nodes and edges were similarly defined despite the TFs were

weighted by the prestige centrality [20] to reflect their relatedness

to the ARN.

The detailed description of the definitions, formulas, and cutoffs

we used to construct the networks were provided in the

Supplementary Methods S1.

We also tried to construct a larger ARN based on a less stringent

definition of DEGs, which were shown in Supplementary Methods

S1 (Figure S7).

Dissecting structural modules
Structurally dense regions in the networks were first identified

by the Markov Clustering (MCL) algorithm (http://www.micans.

org/mcl/) with the granularity parameter set to 1.5. Then the

nodes with only one edge were removed iteratively until no such

nodes existed.

Literature Co-citation
To calculate literature co-citation of a gene and a term, we

first obtained the related PubMed IDs of the query gene ID through

the ‘‘gene2pubmed’’ table (ftp://ftp.ncbi.nih.gov/gene/DATA/

gene2pubmed.gz) in three species (human, mouse, and rat). Then

we searched the abstracts of these PubMed IDs for the co-occurrence

of the gene symbol or synonym and the three query terms, which are

‘‘hypoxia’’, ‘‘hypoxic’’, and ‘‘altitude’’. Both the ‘‘gene2pubmed’’

table and abstracts were downloaded from NCBI on 28 Jan, 2010.

Feedback loops were found using the breadth-first algorithm.

Comparing the gene expression of hematopoietic cell
lineages
The gene expression data of hematopoietic cell lineages were

obtained from Chambers SM et al. [18] (GSE6506). Pair-wise

Student’s t-test was used for network modules and DEGs to

determine their significance of differential expression between

each differentiated cell lineage and HSC (Figure 2C). And it is also

used reversely for each cell lineage’s specifically expressed genes to

determine their significance of differential expression between high

and low altitudes. In either case, replicates of each group were

used to calculate a mean for comparison.

Extracting ResponseNet by network flow
When constructing the ResponseNet, we used miRNAs, which

are well-known to be regulatory molecules, as the source nodes,

while treating the most concordantly up- and down-regulated genes,

those significantly up- or down-regulated in all four climbers

(P#0.05), as sink nodes. To reflect the degree of relevance of edges

to the altitude response, we defined the cost of an edge as the -log

value of the edge weight (Supplementary Methods S1).

We also tried to retain only the anti-correlations between

miRNA and targets, which were shown in Supplementary

Methods S1 (Figure S8).
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Cell culture and transfection
HeLa cells, obtained from American Type Culture Collection

(ATCC), were grown in DMEMwith 10% fetal bovine serum (FBS)

and seeded in 6-well plates at a concentration of 16106 cells/well

the day before transfection. The OCT4 overexpression plasmid

(DpQCXIN-OCT4A-360) and control plasmid (pQCXIN-GFP)

used for transfection were kindly provided by Dr. Jianwu Dai [31].

Cells were transfected with 1, 2 or 4 mg of plasmid DNA using

Lipofectamine 2000 (Invitrogen) and RNA was extracted 48 hours

after transfection. The transfection efficiency was detected by

checking the GFP signal through a fluorescence microscope.

Total RNA extraction and quantitative real-time PCR
Total RNA was extracted from cells using Trizol (Invitrogen)

reagent. Reverse transcription was carried out using First Strand

cDNA Synthesis Kit (TOYOBO), and then synthesized cDNA was

analyzed by real-time quantitative PCR (qPCR) using SYBR Green

and a Mx3000P qPCR system (Stratagene). The relative expression

changes of the genes were analyzed using the 22DDC
T method [32].

Sequences of primers used for qPCR were the following:

OCT4 forward - CGTGAAGCTGGAGAAGGAGAAGCTG,

OCT4 reverse - CAAGGGCCGCAGCTTACACATGTTC;

HBG1/2 forward - CCCAGAGGTTCTTTGACAGC,

HBG1/2 reverse - TTCTCAGGATCCACATGCAG;

GAPDH forward - ACCACAGTCCATGCCATCAC,

GAPDH reverse - TCCACCACCCTGTTGCTGTA. GAPDH

was used as internal control.

Supporting Information

Figure S1 Hierarchical clustering of each individual based on

expression profiles of all genes measured by RNA-seq (A). Or the

Hierarchical clustering of all samples based on expression profiles

of differentially expressed genes (DEGs) selected by comparing

100 m vs. 4,400 m and 100 m vs. 5,600 m (B), or comparing

3,650 m vs. 4,400 m and 5,600 m (C). Samples are named in the

format of ‘Climber ID-altitude’. The expression value for each

gene is indicated by color intensity, with red representing high

expression and green representing low expression.

(TIF)

Figure S2 Gene set enrichment analysis (GSEA) summary of

seven up- or down- regulated gene sets (A). The expression value

represented by -log10(Nominal p-val) for each gene set is indicated

by color intensity, with red representing high expression and green

representing low expression. And enrichment plots of these gene sets

in four climbers are provided as a combination or individually (B).
(TIF)

Figure S3 The altitude-responsive network (ARN) (A) as well as
the up- or down-regulated sub-network of the ARN (B).
(TIF)

Figure S4 Regulatory networks of the up- or down-regulated

network modules. Only the one-step regulatory interactions were

included in each module.

(TIF)

Figure S5 Feedback loops of #5 steps found in the full

regulatory network.

(TIF)

Figure S6 Saturation curves of the samples at the obtained

sequencing depth.

(TIF)

Figure S7 The regulatory modular network for up- (A) or down-
regulated (B) genes defined by a less stringent criteria, which is the

intersection of at least 2 people with RankProd P-value #0.05,

and the ResponseNet based on this set of DEGs (C).

(TIF)

Figure S8 The ResponseNet of retaining only the anti-

correlations between miRNAs and targets. All the other settings

are exactly the same as Figure 3B.

(TIF)

Table S1 The full list of differentially expressed genes, TFs, and

miRNAs.

(XLS)

Table S2 GO/KEGG enriched in up-regulated genes

(FDR,=0.1, 380 genes).

(XLS)

Table S3 GO/KEGG enriched in down-regulated genes

(FDR,=0.1, 343 genes).

(XLS)

Table S4 Gene Set Enrichment Analysis (GSEA) results

(FDR,=0.25).

(XLS)

Table S5 Topological analysis of the altitude-responsive network

(ARN).

(XLS)

Table S6 GO/KEGG enriched in up-regulated modules.

(XLS)

Table S7 GO/KEGG enriched in down-regulated modules.

(XLS)

Table S8 All the functional and regulatory interactions in the

Full Regulatory Network.

(XLS)

Table S9 The amount of flows on the nodes in ResponseNet.

(XLS)

Table S10 Physiological indexes for each sample at each

sampling location.

(XLS)

Table S11 Data summary of RNA-seq.

(XLS)

Table S12 DGE proflie for each gene.

(XLS)

Table S13 Data summary of miRNA-seq.

(XLS)

Table S14 Expression profiles of microRNA genes.

(XLS)

Methods S1

(DOC)
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