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Boron (B) deficiency stress is frequently observed in citrus orchards and causes

considerable loss of productivity and fruit quality. Carrizo citrange (Cc) has been

reported as a rootstock more tolerant to B deficiency than Trifoliate orange (To). The

‘Newhall’ navel orange (Ns) performed better when grafted onto Cc (Ns/Cc) than when

grafted onto To (Ns/To) under long-term B deficiency. The present study confirmed that

Ns/Cc had higher boron content, leaf fresh weight, lower leaf chlorosis and stronger

photosynthesis ability than Ns/To. Moreover, B-deficiency significantly reduced the

chlorophyll and carotenoid content in Ns/To. The content of total soluble sugar and lignin

were dramatically increased and the expression levels of photosynthesis-related genes

were substantially down-regulated in Ns/To by B-deficient treatment. B-deficiency also

strongly induced expression levels of chlorophyll decomposition-related genes, glucose

synthesis-related genes and lignin synthesis-related genes, and significantly inhibited

the expression of carotenoid synthesis-related genes in Ns/To. Overall, these findings

suggested that the influence of To on the scion of Ns was worse than that of Cc due to

differently regulating these metabolic pathways under the long term of B-deficiency. The

transcriptome analysis provided further information for understanding the mechanism of

the different responses of scion-rootstock combinations to B-deficiency stress.

Keywords: citrus, graft, boron deficiency, RNA-seq, DEG

INTRODUCTION

Boron (B) plays important roles in numerous metabolic and physiological processes of higher
plants, including sugar transport, cell wall synthesis and lignification, cell wall structure
maintenance, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid
metabolism, phenol metabolism, and membrane transport (Blevins and Lukaszewski, 1998; Brown
et al., 2002; Bolaños et al., 2004; Marschner, 2012). B deficiency is a widespread problem that leads
to enlargement of root tips, accumulation of carbohydrates and starch, inhibition of photosynthetic
capacity, deformation of leaves and hypertrophy of petioles (Han et al., 2008; Marschner, 2012;
Yang et al., 2013; Wang et al., 2015).

Different responses to B deficiency among genotypes within species have long been recognized
in many crops. For instance, Geng et al. (2003) revealed that cotton cultivars tolerant to B
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deficiency had greater uptake rates and improved B utilization
compared with cultivar sensitive to B deficiency. In rape, the
seedling height and the rapeseed quality of B-efficient plants were
slightly affected by B deficiency stress compared with that of
B-inefficient plants (Geng et al., 1998). Moreover, comparison
of seven citrus rootstocks under B-deficient conditions showed
that Carrizo citrange (Cc) was the most tolerant genotype while
Trifoliate orange (To) was the most sensitive genotype, according
to the parameters of dry mass, leaf area, seedling height and the
content of mineral nutrients (Zhou et al., 2013).

The rootstock not only supplies water, mineral nutrients and
some hormones to the scion, but it also regulates the metabolism
of shoots through the exchange of genetic information (Ken
et al., 2009; Jensen et al., 2010; Goldschmidt, 2014). In eggplant,
scions grafted onto cold-intolerant rootstocks had higher chilling
injury indexes and electrolyte leakage rates than those grafted
onto cold-tolerant rootstocks (Gao et al., 2016). Huang et al.
(2009) found that under NaCl stress cucumber plants grafted
onto salt tolerant rootstocks had an overall improvement in fruit
quality including an increase of soluble sugar, titratable acidity
and vitamin C. Thus, the performance of different rootstocks can
directly influence the growth of scions. However, most research
has focused on physiological changes. The transcriptional
changes of scions as influenced by rootstocks are still rarely
reported.

In China, B deficiency stress exists in many agricultural crops,
including citrus, and affects crop productivity and quality (Han
et al., 2008; Zhou et al., 2013). To and Cc are widely used
rootstocks in China and other citrus cultivation regions of the
world. As mentioned above, Cc is more tolerant to B deficiency
than To (Zhou et al., 2013). Previous studies also indicated that
‘Newhall’ navel orange (Ns), one of the major scion cultivars in
China, grafted onto Cc exhibited better performance and higher
B utilization than that grafted onto To (Sheng et al., 2010; Wang
et al., 2014). Thus, in this study, we performed genome-wide
transcriptome profiling of leaves of Ns grafted onto the To and
Cc rootstocks. The different scion-rootstock combinations were
treated with B-sufficient (25 µM) or B-deficient (0 µM) solution
for 180 days. The purpose of this study was to get insight into
the molecular mechanisms of the effect of different rootstocks on
the same scion in citrus under B-deficient conditions. A genome-
wide analysis of gene expression profiling after a long-term
B deficiency treatment was performed in the experiment. Our
results yielded numbers of differentially expressed genes (DEGs)
related to the phenotype of the scion grafted onto the different
rootstocks.

MATERIALS AND METHODS

Plant Materials and Treatments
‘Newhall’ navel orange [Ns, Citrus sinensis (L.) Osb. cv. Newhall]
was selected as a scion and grafted onto Trifoliate orange
[To, Poncirus trifoliata (L.) Raf.] and Carrizo citrange [Cc,
C. sinensis (L.) Osb.× P. trifoliata (L.) Raf.]. Then, there were two
experimental groups, namely, Ns grafted onto Cc (Ns/Cc) and Ns
grafted onto To (Ns/To).

The experiment was conducted in a greenhouse at Huazhong
Agricultural University, Wuhan, China. The plants were clearly
washed with tap water and transplanted into 10-L black
plastic pots filled with B-free quartz sand and perlite (1:1,
v/v) medium. Then, the plants were supplied with a modified
B-free 1/4 strength Hoagland’s nutrient solution for several
days, until three to five new leaves expanded in the scions.
Thereafter, the plants were irrigated with a modified Hoagland’s
nutrient solution with a B concentration of 25 µM (B-
sufficient) or 0 µM (B-deficient). This experiment lasted for
180 days. In the end, the Ns leaves from five plants (five
replicates) in each treatment were separately collected. All these
samples were immediately frozen in liquid nitrogen and stored
at −80◦C.

Boron Content, Photosynthetic
Parameters, Chlorophyll Content,
Carotenoid Content, Soluble Sugar
Content, and Lignin Content
Measurements
For B content analysis, 0.30 g of each sample was dry ashed
in a muffle furnace at 500◦C for 6 h, then dissolved in 15 mL
HCl (1 mol·L−1). B concentration was determined by inductively
coupled plasma–atomic emission spectrometry (ICP-AES, IRIS-
Advan type, Thermo, USA) (Krejc Ová and C̆ernohorský, 2003).
There were five replicates per treatment.

The net photosynthetic rate (Pn, µmol CO2 m−2
·s−1),

stomatal conductance of water vapor (Gs, mmol H2O m−2
·s−1),

and sub-stomatal CO2 concentration [Ci, µmol CO2 mol−1

(air)] were measured at steady state under light saturation
(1200 µmol m−2

·s−1) and 400 ppm CO2 with an LI-6400 (LI-
COR, Lincoln, NE, USA). One measurement per plant was
performed on a fully expanded mature leaf (third or fourth
leaf from the shoot apex). Five plants were measured for each
treatment.

The leaf chlorophyll and carotenoid content of the plants
were extracted and measured based on the method of Wei
et al. (2013). Fresh leaf tissue (0.5 g) was homogenized in
25 mL of 80% acetone and kept for 15 min in the dark.
The samples were then spun at 5,000 rpm for 15 min. The
absorbance of the supernatant was measured at 663, 644, and
470 nm using a spectrophotometer (Shimadzu UV-1800, Japan).
Total chlorophyll and carotenoid concentration were calculated
in terms of fresh weight (FW). There were six replicates per
treatment.

The total soluble sugar was determined based on the method
given by Qayyum et al. (2011). Fresh leaves (0.1 g) were added
with 5 mL of 80% ethanol to test tubes, placed in a water bath
and heated for 1 h at 80◦C. Then, 1 mL of the sample extract
was placed into another set of test tubes and mixed with 1 mL
each of 9% phenol and distilled water, subsequently standing at
room temperature for 1 h. Finally, 5mL of sulfuric acid was added
and the whole mixture was vortexed. Absorbance was read at
490 nm on a UV spectrophotometer (Shimadzu UV-1800, Japan).
Ethanol (80%) was used as a sample blank. Each treatment was set
with three replicates.
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The lignin content was determined by the lignin test kit
(Comin Biotechnology Co.) according to its manual. There were
three replicates per treatment (two disks from the same leaf per
replicate).

RNA Extraction, Sequencing, De novo

Assembly and Quantifying Gene
Expression
In each treatment, equal but small amount of Ns leaves from
each plant were pooled together and then divided into two
samples (two replicates) for RNA-Seq experiments. The total
RNA of each sample was isolated using the Trizol Kit (Promega,
USA) following the manufacturer’s instructions. RNA quality
was verified using a 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA) and checked by RNase free agarose gel
electrophoresis.

The cDNA library from each sample was sequenced on
the Illumina HiSeqTM 4000 platform (Illumina Inc., Hayward,
CA, USA) and sequencing strategy was PE150. For the library
assembly, the adapter sequences and low-quality reads (base
quality < 20, read length < 40 bp) were removed from the raw
reads. The high-quality reads were mapped to the sweet orange
reference genome sequence1 by Tophat2 (Kim et al., 2013). Gene
expression levels were calculated as reads per kilobase of exon
model per million mapped reads (RPKM). For genes with more
than one alternative transcript, the longest transcript was selected
to calculate the RPKM. The sets of DEGs were identified using
edgeR with a |Log2(fold-change)| > 1.0 and an FDR ≤ 0.05.
Clustered profiles with p-value ≤ 0.05 were considered to be
significantly expressed. Then, the DEGs in each profile were
subjected to gene ontology (GO) classifications by using WEGO
(Ye et al., 2006).

qRT-PCR Validation and Expression
Analysis
Quantitative real-time PCR (qRT-PCR) was performed with a
Roche LightCycler 480 Real-Time System (Roche, Switzerland)
to examine expression patterns of 14 selected unigenes. Specific
primers for the DEGs were designed by Primer 3.0 (Koressaar
and Remm, 2007) and are listed in Supplementary Table S1. The
citrus β-actin was used as an internal control to normalize the
expression levels of the target genes among different samples.
The qRT-PCR was conducted with three biological repetitions.
Each biological repetition ran two technical repetitions. All
the qRT-PCR reactions were arranged on a 384-well plate.
qRT-PCR was performed in a 10 µL reaction volume that
contained 5 µL Thunderbird TM SYBR qPCR Mix (TOYOBO,
JAPAN), 1 µL of cDNA, 1 µM gene-specific primers and
3 µL ddH2O. Reactions started with an initial incubation
at 50◦C for 2 min and 95◦C for 10 min and were then
subjected to 40 cycles of 95◦C for 15 s and 60◦C for 60 s
(Liu et al., 2014). The Livak (Livak and Schmittgen, 2001)
method was employed to calculate gene relative expression
levels.

1http://citrus.hzau.edu.cn/orange/

Statistical Analysis
The data were evaluated by Duncan’s multiple test in the ANOVA
program of SAS (SAS Institute, Cary, NC, USA). Differences were
considered significant at P < 0.05.

RESULTS

Leaf Symptoms, Fresh Weight and Boron
Content
After 180 days of B-deficient treatment, the mature leaves
of Ns/To showed more severe chlorosis than those of Ns/Cc
(Figure 1A). Moreover, compared to in the control, the B content
(13.41 mg·kg−1) and fresh weight (0.95 g) showed 81.40 and
25.42% reductions in Ns/To, respectively (Figures 1B,C); in
Ns/Cc the B content (30.91 mg·kg−1) and fresh weight (1.01 g)
showed 69.24 and 22.30% reductions, respectively, compared to
in the control (Figures 1B,C).

Overview of the RNA Sequencing and
Analysis of Differentially Expressed
Genes
The transcriptome changes induced by long-term B-deficient
treatment in Ns leaves were investigated through RNA-Seq
analysis (Table 1). More than 40 million reads were generated
per sample. Of these reads, the Q30 percentage (sequencing error
rate < 1%) was over 94%, and GC content was approximately
45% for the libraries. Among all the libraries, 66.41–70.68% of
unique reads were mapped to the sweet orange genome.

More than 1900 genes were significantly induced during B
deficiency stress, which indicates that dramatic changes in gene
expression were induced inNs/To andNs/Cc. A total of 934 genes
in Ns/To and 642 genes in Ns/Cc were significantly up-regulated
(Figure 2A). Comparison of these two datasets showed that 86
genes overlapped between Ns/To and Ns/Cc (Figure 2A). On
the other hand, genes significantly down-regulated in Ns/Cc and
Ns/To numbered 198 and 282, respectively. However, only four
genes overlapped between them (Figure 2B).

In GO annotation, long-term B deficiency had a significant
effect on 19 biological processes, 11 molecular functions, and
14 cell component metabolic pathways of Ns/To (Figure 3). In
detail, the B deficiency mainly affected the following biological
processes: metabolic processes, single-organism processes,
cellular processes, biological regulation and response to stimuli;
the affected molecular functions included binding and catalytic
activity; the cellular components affected included cells, cell parts,
organelles, membranes and membrane parts. In Ns/Cc, there
were only 17 biological processes, 9 molecular functions and
12 cell component metabolic pathways that were significantly
induced (Figure 3). Specifically, metabolic processes, single-
organism processes, cellular processes and biological regulation
were mainly affected among the biological processes. The main
changes of molecular function and cell components were similar
to those of Ns/To.

To confirm their authenticity, 14 DEGs were randomly
selected to analyze their expression profiles by qRT-PCR. The
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FIGURE 1 | Effect of boron deficiency on the phenotype (A), fresh weight (B), and boron content (C) of different citrus scion-rootstock combinations. Bars with

different letters indicate significant differences (p < 0.05) between different combinations and different treatments. Ns refers to ‘Newhall’ navel orange scion. To refers

to trifoliate orange rootstock. Cc refers to Carrizo citrange rootstock.

TABLE 1 | Statistics of sequencing data of the four libraries.

Sample ID Total read GC content (%) Q30 ratio (%) Unique mapped reads Multiple mapped reads Mapping ratio

To-BS 47316886 44.49% 94.08% 32729974 (69.17%) 715504 (1.51%) 70.68%

To-BD 43408404 44.50% 94.06% 29500685 (67.96%) 581268 (1.34%) 69.30%

Cc-BS 48813366 45.15% 94.16% 33542025 (68.71%) 667288 (1.37%) 70.08%

Cc-BD 40304126 44.40% 94.02% 26222084 (65.06%) 544326 (1.35%) 66.41%

To refers to trifoliate orange rootstock, Cc refers to Carrizo citrange rootstock. BS refers to Boron sufficiency, BD refers to Boron deficiency.

FIGURE 2 | Venn diagrams showing number of genes significantly up-regulated (A) or down-regulated (B) in leaves with the boron-deficient treatment for

180 days. Ns refers to ‘Newhall’ navel orange scion. To refers to trifoliate orange rootstock. Cc refers to Carrizo citrange rootstock.
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FIGURE 3 | Gene Ontology (GO) classification of differentially expressed genes (DEGs). Ns refers to ‘Newhall’ navel orange scion. To refers to trifoliate

orange rootstock. Cc refers to Carrizo citrange rootstock.

results of qRT-PCR analysis showed that the expression profiles of
14DEGswere similar to those obtained through high-throughput
sequencing (Supplementary Table S2). These results confirmed
the reliability of the genome-wide transcriptome profiling
analysis.

Response of Photosynthesis Activity and
Expression of Some Genes to B
Deficiency
Under the B-deficient condition, the Pn and Gs of plant
leaves were significantly affected. The Pn of Ns/To and
Ns/Cc declined 62.97 and 41.16%, respectively (Figure 4A);
the decline of Gs was 58.10 and 38.74%, respectively
(Figure 4B). In contrast, the Ci of Ns/To and Ns/Cc increased
20.95 and 14.82%, respectively, with significant difference
(Figure 4C).

Six genes involved in photosynthesis were identified as being
regulated by B-deficient stress (Table 2). These genes included
Ferredoxin-NADP reductase (Cs1g25510), ATP synthase
gamma chain (Cs2g03080), PsbQ-like protein 2 (Cs4g12280),
Photosystem II reaction center PSB28 protein (Cs5g29040), PSI

reaction center subunit II (Cs5g31180) and Photosystem II core
complex protein (Cs7g09900). The six genes were significantly
down-regulated in Ns/To while only slightly down-regulated in
Ns/Cc.

Response of Chlorophyll and Carotenoid
Content and Their Metabolism-Related
Gene Expression to B Deficiency
Under the B-deficient condition, the chlorophyll content declined
significantly and carotenoid content increased significantly. The
reduction of chlorophyll content was 39.91 and 26.17% in Ns/To
and Ns/Cc, respectively (Figure 5A); the carotenoid content
in Ns/To and Ns/Cc decreased 22.71 and 5.60%, respectively
(Figure 5B).

Analysis of DEGs found that two chlorophyllase protein genes
(Cs5g30790 and Cs5g16830) were significantly up-regulated in
Ns/To and Ns/Cc, respectively, under B-deficient stress (Table 3).
Moreover, the expression levels of two carotenoid synthesis
genes (Cs5g03200 and Cs4g14850) were significantly decreased
in Ns/To, whereas they were not significantly influenced in Ns/Cc
(Table 3).
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FIGURE 4 | Effect of boron deficiency on the net photosynthetic rate (A), stomatal conductance (B), sub-stomatal CO2 concentration (C) of different citrus

scion-rootstock combinations. Bars with different letters indicate significant differences (p < 0.05) between different combinations and different treatments. Ns refers

to ‘Newhall’ navel orange scion. To refers to trifoliate orange rootstock. Cc refers to Carrizo citrange rootstock.

TABLE 2 | List of boron-deficiency-responsive genes involved in

photosynthesis metabolism.

Gene ID Putative function Log2
fold change

Ns/To Ns/Cc

Photosynthesis

Cs1g25510 Ferredoxin-NADP reductase, FNR −1.02 −0.34

Cs2g03080 ATP synthase gamma chain, ATPC −1.17 −0.30

Cs4g12280 PsbQ-like protein 2, PQL2 −1.24 −0.53

Cs5g29040 Photosystem II reaction center PSB28 protein −1.01 −0.61

Cs5g31180 PSI reaction center subunit II, PSAD −1.16 −0.26

Cs7g09900 Photosystem II core complex proteins, PSBY −1.07 −0.41

Ns refers to ‘Newhall’ navel orange scion, To refers to trifoliate orange rootstock,

Cc refers to Carrizo citrange rootstock. Significant differences in relative level are

shown in bold.

Response of Sugar Content and Its
Metabolism-Related Gene Expression to
B Deficiency
B deficiency significantly increased the total sugar content in the
leaves of the two scion-rootstock combinations. In detail, the total
sugar content in Ns/To and Ns/Cc increased 92.27 and 64.37%,
respectively (Figure 6).

The expression levels of three glucose synthesis genes
(Cs4g07840, Cs9g14600, Cs5g01775) were significantly increased
in Ns/To under B-deficient stress, whereas they were not
significantly influenced in Ns/Cc (Table 4).

Response of Lignin Content and Lignin
Synthesis-Related Gene Expression to B
Deficiency
The lignin contents in Ns/To and Ns/Cc were significantly
increased by B-deficient treatment. The lignin contents increased
40.55 and 38.18% in Ns/To and Ns/Cc, respectively (Figure 7).

The expression levels of lignin synthesis-related genes,
including one phenylalanine ammonia-lyase gene (Cs6g11950),
two cinnamyl-alcohol dehydrogenase genes (Cs1g20580,
Cs1g20610) and four peroxidase genes (Cs2g25450, Cs2g28110,
orange1.1t02040, orange1.1t02043), were significantly affected by
B deficiency (Table 5). In Ns/To, the expression levels of six genes
were significantly up-regulated whereas in Ns/Cc, expression
levels for only three genes were significantly up-regulated.

DISCUSSION

In citrus, Cc was reported to be a rootstock more tolerant of
B deficiency than To (Zhou et al., 2013). In addition, as an
important cultivar in China, Ns is hypersensitive to B deficiency
(Sheng et al., 2009; Wang et al., 2014). Previous studies found
that the scion leaf growth, boron content and photosynthetic
parameters in Ns/Cc were less affected by low B treatments than
those in Ns/To (Sheng et al., 2010; Wang et al., 2014). In the
present study, the results also showed that Ns/Cc had better leaf
fresh weight, boron content and photosynthetic parameters than
Ns/To (Figures 1, 4) during long-term B-deficient treatment.

FIGURE 5 | Effect of boron deficiency on the chlorophyll (A) and carotenoid content (B) of different citrus scion-rootstock combinations. Bars with different

letters indicate significant differences (p < 0.05) between different combinations and different treatments. Ns refers to ‘Newhall’ navel orange scion. To refers to

trifoliate orange rootstock. Cc refers to Carrizo citrange rootstock.
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TABLE 3 | List of boron deficiency responsive genes involved in

chlorophyll and carotenoid metabolism.

Gene ID Putative function Log2
fold change

Ns/To Ns/Cc

Chlorophyll metabolism

Cs5g30790 Chlorophyllase, CLH 4.71 0.29

Cs5g16830 Chlorophyllase, CLH 0.38 1.41

Carotenoid metabolism

Cs5g03200 lycopene epsilon-cyclase, CrtR-b −5.51 −0.34

Cs4g14850 β-carotene 3-hydroxylase, CrtL-e −1.34 −0.52

Ns refers to ‘Newhall’ navel orange scion, To refers to trifoliate orange rootstock,

Cc refers to Carrizo citrange rootstock. Significant differences in relative level are

shown in bold.

FIGURE 6 | Effect of boron deficiency on the total soluble sugar

content of different citrus scion-rootstock combinations. Bars with

different letters indicate significant differences (p < 0.05) between different

combinations and different treatments. Ns refers to ‘Newhall’ navel orange

scion. To refers to trifoliate orange rootstock. Cc refers to Carrizo citrange

rootstock.

TABLE 4 | List of boron deficiency responsive genes involved in sugar

metabolism.

Gene ID Putative function Log2
fold change

Ns/To Ns/Cc

Sugar metabolism

Cs4g07840 Raffinose synthase, SIP 1.71 0.26

Cs9g14600 Trehalose-phosphate phosphatase, TPS 2.12 −0.58

Cs5g01775 Trehalase, TREH 2.17 0.07

Ns refers to ‘Newhall’ navel orange scion, To refers to trifoliate orange rootstock,

Cc refers to Carrizo citrange rootstock. Significant differences in relative level are

shown in bold.

Moreover, the present study further revealed that Ns/Cc had
lower total soluble sugar, lignin and carotenoid contents but
higher accumulation of chlorophyll than Ns/To (Figures 5–7).
These results further confirmed that Cc affected its scion better
than To under the B-deficient condition.

FIGURE 7 | Effect of boron deficiency on the lignin content of different

citrus scion-rootstock combinations. Bars with different letters indicate

significant differences (p < 0.05) between different combinations and different

treatments. Ns refers to ‘Newhall’ navel orange scion. To refers to trifoliate

orange rootstock. Cc refers to Carrizo citrange rootstock.

A visible symptom of B-deficient trees is leaf chlorosis in
young leaves (Wang et al., 2015), which is mainly due to the
reduction of chlorophyll content (Han et al., 2008, 2009). The
present study showed that chlorophyll content was significantly
reduced by B deficiency in both rootstock-scion combinations
(Figure 5A). However, the reduction of chlorophyll content
in Ns/Cc was less than that in Ns/To (Figure 5A), and the
expression of the chlorophyll degradation gene, CLH, was
significantly lower in Ns/Cc than that in Ns/To (Table 3). It could
explain why chlorosis was lighter in the leaves of Ns/Cc than
Ns/To.

B deficiency not only causes leaf chlorosis but also reduces
the content of carotenoids (Moustafafarag et al., 2015).
Carotenoids, which include carotenes and xanthophylls, are also
important photosynthetic pigments (Zarcotejada et al., 2013).
Carotenoids are physiologically relevant because of their role
in photosynthesis and participation in light harvesting, energy
transfer, quenching and photoprotection (Frank and Cogdell,
1996; Ritz et al., 2000). Thus, leaf chlorosis and reduction of

TABLE 5 | List of boron deficiency responsive genes involved in lignin

synthesis.

Gene ID Putative function Log2
fold change

Ns/To Ns/Cc

Lignin synthesis

Cs6g11950 Phenylalanine ammonia-lyase, PAL 2.83 2.41

Cs1g20580 Cinnamyl-alcohol dehydrogenase, CAD 1.46 0.41

Cs1g20610 Cinnamyl-alcohol dehydrogenase, CAD 3.25 −0.99

Cs2g28110 Peroxidase, POD 0.67 2.33

Orange1.1t02041 Peroxidase, POD 2.40 1.52

Orange1.1t02040 Peroxidase, POD 2.41 −0.56

Orange1.1t02043 Peroxidase, POD 2.94 −0.88

Ns refers to ‘Newhall’ navel orange scion, To refers to trifoliate orange rootstock,

Cc refers to Carrizo citrange rootstock. Significant differences in relative level are

shown in bold.
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FIGURE 8 | Overview of major pathways and their expression profiles for the effect of boron deficiency on different citrus scion-rootstock

combinations. (A–E) Indicate the expression profiles of the DEGs involved in chlorophyll decomposition, photosynthesis, glucose synthesis, carotenoid synthesis,

and lignin biosynthesis, respectively. (F) Phenotype of different citrus scion-rootstock combinations under 180 days of boron-deficient treatment.

carotenoids will directly lead to a decrease in photosynthesis
(Wang et al., 2015). In this study, it was found that Ns/Cc had
a lower reduction of Pn and Gs than Ns/To (Figures 4A–C),
which suggested that the photosynthesis ability of Ns/Cc was
stronger than that of Ns/To. Meanwhile, the expression levels of
photosynthesis-related genes were significantly down-regulated
in Ns/To while they were slightly down-regulated in Ns/Cc
(Table 2). These results suggested that B deficiency reduced
photosynthesis ability through down-regulating the expression of
photosynthesis-related genes. On the other hand, the carotenoid
content remarkably decreased in Ns/To (Figure 5B). The
carotenoid synthesis-related gene were also significantly down-
regulated in Ns/To (Table 3). Together, the significant decrease
in carotenoid synthesis-related gene and photosynthesis-related
gene transcript levels in Ns/To at least partially explained the
reason for the lower photosynthesis ability of Ns/To than that of
Ns/Cc.

The decrease of photosynthesis ability is also related to the
over-accumulation of carbohydrates in leaves because a large
amount of carbohydrates accumulated in the leaves produces

feedback inhibition of net photosynthesis (Dell and Huang, 1997;
Brown et al., 2002; Wang et al., 2015). The present study found
that B deficiency led to excessive accumulation of carbohydrates
in scion leaves; moreover, Ns/To had higher carbohydrate
content than Ns/Cc (Figure 6). These results further explain the
reason for the lower photosynthesis ability of Ns/To than that of
Ns/Cc. In addition, this study also found that the expression levels
of glucose synthesis-related genes were significantly up-regulated
in Ns/To while there were no significant changes in Ns/Cc
(Table 4), suggesting that different responses to B deficiency
at the transcript level is possibly the reason for the different
accumulation of carbohydrates between the leaves of Ns/To and
Ns/Cc.

The typical symptom of long-term B deficiency in citrus
is severe suberification in mature leaves (Yang et al., 2013;
Zhou et al., 2013). This suberification is mainly due to high
accumulation of lignin. Previous research on citrus showed that
the expression of lignin synthesis-related genes (CsPAL, CsCAD,
and CsPOD) increased drastically more in To than in Cc under
B-deficient treatments (Yang et al., 2013; Zhou et al., 2014).
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In this study, the expression levels of several lignin
synthesis-related genes were significantly affected by B deficiency.
The expression levels of six genes were significantly up-regulated
in Ns/To, while the expression levels of only three genes were
significantly up-regulated in Ns/Cc (Table 5), which partially
explains why the suberification of Ns/To was more severe than
that of Ns/Cc (Figure 1A).

In a previous study, the investigation of differences in B
distribution and forms between the two combinations (Ns/To
and Ns/Cc) found that the B content of buds and leaves
was significantly higher in Ns/Cc plants than in Ns/To plants
(Sheng et al., 2009; Wang et al., 2014). The ratio of available
B was significantly lower in stems and roots of Cc-grafted
than To-grafted plants under B-deficient conditions (Wang
et al., 2014). In addition, a number of differentially expressed
B transporter genes were identified in either Cc or To under
short-term B-deficient treatments. The aquaporins genes (PIPs,
TIPs) were up-regulated in Cc, but only PIP1;3 at 24 h and TIP2;2
at 12 h were induced significantly by B-deficient stress in To
(Zhou et al., 2014). Transcriptomic and physiological analysis
indicated that Cc had stronger B transport capacity and higher B
utilization efficiency than To. Therefore, in this study, the leaves
of Ns/Cc accumulated more B (Figure 1B). The higher B content
in Ns/Cc can regulate the expression of some genes in some
metabolic pathways, for example, genes involved in chlorophyll
decomposition (CsCLH) (Figure 8A), photosynthesis ability
(Figure 8B), glucose synthesis (CsSIP, CsCWINV, CsTREH, and
CsTPS) (Figure 8C), carotenoid synthesis (CsCrtR-b, CsCrtL-e)
(Figure 8D), and lignin synthesis (CsPAL, CsPOD, and CsCAD)
(Figure 8E). Ns/Cc had fewer up-regulated expression levels of
chlorophyll decomposition, sugar synthesis, and lignin synthesis
genes than Ns/To, which contributed to Ns/Cc more adaptive
than Ns/To to B-deficiency condition (Figure 8F).

CONCLUSION

The present study confirmed that Ns/Cc had higher B content
but lower reduction of fresh weight and photosynthesis ability
than Ns/To. Moreover, this study revealed that under B-deficient
treatments Ns/Cc had lower total soluble sugar and lignin but

higher accumulation of chlorophyll and carotenoid contents than
Ns/To. On the other hand, genes involved in photosynthesis,
chlorophyll decomposition, carotenoid synthesis, sugar synthesis,
and lignin metabolism were expressed differently between
Ns/To and Ns/Cc. These results partially explained why
Cc has a larger B deficiency tolerance influence on Ns
than To. Hence, this study provided further information
for understanding the molecular mechanisms of the different
responses of scion-rootstock combinations in citrus to B
deficiency stress.
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