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Abstract

RNA sequencing using the latest single-molecule sequencing instruments produces reads that are thousands of

nucleotides long. The ability to assemble these long reads can greatly improve the sensitivity of long-read analyses.

Here we present StringTie2, a reference-guided transcriptome assembler that works with both short and long reads.

StringTie2 includes new methods to handle the high error rate of long reads and offers the ability to work with full-

length super-reads assembled from short reads, which further improves the quality of short-read assemblies.

StringTie2 is more accurate and faster and uses less memory than all comparable short-read and long-read analysis

tools.
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Background
Measuring the abundances of transcripts in an RNA-

sequencing (RNA-seq) dataset is a powerful way to

understand the workings of a cell. Simply aligning

reads to a reference genome can provide rough esti-

mates of the average expression of genes and hint at

differential use of splice sites [1], but to create an ac-

curate picture of gene activity, one must assemble

collections of reads into transcripts. Alternative spli-

cing is very common in eukaryotes, with an estimated

90% of human multi-exon protein-coding genes and

30% of non-coding RNA (ncRNA) genes having mul-

tiple isoforms [2, 3]. While the number of annotated

human protein-coding genes has remained more or

less constant over the last decade, the number of

ncRNA genes and protein-coding isoforms has contin-

ued to increase [4].

Second-generation sequencers, such as those from

Illumina, can produce hundreds of millions of short

(~ 100 bp) RNA-seq reads. Reads of this length usually

span no more than two exons, except in cases of very

small exons. By assembling the short reads, we can

reconstruct full-length transcripts and identify novel

genes and gene isoforms. There are two main ap-

proaches to transcriptome assembly: de novo and

reference-guided. De novo transcriptome assemblers

such as Trinity [5] and Oases [6] find overlaps be-

tween reads and attempt to chain them together into

full transcripts, without aligning the reads to a

genome. This task is complicated by the presence of

paralogous genes and transcripts with many isoforms

that largely overlap one another, and as a result, this

approach produces highly fragmented and error-prone

transcriptomes. Reference-guided assemblers such as

Cufflinks [7], Bayesembler [8], StringTie [9], Trans-

Comb [10], and Scallop [11] take advantage of an

existing genome to which the RNA-seq reads are first

aligned using a spliced aligner such as HISAT [12] or

STAR [13]. These assemblers can then build splice

graphs (or other data structures) based on the align-

ments and then use those graphs to construct individ-

ual transcripts. Some reference-guided assemblers can

also use the exon-intron annotation of known tran-

scripts as an optional guide, allowing them to favor

known genes where possible. A recent study [14]

found that StringTie outperforms both Cufflinks and

Bayesembler, by assembling more transcripts correctly

and at a higher precision, while the original Scallop

study [11] showed that on some datasets, Scallop can
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achieve higher sensitivity and precision than StringTie

(version 1.3) and TransComb.

StringTie and other transcriptome assemblers esti-

mate transcript abundance based on the number of

aligned reads assigned to each transcript. More re-

cently, alternative methods such as Sailfish [15],

Salmon [16], and Kallisto [17] demonstrated that one

can estimate abundances by assigning reads to known

transcripts based on exact k-mer matching, which

produces dramatic gains in speed by dropping the re-

quirement for precise base-level read alignment.

However, these alignment-free methods are not able to

detect novel genes or isoforms, and they show poorer per-

formance in quantifying low-abundance and small RNAs

compared to alignment-based pipelines [18].

The original release of StringTie proposed a method

to use a limited version of de novo transcriptome as-

sembly via the construction of super-reads, which

were originally developed for whole-genome assembly

[19]. Conceptually, super-reads are constructed by ex-

tending each end of a short read as long as there is a

unique extension based on a k-mer lookup table. This

creates a collection of synthetic long reads with the

low error rate of short reads. Because they are longer,

they are more likely to align uniquely to the genome,

which in turn might simplify the splice graph of a

gene. Super-reads were used in a limited capacity in

StringTie 1.0 (henceforth StringTie1), only filling in

the gap between paired-end reads. In that limited im-

plementation, a super-read was used to replace a pair

of reads, allowing it to be treated like a single, un-

paired read. One difficulty in using super-reads is that

the algorithm used to create them for genome assem-

bly includes an error correction step, which in the

context of RNA-seq assembly can over-write k-mers

from low-abundance transcripts. Another complica-

tion is that a full super-read may contain many short

reads, and thus, it cannot be counted as a single read

during the quantification step. We have therefore de-

veloped an expectation-maximization (EM) algorithm

to distribute read coverage between super-reads.

While second-generation sequencers produce very

large numbers of reads, their read lengths are typically

quite short, in the range of 75–125 bp for most RNA-seq

experiments. These short reads often align to more than

one location, and we designate such reads as “multi-

mapping.” Short reads also suffer the limitation that they

rarely span more than two exons, making the splice

graph difficult and sometimes impossible to traverse ac-

curately for genes with multiple exons and many diverse

isoforms, no matter how deeply they are sequenced.

These issues can be alleviated by third-generation se-

quencing technologies such as those from Pacific Biosci-

ences (PacBio) and Oxford Nanopore Technologies

(ONT). These long-read technologies, which can pro-

duce read lengths in excess of 10,000 bp, have dramatic-

ally improved whole-genome assemblies [20], and when

used for RNA-seq experiments, they offer the potential

for large gains in the accuracy of isoform identification

and discovery [21–23]. While some reads produced by

third-generation sequencers cover the full length of

RNA transcripts, many will inevitably capture only par-

tial transcripts. This happens for a variety of reasons,

e.g., (1) RNA degrades quickly and may be shorter than

full length by the time it is captured for sequencing; (2)

long molecules can break during library preparation; or

(3) in cDNA sequencing, the reverse transcription step

may fail to capture the full RNA molecule. Thus, com-

putational tools that only consider reads which fully

cover a transcript will be forced to discard many reads,

possibly causing a substantial reduction in sensitivity. To

date, though, long reads have not been widely adopted

for transcriptome assembly, in part because they have a

much higher error rate (typically 8–10% or higher), mak-

ing alignment difficult [24, 25], and also because long-

read sequencers have much lower throughput, which

makes accurate quantification of all but the highest-

expressed genes impossible.

Various tools have recently been developed to correct

errors and/or extract full-length transcripts from gen-

ome alignments of long RNA-seq reads. Tools that

process full-length transcripts from PacBio Iso-Seq

reads, including ToFU [26], TAPIS [27], and SQANTI

[28], cannot assemble reads that only partially cover

transcripts into full-length transcripts, nor can they be

applied to ONT reads due to their reliance on identify-

ing 5′ and 3′ ends based on PacBio-specific adapters.

TranscriptClean [29] corrects mismatches, indels, and

non-canonical splice-sites in long-read alignments, but

does not attempt to identify full-length transcripts.

FLAIR [30] corrects splice-sites based on known, user-

provided annotation and outputs transcripts from the

annotation that are fully covered by “high-confidence”

reads. As an alternative to these approaches, which de-

pend on known transcripts, one can assemble long-read

fragments using the same methods used for short-read

transcriptome assembly. In addition to finding novel

transcripts, the assembly approach can more readily

handle fragments that match multiple isoforms, and it

can correct alignment errors by forming a consensus

from multiple reads. Traphlor [31] is the only previously

described system designed to assemble high-error long

reads, although we show it performs relatively poorly on

both simulated and real data.

Here we present StringTie2, a major new release of

the StringTie transcript assembler, which is capable of

assembling both short and long reads, as well as full-

length super-reads. Our results on 33 Illumina RNA-seq
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datasets demonstrate that StringTie2 is more accurate

than Scallop, the next-best performing transcriptome as-

sembler of those currently available. The use of super-

reads also consistently improves both the sensitivity and

precision of StringTie2 assemblies. When applied to long

reads, StringTie2 assembles the reads substantially more

accurately, faster, and using less memory than FLAIR,

the next-best performing tool for long-read analysis. As

opposed to FLAIR, StringTie2 can also identify novel

transcripts from the long-read data, even when no refer-

ence annotation is provided.

Results
Transcriptome assembly of short RNA-seq reads

We first used simulated human data to compare the sen-

sitivity and precision of StringTie2, with and without

super-reads, to that of Scallop (Fig. 1), one of the most

recent transcriptome assemblers for short RNA-seq data,

which was shown on some data to yield an improvement

in assembly accuracy over StringTie1 [11].

We define sensitivity as the percent of expressed tran-

scripts that match a transcript predicted (or output) by

each tool and precision (equivalently called positive pre-

dictive value) as the percent of predicted transcripts that

match an expressed transcript. We tuned the default pa-

rameters of StringTie2 to have approximately the same

precision as StringTie1 (version 1.3) on this simulated

data. StringTie2, with default parameters, is both more

sensitive and more precise than Scallop on this data, and

the use of super-reads increases both the sensitivity and

precision of StringTie2 compared to using short-read

alignments alone. Note that on this data, StringTie2 is

also more sensitive and more precise than StringTie1

(Additional file 1: Figure S1). We also computed the

Spearman correlation coefficients of the expression

levels predicted by each tool compared to the true ex-

pression levels on simulated data (Table 1). StringTie2’s

estimates of expression levels have a higher correlation

than Scallop over all predicted and expressed transcripts,

and the use of super-reads improves this correlation

further.

We next evaluated performance on real short-read

data, which is considerably more complex than simu-

lated data. For the real data, we cannot know with cer-

tainty which transcripts were expressed in each dataset,

nor can we know their precise expression levels. How-

ever, it is generally safe to assume that an assembler is

more sensitive if it assembles more transcripts matching

known annotations (i.e., transcripts from a published

database of known genes), and that it is more precise if

the known transcripts represent a higher proportion of

all the transcripts that are output by the assembler.

Therefore, for each sample, we calculate sensitivity and

precision by considering the number of assembled

transcripts that match annotations as correct ones (i.e.,

true positives), and counting all additional transcripts as

incorrect (also see the “Methods” section).

Fig. 1 Sensitivity and precision of Scallop, StringTie2, and

StringTie2 with super-reads (StringTie2 + SR) on simulated human

short-read data, containing 150 million 75-bp paired-end reads.

Only those transcripts that were completely covered by input

reads were used in computing accuracy
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We ran StringTie2 and Scallop on 23 short-read data-

sets from human, five from Arabidopsis thaliana, and

five from Zea mays (see the “Methods” section). Note

that our datasets included all ten human samples that

were used by Shao and Kingsford to show that Scallop

is more sensitive than StringTie while maintaining the

same level of precision [11]. StringTie2 obtained both

better sensitivity and precision than Scallop on all 23

human datasets tested and 9/10 plant datasets (Fig. 2

and Additional file 2: Table S1). On average, StringTie2

obtained a relative increase over Scallop of 3.9% in sen-

sitivity and 47.3% in precision. On the one Zea mays

dataset (ERR986114) where Scallop had slightly higher

precision than Stringtie2 (17.4% vs 16.3%), StringTie2

obtained a 24% relative increase in sensitivity (Fig. 2).

Close inspection of the read alignments from this sam-

ple in IGV [32] revealed that there were many gaps in

coverage within individual transcripts, possibly due to

the highly repetitive nature of the Z. mays genome.

Examining finer-grained statistics revealed that the

intron-level precision of StringTie2 was higher than

Scallop on this dataset (Additional file 2: Table S2),

suggesting that the reduced transcript-level precision

could be due to split transcripts caused by drops in

Table 1 Spearman correlation coefficients for the performance

of Scallop, StringTie2, and StringTie2 with super-reads on

simulated short-read data. “Spearman predicted” only includes

transcripts that each tool assembled. For non-assembled

transcripts in “Spearman all,” the predicted expression was set

to zero

Spearman all Spearman predicted

Scallop 0.726 0.828

StringTie2 0.781 0.925

StringTie2+SR 0.788 0.930

Fig. 2 Relative change in sensitivity and precision of StringTie2 vs. Scallop on 23 real short-read RNA-seq datasets from human, five datasets from

Arabidopsis thaliana, and five datasets from Zea mays. Positive values indicate that StringTie2 had an increase in sensitivity or precision, while

negative values (for one dataset only) indicate lower precision
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coverage, which would result in fewer full-length tran-

script matches while leaving most introns intact. In

fact, adjusting corresponding parameters in StringTie2

and Scallop to allow for larger gaps in coverage (see the

“Methods” section) resulted in higher sensitivity and

precision for StringTie2 on all Zea mays datasets

(Additional file 2: Table S3).

StringTie2 is not only more accurate than Scallop, but

also more time and memory efficient. Averaging over all

real short-read datasets, StringTie2 ran 1.8 times faster

than Scallop and used 17 times less memory (Additional

file 2: Table S4).

The use of super-reads increased both the sensitivity

and precision of StringTie2 on all human datasets and

all but three plant datasets (Fig. 3). Among those three,

StringTie2 had an increase in precision but no change in

sensitivity on one Z. mays dataset, and an increase in sen-

sitivity but no change in precision on two Arabidopsis

datasets.

Transcriptome assembly of third-generation RNA-seq

long reads

We next compared StringTie2’s performance on long-

reads with that of FLAIR and Traphlor, the only other

systems that can process both PacBio and ONT long-

read RNA sequencing data. Because we cannot know the

true transcripts that are present in real RNA-seq data

sets, we first used simulated data to assess the accuracy

of all tested tools. We obtained five simulated datasets

generated by [33], who used the DNA simulator PBSIM

[34] tuned to mimic the characteristics of either PacBio

or ONT RNA-seq data. These datasets consist of a

Saccharomyces cerevisiae PacBio run, two Drosophila

melanogaster runs (one PacBio, one ONT), and two hu-

man chromosome 19 runs (one PacBio, one ONT). We

ran StringTie2, FLAIR, and Traphlor on these simulated

datasets and computed sensitivity and precision as be-

fore. FLAIR requires gene annotation as a guide to align-

ment, so we also ran StringTie2 with the same guide

Fig. 3 Relative change in percent sensitivity and precision when using super-reads on 23 real short-read RNA-seq datasets from human, five

datasets from Arabidopsis thaliana, and five datasets from Zea mays. Positive values indicate that the use of super-reads increased sensitivity

or precision
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annotation in order to make a direct comparison. Re-

sults are shown in Fig. 4.

Traphlor had lower sensitivity and precision than

StringTie2 and FLAIR on all datasets except for the S.

cerevisiae PacBio data (Fig. 4a). Note that only 4.4% of

the simulated transcripts in the S. cerevisiae PacBio data-

set contain multiple exons, a much smaller proportion

than the other datasets, which may explain why

Traphlor performed relatively well on this data while

performing poorly on the human and Drosophila data.

StringTie2 with annotation as a guide outperformed

FLAIR on all datasets, and in some cases, StringTie2

without guide annotation performed equally well.

Because this was simulated data, the guide annotation

included all transcripts that were present in the sample,

even if not all of them were expressed. Real datasets are

likely to contain unannotated transcripts and may lack

many known, annotated genes entirely.

To demonstrate the performance of each tool when

transcripts are missing from the guide annotation, we

ran StringTie2 and FLAIR on the human chromosome

19 ONT data using random samples of the chromosome

19 annotation, which we varied to contain from 1 to

100% of the transcripts. Results are shown in Fig. 5. The

sensitivity and precision of FLAIR decreases rapidly as

the amount of annotation is reduced, e.g., when only

20% of the annotation is provided, FLAIR’s sensitivity

and precision dropped to 30% and 50% respectively. In

contrast, with that same amount of annotation, String-

Tie2’s results were far better, 74% and 80%. This result

Fig. 4 Sensitivity and precision of StringTie2 (with and without guide annotation), FLAIR, and Traphlor on long read simulated data from a PacBio

Saccharomyces cerevisiae, b PacBio Drosophila melanogaster, c PacBio Homo sapiens, d ONT D. melanogaster, and e ONT H. sapiens
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demonstrates FLAIR’s strong reliance on the guide an-

notation and StringTie2’s contrasting ability to assemble

transcripts that are not present in the annotation.

We next ran StringTie2, FLAIR, and Traphlor on eight

real human long-read datasets: three PacBio datasets

enriched for full-length transcripts (PacBioFL), three

PacBio datasets containing transcript fragments (Pac-

BioNFL), one Nanopore cDNA dataset (NPcDNA), and

one Nanopore direct RNA-seq dataset (NPDirect).

Traphlor failed to produce any transcripts on the

NPcDNA dataset and had drastically worse precision

and sensitivity compared to StringTie2 on all other data-

sets (Additional file 2: Table S5). Averaging across all

datasets on which Traphlor was able to run, StringTie2

correctly assembled 9564 transcripts, 2.6 times more

than Traphlor’s 3708 correct assemblies. Compared to

FLAIR, StringTie2 with guide annotation correctly iden-

tified 16,000 more transcripts on average, with precision

that ranged from about three to six times higher (Fig. 6,

Additional file 2: Table S5). FLAIR performed the best

on the Nanopore direct RNA-seq dataset, where it

correctly identified 4442 transcripts matching the anno-

tation. By comparison, StringTie2 correctly assembled

29,744 transcripts, 6.7 times more than FLAIR. Even

without using guide annotation, StringTie2 substantially

outperformed FLAIR on all of the real datasets (Add-

itional file 2: Table S5). Finally, StringTie2 with annota-

tion runs 68 times faster than FLAIR and uses 9 times

less memory, averaged over all real long-read datasets.

Without annotation, StringTie2 is 93 times faster than

FLAIR and uses 27 times less memory (Additional file 2:

Table S6).

Discussion
The new StringTie2 system focuses on extending String-

Tie1’s capacity to handle long-read data, mostly by

cleaning noise from the read alignments and by imple-

menting more efficient data structures (see the

“Methods” section). Our results show that this new re-

engineering of StringTie also improved its assembly ac-

curacy on short-read RNA-seq data. On both real and

simulated data sets, StringTie2 is more accurate than

Scallop. On all short-read data sets evaluated here,

StringTie2 obtained better sensitivity, higher quantifica-

tion accuracy, faster run time, and lower memory usage

than Scallop. StringTie2 also had higher precision on all

but one sample (ERR986114, Fig. 2), where it obtained

slightly lower precision although it assembled many

more correct transcripts than Scallop. We found that

the drop in precision was likely due to transcripts being

Fig. 5 Sensitivity and precision of StringTie2 and FLAIR running on simulated ONT data from human chromosome 19, using random samples of

different proportions of the human chromosome 19 annotation as a guide. e.g., 50% guide annotation on the x-axis shows results when both

programs were provided 50% of the annotated genes as input
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split by drops in read coverage, which can create two in-

correct transcripts. An examination of intron-level ac-

curacy revealed that StringTie2 was more accurate than

Scallop on all data sets at that level (Additional file 2:

Table S2). We also found that adjusting the parameters

for both StringTie2 and Scallop for Z. mays improved

the performance of both systems on that data, demon-

strating that default parameters may not be optimal for

all datasets. A systematic process for tailoring parame-

ters to a particular dataset was recently explored for

both Scallop and StringTie [35].

Its ability to use super-reads introduces partial de novo

assembly into StringTie2, which provides modest im-

provements in sensitivity, precision, and abundance esti-

mation on real and simulated data.

The high error rates of long reads generated by

third-generation sequencers present distinct challenges

that make identifying the exact exon-structure of a

transcript difficult. Alignments of high-error long

reads generated from the same locus usually disagree

with one another, particularly surrounding splice sites

(Additional file 1: Figure S2 and Figure S3). They also

often disagree about the presence or absence of

particular exons, especially if the exons are small

(Additional file 1: Figure S3 and Figure S4). The re-

sults shown here demonstrate that StringTie2 is the

most accurate method for assembly of transcripts

from long, high-error rate reads. This has the poten-

tial to greatly improve the sensitivity of analyses using

long-read RNA-seq data, which in the past has relied

primarily on reads that span transcripts end-to-end.

The built-in consensus calling in StringTie2 should

also lessen the need for a separate error correction

step from tools such as TranscriptClean [29]. In

addition to its fast runtime and small memory foot-

print, StringTie2 requires no dependencies and can be

Fig. 6 Number of correctly assembled transcripts and precision of StringTie2 (blue) and FLAIR (magenta) on real PacBio (FL = full length, NFL = not full

length) and ONT (NP direct RNA and cDNA) human data. For both plots, any transcripts assembled by either tool were considered correct if it exactly

matched all introns from a known, annotated transcript. In the lower plot, precision is defined as the percentage of all transcripts assembled by a

program that match known annotation. Any additional transcripts will reduce precision if they do not match known transcripts, even if they

are correct
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easily run as a single command, unlike tools such as

FLAIR which consist of a series of scripts that may

each rely on other tools. StringTie2 is also multi-

threaded, which allows it to be run in parallel on

multi-processor computers and can significantly re-

duce the “wall clock” runtime of assembly.

It is worth noting that StringTie2 and FLAIR had

higher accuracy on the ONT direct RNA dataset than

on the cDNA dataset, despite the fact that both data-

sets were sequenced from the same sample. Direct

RNA sequencing currently produces lower yields than

cDNA sequencing; however, both datasets combined

reads from multiple flowcells resulting in high cover-

age for each. The decreased accuracy is likely due to

slightly lower read accuracy for the cDNA (85%) ver-

sus RNA (86%) data and to the smaller average frag-

ment lengths in the cDNA dataset [36]. We also

observed that 22% of the transcripts assembled by

StringTie2 from the cDNA data were fully contained

within introns, versus only 4% of the assemblies from

the direct RNA data, suggesting the presence of a

greater number of incompletely processed transcripts

in the cDNA.

Further development of long-read RNA-seq technolo-

gies will increase the usefulness of StringTie2. In the

case of ONT reads, improvements to basecalling will im-

prove alignment quality, which will further improve

StringTie2’s assemblies. As third-generation sequencers

increase their throughput, researchers will also be able

to use long-read RNA-seq for accurate transcript-level

quantification, which currently requires the higher

throughput of short read (i.e., Illumina) sequencers.

ONT direct RNA sequencing has additional unique cap-

abilities which are only beginning to be explored, such

as the ability to identify RNA base modifications and

secondary structure from the raw signal [36]. Better

transcriptome assemblies will aid these efforts because

these read-level features can then be associated with the

full transcripts.

Conclusions
We have demonstrated that StringTie2 can assemble

RNA-seq data into full-length transcripts using both high-

accuracy short reads and high-error long reads. StringTie2

outperforms all comparable tools in both transcriptome

quality and computational performance. The ability to as-

semble noisy long reads enables greater sensitivity in

downstream analyses and will become increasingly useful

as long-read RNA sequencing technologies mature.

Methods
Reference genomes and annotations

All human RNA-seq reads were mapped to the main

chromosomes of GRCh38, not including the “alternate”

and “random” scaffolds. The annotation used to com-

pute the accuracy of transcriptome assemblies and to

create the human short-read simulated data and the

annotation-guided assemblies contains all full-length

protein and long non-coding RNA transcripts from

RefSeq, release GRCh38.p8. The A. thaliana RNA-seq

reads were aligned to the TAIR10 assembly, and the full

corresponding annotation was used for determining ac-

curacy [37]. The Z. mays reads were aligned to the B73

RefGen assembly, and the full corresponding annota-

tion was obtained from MaizeGDB [38].

Simulated data

A short-read RNA-seq dataset containing 150 million

75-bp paired-end reads was generated using Flux

Simulator [39] with all protein-coding and lncRNA

transcripts on the main chromosomes of GRCh38.

The parameters for the simulation were the ones rec-

ommended for Homo sapiens in Additional file 2:

Table S4 from [39]. Long read simulated data for S.

cerevisiae S288 (baker’s yeast), D. melanogaster r6

(fruit fly), and GRCh38.p7 was obtained from [33].

The long reads were simulated using either PacBio

(one dataset for yeast, fruit fly, and human each) or

MinION ONT profiles (one data set for fruit fly and

one for human).

Alignment and assembly parameters

All short-read datasets were aligned using HISAT2 [40]

with default parameters. The PacBio and ONT datasets

were aligned with minimap2 [41] (version 2.12) using

the “-splice” option, which enables spliced alignment of

noisy long reads. Super-reads were aligned using GMAP

[42] because their error profile more closely resembles

that of EST sequences, which aligners like minimap2 are

not designed for.

All assemblies in Additional file 2: Table S1 were

run using default parameters for both StringTie2 (ver-

sion 2.0.0) and Scallop (version 0.10.2). The Z. mays

samples in Additional file 2: Table S3 were run with

the “-t -g 200” options in StringTie2 and the “--min_

bundle_gap 200” option in Scallop. This increases the

maximum allowable gap between reads within a tran-

script from the default 50 to 200 bp for both tools

and disables trimming of transcripts when the read

coverage drops below a given threshold at the 5′ or

3′ ends for StringTie2 (no corresponding option ex-

ists for Scallop). StringTie2 was run using the “-L”

parameter for all long-read datasets. Three FLAIR

sub-commands were run in sequence to obtain the

GTF of covered transcripts: “align,” “correct,” and

“collapse,” using the human reference genome and

annotation described above where required.
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Accuracy metrics

Similarly to previous studies (e.g., [14]), we used the fol-

lowing metrics to report the accuracy of the transcrip-

tome assemblies:

Sensitivity ¼ TP= TPþ FNð Þ

Precision ¼ TP= TPþ FPð Þ

where TP (or true positives) are correctly assembled

transcripts, FP (or false positives) are transcripts that are

assembled but do not match the reference annotation,

and FN (or false negatives) are transcripts in the refer-

ence annotation that are missing from the assembly.

Note that FP is not a true measure of false positives for

real (as opposed to simulated) data, because the refer-

ence annotation is incomplete for essentially all

eukaryotic genomes today. Thus, transcripts that do not

match the annotation might nonetheless be correct, and

a more accurate term might be “additional transcript

predictions.” However, for the purposes of comparison

between methods, and for consistency with previous

studies, we retain this definition. Sensitivity and preci-

sion were determined by running gffcompare [43]. At

the transcript level, an assembled transcript was consid-

ered correct if, in comparison to an annotated transcript,

it shared all splice site boundaries exactly and the ter-

minal exons ended within 100 bp of each other. Intron-

level accuracy, shown in Additional file 2: Table S2, was

calculated similarly, where an intron was considered cor-

rect if both ends precisely matched an annotated intron.

Relative percent change in sensitivity (Sr) and precision

(Pr) of StringTie2 versus another method was computed

as Sr ¼ 100� S1−S2
S2

, and Pr ¼ 100� P1−P2

P2
, where S1 and

P1 are the sensitivity and precision of StringTie2, and S2
and P2 are the sensitivity and precision of the method

which we compare it to (e.g., Scallop or FLAIR). For ex-

ample, a 10% absolute increase in sensitivity from S2 =

20% to S1 = 30% would be reported as a relative increase

of 50%.

For real datasets, we have no way to determine exactly

what transcripts were truly present in the sample. There-

fore, for the purpose of comparison, we defined the set

of reference or “true” transcripts to be the union of all

annotated transcripts correctly predicted by each tool on

a given sample. This metric will overestimate the abso-

lute sensitivity if there are transcripts that no tool pre-

dicts, but the relative sensitivity comparison will be

accurate because the denominator is the same between

samples and therefore cancels out.

New data structures in StringTie2 compared to StringTie1

StringTie2 builds on our previously developed String-

Tie1 system, which introduced several key innovations,

notably (1) a novel network flow algorithm to

reconstruct transcripts and quantitate them simultan-

eously and (2) an assembly method to merge read pairs

into full fragments in the initial phase [9]. StringTie2

maintains the same general framework for the assembly

and quantification of transcripts but implements much

more efficient data structures that overall lead to faster

run times and much lower memory usage (see the “Re-

sults” section). It includes additional techniques designed

to handle very long reads, including high error-rate

reads produced by the third-generation sequencers, as

well as the longer reads that result from the pre-

assembly of short reads.

There are three main differences in the way StringTie2

stores aligned reads compared to StringTie1. The first

difference is that instead of storing every read individu-

ally, StringTie2 collapses reads aligned to the identical

location on the genome and keeps a count of how many

alignments were collapsed. This simple change has a big

impact on the memory required to store input data, be-

cause very highly expressed transcripts can sometimes

reach a coverage of hundreds of thousands of reads per

base. (see for instance Additional file 1: Figure S5, which

illustrates the very high level of expression for the

COL1A1 gene in sample SRR534291 that was collected

from fetal lung fibroblasts.) However, implementing this

change was quite complex, because it also required us to

create a different method for storing the pairings be-

tween reads, as reads aligned at the same place do not

necessarily have their “mates” (the second read in each

pair) sharing the same alignments. Previously, for each

read, StringTie1 stored a pointer to its pair. StringTie2

must instead store an array of pointers to all paired read

alignments that are present in the data.

StringTie2 also differs from StringTie1 in its more ag-

gressive strategy for identifying and removing spurious

spliced alignments. If a spliced read is aligned with more

than 1% mismatches, keeping in mind that Illumina se-

quencers have an error rate < 0.5%, then StringTie2 re-

quires 25% more reads than usual (the default is 1 read

per bp) to support that particular spliced alignment. In

addition, if a spliced read spans a very long intron (more

than 100,000 bp), StringTie2 accepts that alignment (and

the intron) only if a larger anchor of 25 bp (10 bp is the

default) is present on both sides of the splice site. Here

the term “anchor” refers to the portion of the read

aligned within the exon beginning at the exon-intron

boundary.

Another improvement in StringTie2 is in its internal

representation of its splice graph and of the reads

aligned to that graph. Both the assembly of reads into

transcripts, as well as the quantification of the resulting

transcripts, require determining the compatibility be-

tween the reads (or fragments) and a path in the splice

graph [9], which requires many searches of the overlaps
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between reads and the splice graph. In order to

maximize the efficiency of such searches, StringTie1 uses

a bit-vector representation of the splice graph, where the

first n bits (0 to n-1) correspond to all nodes in the

splice graph, and bit n*i + j corresponds to a possible

edge between nodes i and j in the splice graph, where n

is the number of nodes in the graph and i < j (Additional

file 1: Figure S6). Thus, there are n*(n-1)/2 bits for the

possible edges. A read or a paired read will therefore be

represented by a vector of bits where only the bits that

represent the nodes or edges spanned by the read and

its pair are set to 1. Because in general many of the

nodes in the splice graph are not connected by edges,

most bits in this bit-vector representation will be 0;

therefore, StringTie2 replaces it with a sparse bit-vector

data structure, where the bits can only correspond to a

node or an edge appearing in the splice graph. Building

more efficient data structures in StringTie2 greatly re-

duced the memory footprint of the StringTie system. On

the three datasets from this study that were also exam-

ined in the original StringTie release, memory usage was

reduced on average by a factor of 40 (Additional file 1:

Figure S7).

Assembly of long RNA-seq reads

Third-generation sequencing technologies (i.e., from

PacBio and Oxford Nanopore sequencing instruments)

have an error profile that consists mostly of insertion

and deletions, as opposed to second-generation errors

that are mostly substitutions. Insertion and deletions are

harder to correct than substitutions, and the accuracy of

methods for correcting them is generally low [44]. Fur-

ther complicating matters, aligning long reads correctly

around splice sites is challenging, and mis-alignments

lead to spurious edges in the splice graph, which in turn

leads to incorrect transcript predictions [23].

To handle the high error rates in the long reads, we

implemented two new techniques in StringTie2. First,

we correct potentially wrong splice sites by checking all

the splice sites present in the alignment of a read with a

high-error alignment rate. If a splice site is not sup-

ported by any low-error alignment reads, then we try to

find a nearby splice site (within 10 bp, by default) that is

supported by the most alignments among all nearby

splice sites. If we can find such a splice site, then we ad-

just the read alignment to match it. While this technique

greatly reduces the false alignments around the splice

sites, it does not eliminate the presence of spurious false

exons introduced by random sequencing insertion er-

rors. Pruning edges that are not supported by a mini-

mum number of spliced reads, as described above,

eliminates some of the false-positive edges. However, in

regions of very high within-transcript sequence coverage,

there may still be too many spurious nodes and edges in

the splicing graph, which in turn may cause StringTie1

to hang indefinitely. To improve StringTie2’s efficiency

in such cases, we designed and implemented a pruning

algorithm that reduces the size of the splicing graph to a

more realistic size (see Additional file 1: Algorithm S1).

This algorithm removes edges in the graph starting from

the edge least supported by reads to the most supported

edge, until the number of nodes in the splicing graph

falls under a given threshold (by default 1000 nodes).

Pruning edges in the splicing graph will also change the

internal representation of the long reads affected by the

pruning. For instance, a long read that spans a node that

is no longer part of the splicing graph might be repre-

sented as an interrupted read instead of a one continu-

ous read, similar to how two paired reads are

represented (see Additional file 1: Figure S6b).

Super-read construction and quantification

Super-reads were constructed using code adapted from

the MaSuRCA assembler [19]. MaSuRCA builds a k-mer

lookup table out of every sequence of length k (k-mers)

in the input reads. It uses this to create “k-unitigs,”

which are defined as sequences of maximal lengths such

that every k-mer except the first and last has a unique

preceding and following k-mer. Super-reads are then

constructed by matching each k-mer at the ends of each

short read to a unique k-unitig, effectively extending the

short read as far as there is a unique extension. Note

that it is possible for a super-read to contain multiple

short reads, and for a short read to be contained in mul-

tiple super-reads. Not all short reads are assigned to a

super-read, so both super-reads and unassigned short

reads are used for assembly.

Prior to the construction of the k-mer lookup table,

MaSuRCA uses QuorUM [45] to correct errors in the

short reads. The built-in parameters that it uses for gen-

ome assembly are not optimal for transcriptome assem-

bly. For example, these parameters include a minimum

number of times a k-mer must appear to be considered

high quality, which is appropriate for genome assembly

where all sequences should be covered uniformly, but

not for transcriptome assembly, where some transcripts

may have coverage as low as a single read. Therefore, we

modified these routines to remove the minimum k-mer

count thresholds used for error correction. There are

also certain cases where the first and/or last k-1 bases of

a super-read can extend into alternatively spliced exons,

which could mislead the assembly process. To alleviate

this problem, StringTie2 ignores the first and last k-1

bases of aligned super-reads.

Because many reads may be collapsed into a single

super-read, StringTie2 needs a coverage estimate with

every super-read in order to calculate the expression

level of any transcript with super-reads aligned to it. To
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estimate coverage, we first find every super-read con-

taining each short read by matching the k-unitigs. A

read is assigned to a super-read if its k-unitigs are con-

tained in the super-read in the same continuous order

(or reverse order for the opposite strand), which hap-

pens if and only if the read (or its reverse complement)

is an exact substring of the super-read. During this step,

we only consider super-reads that have been aligned to

the reference genome. After read assignment, we use an

expectation-maximization algorithm to estimate cover-

age for each super-read. The initial estimate sums the

coverage of each read or fragment uniquely assigned to

one super-read. Each iteration then recomputes coverage

for every super-read by distributing coverage from each

read proportionally to the previous super-read coverage

estimate. This is analogous to how StringTie2 distributes

coverage between transcripts. We report the computed

coverage for each super-read using a special tag in the

SAM output file, which is then merged with an aligned

short-read SAM file for input to StringTie2, which uses

the super-reads to weight the paths that they match in

the splice graph.
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