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ABSTRACT

In breast cancer, it is unclear the functional modifications at a transcriptomic 
level that are associated with the evolution from epithelial cells and ductal carcinoma 

in situ (DCIS) to basal-like tumors. By applying weighted gene co-expression network 

analysis (WGCNA), we identified 17 gene co-expression modules in normal, DCIS and 
basal-like tumor samples. We then correlated the expression pattern of these gene 

modules with disease progression from normal to basal-like tumours and found eight 

modules exhibiting a high and statistically significant correlation. M4 included genes 
mainly related to cell cycle/division and DNA replication like CCNA2 or CDK1. The M7 
module included genes linked with the immune response showing top hub genes such 

as CD86 or PTPRC. M10 was found specifically correlated to DCIS, but not to basal-like 
tumor samples, and showed enrichment in ubiquitination or ubiquitin-like processes. 

We observed that genes in some of these modules were associated with clinical 

outcome and/or represented druggable opportunities, including AURKA, AURKB, 

PLK1, MCM2, CDK1, YWHAE, HSP90AB1, LCK, or those targeting ubiquitination. In 
conclusion, we describe relevant gene modules related to biological functions that 

can influence survival and be targeted pharmacologically.   
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INTRODUCTION

Cancer is an evolutionary disease where the 

accumulation of genetic alterations leads epithelial cells 

to transform to premalignant lesions that ultimately may 

evolve to tumor cells [1, 2]. 

Accumulation of molecular alterations over time 

produces a gain of different biological functions that 

permits cells to proliferate, avoid programmed death, 

migrate or seed in distant tissue [3]. Ultimately, cells that 

seed and proliferate in distant organs form metastases 

that compromise patient life. Among these functions, 

deregulation of cell division and genomic instability are 

key characteristics of transformed cells and indeed several 

therapies aiming to inhibit these functions have reached 

the clinical setting [4]. Examples are chemotherapies that 

target the mitotic process or PARP inhibitors that act on 

the DNA repair machinery [4, 5]. Similarly, targeting 

of intermediate signaling nodes that are constitutively 

active or components involved in the regulation of 

protein degradation, have gained clinical approval 

[4, 5]. Cell metabolism including lipid metabolism 

are also biological functions that are necessary for the 

survival of tumoral cells [5]. In addition to the described 

alterations, the host immune response to cancer and the 

tumor microenvironment play a role in cancer initiation 
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and progression [6, 7]. Finally evolution of cancer is also 

controlled by the interaction of transformed cells with 

the surrounding stroma [6, 7]. Indeed, agents targeting 

the tumor microenvironment and those that boost the 

immune response have reached the clinical practice [3, 8, 

9]. The acquisition of the mentioned deregulated functions 

is produced at different time points in the evolution of 

cancer, so the identification of druggable options against 
these alterations could undoubtedly open avenues for the 

design of novel therapies. 

Ductal carcinoma in situ (DCIS) is a lesion that 

can become malignant over time. It is considered as 

an intermediate step between breast cancer and non-

transformed breast epithelial cells [10]. Indeed, in many 

diagnosis of breast cancer, presence of DCIS and invasive 

cancer coexist in the same specimen suggesting that DCIS 

is a preinvasive situation [10]. Therefore, the general 

treatment approach for this entity is surgical resection. 

However, it is not clear that all DCIS will progress to 

invasive tumors and it has been reported that some DCIS 

could spontaneously disappear [10, 11]. The heterogeneity 

of this entity highlights the importance for the identification 
of biological functions that could be used as predictors 

of progression, as this could help to optimize therapeutic 

options for these patients [10, 12]. 

DCIS is characterized by the presence of estrogen 

receptors or HER2 overexpression. However not all breast 

invasive carcinomas express both receptors. Indeed 15% of 

breast cancers do not express these receptors and are called 

triple negative cancer breast tumors (TNBC) [4, 13]. In 

this context, the identification of functions that are shared 
by DCIS and TNBC or its genomic counterpart, the basal-

like subtype, could bring light into the common process of 

malignant transformation. In addition, it could also help to 

identify specific deregulated functions restricted to DCIS.
Weighted gene co-expression network analysis 

(WGCNA) represents a systems biology approach for 

studying changes across transcriptomes. It has been used 

to bring light into the pathogenesis of several human 

diseases by identifying gene modules correlated with 

clinical features [14] including cancer [15, 16].

In our article, we applied WGCNA to public datasets 

in order to reveal gene modules associated to DCIS and 

basal like tumors. Our study identifies several altered 
functions and key genes that are present in the evolution 

of basal like tumors from DCIS and non-transformed cells, 

opening the possibility to exploit them therapeutically or 

as biomarkers for outcome analysis. 

RESULTS

Datasets, batch effect and principal component 

analysis

We compiled transcriptomic microarray data from 

five public datasets from epithelial breast, DCIS and basal-

like tumors. In order to avoid dealing with large batch 

confounding effects, we selected only datasets performed 

on the same microarray platform. We normalized all 

chips together and performed relative log expression 

(RLE) plots to determine noticeable remaining batch 

differences (Figure 1A). After normalization of chips from 

all datasets, we observed expression values with similar 

median and deviation, with no systematic and observable 

batch differences. We next assessed the transcriptomic 

relationships among samples by means of a principal 

component analysis (Figure 1B). We observed a clear 

separation between normal tissue samples, DCIS and basal 

like tumors along the PC1 axis, regardless of the dataset 

of origin. DCIS samples were placed between normal 

and basal-like samples. PC2 captured a proportion of 

variance explained by unknown factors that could include 

differences in batches. To confirm these observations, we 
applied a multiple lineal model to analyze the relationship 

between each of the first 10 principal components with the 
variables ‘disease’ and ‘dataset’ (Supplementary Figure 1). 

For PC1, the partial coefficients were statistically 
significant only for diagnostic categories and not for the 
different datasets. Dataset categories were significantly 
correlated to PC2 and others. Clustering analysis on 

samples based on PC1 values (Figure 1C) showed 

clustering by disease, mainly normal tissue and basal-like 

tumors, regardless of the dataset, except for those two 

datasets containing samples for one disease diagnostic 

only. Overall these analyses indicate that the major factor 

structuring transcriptomic variance among these samples 

correspond to disease. The combined datasets were thus 

considered suitable for the following co-expression 

network analysis.

Gene co-expression modules correlated with 

breast epithelial tissue, DCIS and basal-like 

tumors

Using top variable genes in the combined dataset, 

we constructed a gene co-expression network by means 

of WGNCA. We identified 17 uncorrelated modules 
(Figure 2). We calculated each module eigengene, which 

reflects the expression pattern of all genes in a given 
module across samples by computing the first principal 
component. As we showed in the previous section, the first 
principal component was highly related to disease stages 

and not to differences among batches. We then correlated 

each module eigengene with normal/DCIS and normal/

basal-like tumors independently (Figure 3). Eight modules 

(M1, M2, M4, M5, M6, M8, M9 and M15) exhibited a 

statistically significant correlation, considering a minimal 
r > 0.6 (Supplementary Figure 2). M4, M6, M9 and M15 

showed a positive correlation in which genes tended to 

be up-regulated, meanwhile M1, M5 and M8 showed a 

negative correlation with genes mainly downregulated. 

Modules with a less strong correlation (r > 0.5) included, 
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M2, M3, M7, M10 and M16 (Figure 3 and Table 1). 

Other modules showed significant association with some 
disease stage, but yet lower correlation values (Figure 3). 

M0-grey appeared also associated with disease. These is 

not surprising since it contains more than 3000 gene not 

classified in modules and we have already shown how the 
whole transcriptome PC1 is correlated to disease.

By comparing DCIS against basal-like tumors 

we found a subset of the mentioned modules to be 

progressively associated with the two assessed stages, 

showing intermediate eigengene values in DCIS between 

normal and basal-like samples. This was the case for 

modules M1, M4 and M5. Also, interestingly, other 

modules suggested specific changes in DCIS samples not 
shared by basal-like tumors, particularly in M2 and M10. 

Finally, we observed modules that apparently were only 

dysregulated in basal-like samples, such as M15 or M9. 

Genes within a module that show highest correlation 

with the module’s eigengenes can be considered hub genes 

[17]. A list of the top hub genes in each of the above-

mentioned modules is presented in Table 1.

Since we had a lower DCIS sample size we decided 

to replicate DCIS findings using an alternative, yet also 
small, dataset including 6 normal and 19 DCIS samples 

analyzed in a different microarray platform. We calculated 

the eigengenes of the previous gene modules produced 

by grouping the corresponding genes, when present, in 

this new dataset. Modules eigengenes were highly and 

consistently correlated with disease in modules M4, 

M5, M10 and M12. Other previously disease-associated 

Figure 1: Global analysis of transcriptomes among samples. In the whole panel, colors indicate the different public GEO datasets 

used and shape indicates clinical diagnostic. (A) Boxplot for all probes normalized relative log expression (RLE) values indicating no 

major difference between datasets. (B) PCA for top variable genes showing the first 2 principal components for all samples in the combined 
dataset, showing PC1 majorly representing differences in diagnostic. (C) Clustering analysis of previous PC1 values confirming that 
clusters mainly reflect diagnostic over differences batches.
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modules showed non-significant or different trends in this 
second dataset for DCIS (Supplementary Figure 2). 

Overlapping of genes with previous published 

studies 

We set up to compare our findings with published 
analysis contrasting normal and DCIS and/or basal-like 

tumors. We compared the genes found in our modules with 

genes previously reported to be de-regulated in DCIS in 

two separate studies. In particular, we gathered a list of up-

regulated and down-regulated genes from Lee, et al. 2012 

[18] analyzing the progression from DCIS to invasive breast 

cancer. In our filtered datasets, we evaluated 62 (39 up- and 
19 down-regulated) of the 74 genes that were reported [18]. 

Their reported up-regulated genes were found enriched 

in our M1 and M11 modules (Fisher P-value < 0.05) 

(Supplementary Table 1). The two modules are composed 

by genes mainly up-regulated in DCIS, basal samples or 

both. Notably 24 of the 39 up-regulated genes were found 

in the M11 module, mainly representing molecules related 

to cell adhesion and extracellular matrix. Six genes related 

to the immune response were also found in our M7 module 

(Supplementary Table 1). We then studied the overlap 

between our modules and a set of >1000 genes with high 

discriminant coefficients between different stages of breast 

cancer progression, described in Ma XJ et al., 2003 [19]. 

We found a significant overlap (Fisher P-value < 0.05) in 

M4 (cell cycle) and M5 (lipid metabolism) modules, which 

were the top two modules in terms of consistency across 

datasets and strength of association with breast cancer 

(Supplementary Table 1). We also compared our data with 

the result of applying WGNCA on microarrays derived 

from different breast cancers in Clarke et al., 2013 [20]. 

The authors of this study identified two co-expression 
modules associated to survival in basal-like tumor samples. 

We found that genes in one of their modules significantly 
overlapped with genes in our M7-black and M14-salmon 

modules (Supplementary Table 1). The overlap with M7-

black was notable, with 139 of the 225 genes. The other 

module in Clarke et al., 2013 [20] significantly overlapped 
with four of our modules. The top ones being M9-darkgrey 

and M4-turquoise, both of them strongly correlated with the 

basal-like stage in the present study. 

Finally, we downloaded and processed expression 

data from the Metabric study [21–23] (see material and 

methods section). We compared expression levels of 

genes in each module between normal and tumors samples 

(Supplementary Table 2). With the exception of the M14 

signature, each module had a significant expression 
change when comparing the normal and cancer samples. 

We have to note, that although significant, the expression 

Figure 2: Weighted gene co-expression network analysis of the entire dataset transcriptome using top variable genes 
identifies 17 modules. Unassigned genes were labelled in grey. Dendrogram obtained by hierarchical clustering of genes based on their 

topological overlap is shown at the top. Rows indicate gene correlation values with normal vs DCIS, normal vs basal and DCIS vs basal 

(blue indicating negative, and red positive, correlations). 
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fold change was less than 5% for 7 of the 17 gene sets. 

The highest up-regulation was present in the green M5, 

M9, and M2 signatures. At the same time, only the M1 and 

M5 signatures had a lower expression in tumor samples. 

This direction of change was consistent in our original 

dataset in which M1 and M5 showed the strongest down-

regulation in pathological samples compared to normal 

tissue (Supplementary Table 2). 

Gene ontology enrichment analyses 

To get insights into the biological functions that are 

implicated in the evolution of non-transformed cells into 

basal-like breast cancer, we performed Gene Ontology 

(GO) enrichment analysis focused on biological process 

categories for genes in each module (shortly summarized 

in Table 1, fully detailed in Supplementary Table 3, and 

illustrated in Supplementary Figure 3 using ReviGO).

M1 genes, mainly downregulated in basal-like 

tumors, were overrepresented in categories related to 

angiogenesis and cell adhesion, among others. M2, mostly 

downregulated in basal-like samples, contained genes 

involved in gland development, including among others 

3 genes related to lactation (ERBB4, XBP1, ATP7B). 

M3 was a small module of mainly down-regulated 

genes enriched in vesicle transport categories. The M4 

module mainly included genes that were progressively 

upregulated in DCIS and basal-like tumors and were 

related to cell cycle, nuclear division, DNA replication 

and cell division (Supplementary Figure 3). Genes within 

M5 module were progressively changing expression 

from normal to DCIS to basal-like stages and main over-

represented functions included lipid storage and lipid 

metabolism, among others (Supplementary Figure 3). 

An interesting enriched function observed in this module 

was the execution phase of apoptosis. Lipid metabolism 

was also enriched in M6, but in this case genes were 

mostly up-regulated (Supplementary Figure 3). An up-

regulation of genes involved in the immune response was 

observed in the M7 module (Supplementary Figure 3).  

Relevant genes in this function included CD86, essential 

for T-lymphocyte proliferation and interleukin-2 

production, by binding to CTLA-4; or PTPRC a positive 

regulator of T-cell coactivation upon binding to DPP4 

(Table 1). M8 contained and enrichment of genes related 

with the electron respiratory chain (Supplementary 

Figure 3). Functions included in the M9 module, mainly 

composed by upregulated genes in basal-like tumors, 

Figure 3: Boxplot representation of module eigengene values for the different groups.
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included establishment of protein location, small GTPase 

mediated signal transduction or cellular component 

organization, among others (Supplementary Figure 3).  

M10, specifically upregulated in DCIS samples showed 
enrichment in ubiquitination or ubiquitin-like processes 

and the transforming growth factor beta (TGFbeta) 

pathway, among others. M15 genes, mainly upregulated 

in basal-like tumors, were generally enriched in 

metabolism categories including pentose-related processes 

(Supplementary Figure 3). Finally, M12 was found 

enriched in functions related to cell adhesion, vascular 

development and extracellular matrix.

Protein-protein interaction networks

To further characterize functional pathways 

within modules, we intersected genes in modules with 

the physical protein-protein interactions (PPI) network 

from BioGrid. Subnetworks of genes were obtained 

(Table 1) using the function induced subgraph from the 

R library rTRM [24] and networks were visualized using 

Cytoscape [25]. We first focused on the M7 module as 
it is associated with immune response, and therapies to 

modulate the immune system are currently approved and 

deeply investigated in several solid tumors. Figure 4A 

shows the network in which HLA-C, ISG15 and STAT1 

play a relevant role as the highest connected nodes. 

The angiogenesis-related module M1 produced a PPI 

subnetworks mainly nucleated around MEOX2, CAV1 and 

TCF4 (Supplementary Figure 4).

Next, we focused on the M9 module where protein 

location and cellular component organization were the 

principal enriched functions. PPI subnetwork identified 
HSP90AB1, YWHAE, PCBP1 and ARRB2 as the 

key interaction proteins (Figure 4B). This observation 

highlights the importance of protein organization in 

Table 1: Biological features of selected gene co-expression modules. For DCIS, we only report observations that are 

replicated in the two DCIS datasets analyzed

Module
Stage and main 

direction
#Genes Top 5 hubs

Biological 

Function

PPI 

network
PPI hubs

M1-Green
Normal > DCIS 

> Basal
300

EBF1, AKAP12, 

GNG11, MRGPRF, 

OLFML1

Angiogenesis 57
MEOX2, CAV1, 

TCF4

M2-Brown Normal > Basal 136
MLPH, ANKRD30A, 

FOXA1, AGR2, ERBB4

Gland 

development
18 SPDEF, RAB27B

M3-Darkred
Normal > (DCIS 

= Basal)
31

CCDC144CP, MEFV, 

PGM5P2, OPHN1, 

FRG1BP

Transport 0

M4-Turquoise
Normal < DCIS 

< Basal
434

CCNA2, MAD2L1, 

TPX2, UBE2T, CDK1
Cell cycle 324

MCM2, PCNA, 

AURKA, CDK1

M5-Yellow
Normal > DCIS 

> Basal
122

GPD1, CIDEC, PCK1, 

TUSC5, LEP

Lipid 

metabolism
13 ALDOC

M6-Purple
Normal < (DCIS 

= Basal)
73

CHMP2B, SMIM15, 

NRBF2, TMEM251, 

UBE2G1

Lipid 

metabolism
8

M7-Black Normal < Basal 225
CD86, FYB, SAMSN1, 

TFEC, PTPRC

Immune 

response
86

ISG15, STAT1, 

HLA-C

M8-

Darkturquoise

Normal > (DCIS 

= Basal)
26

STARD9, SCN3B, 

ACSM2A, MEG3, HDC

Respiratory 

chain
4

M9-Darkgrey Normal < Basal 67

YWHAE, KLHDC3, 

TUBB, SLC25A39, 

PPP2R1A

Protein 

localization
29

ARRB2, 

YWHAE, 

HSP90AB1

M10-Cyan
Normal < DCIS 

> Basal
46

DMXL1, RNF111, 

ATP8B1, FAM179B, 

CETN3

Protein 

ubiquitination
0

M15-

Royalblue
Normal < Basal 34

PFN1, RPS7, ERI3, 

TOMM20, SSB

Metabolism 

and RNA 

processing

9 RPS7
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tumors to maintain the survival of cancer cells. In the 

M4 we observed an important number of interacting 

proteins linked with cell division and DNA replication 

such as MCM2, PCNA, AURKA and CDC2, among 

others (Supplementary Figure 4). No first order physical 
interactions were retrieved from M10 module. 

Druggable opportunities and association with 

clinical outcome

Next, we explored druggable proteins within the 

most relevant PPI networks. Druggable proteins within 

the M4 network include cell cycle kinases and regulators 

such as AURKA, AURKB, PLK1, MCM2 or CDK1, 

among others. For M9 module YWHAE and HSP90AB1 

can be pharmacologically inhibited, and for LCK in the 

M7 module. Of note, compounds against pathways within 

a module are currently under evaluation as those targeting 

ubiquitination (ISG15 gene) or STAT1, as observed in 

the M7 module. Supplementary Table 4 describes the 

complete list of available drugs against the key network 

connecting proteins and top hub genes for each module.

Finally, we explored the association of the genes 

in each module with clinical outcome of patients in the 

Metabric dataset [21]. We hypothesized that those genes 

linked with detrimental outcome could have a relevant role 

in the oncogenic process and by contrary, if linked with 

beneficial outcome could be associated with a host defense 
mechanism. Overall survival was computed using samples 

provided by the Metabric study [21]. The best performing 

gene sets capable to influence survival were the M2, M9, 
M4, and M8 gene sets. In these, when plotting the p-values 

versus the cutoff, almost all cutoff values delivered a 

significant correlation (Supplementary Figure 5). Higher 
expression of the signature correlated to better survival in 

the M2 and M8 modules, while lower expression of the 

signature correlated to better survival in the M9 and M4 

signatures. Some signatures including the M14, M17, M11, 

M13, M3 and M12 were not prognostic. Kaplan-Meier 

survival plots for a selected set of signatures is presented in 

Figure 5, and the achieved hazard rate and p-values for each 

dataset is displayed in Supplementary Table 5. 

DISCUSSION

In the present article, we describe modules of genes 

that change in DCIS and basal-like tumors with respect 

to normal breast. Our intention was to identify biological 

functions and networks of interacting proteins, relevant 

in the evolution to basal-like breast cancers that could 

potentially be inhibited pharmacologically. In addition, 

we observed that genes contained within some of these 

functions were strongly linked with clinical outcome. 

M1, M2, M3 and M5 genes, where mainly 

downregulated in basal-like tumors over representing 

categories related to angiogenesis, cell adhesion, gland 

development, vesicle transport and lipid storage or 

metabolism. Basal-like tumors are characterized by its 

dedifferentiation and metastatic capacity, with a specific 
pattern of relapse [26]. Therefore, downregulation of genes 

Figure 4: Protein-protein interaction network based on direct physical interaction among genes in two different 
modules (M7 in a, and M9 in b). Darker green in nodes indicates higher degree.
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related to cell adhesion or gland development seems to be 

in line with the current process of cancer progression. The 

global downregulation of the module enriched in angiogenic 

related genes confirm the limited role of angiogenesis in 
breast cancer, reinforcing the lack of efficacy observed 
with antiangiogenic therapies in this disease [4, 27]. An 

interesting function is the upregulation of genes related to 

the lipid metabolism, as observed in the M6 module. This 

finding is in line with recent studies describing the role of 
lipid metabolism genes in association with the initiation of 

metastases [28]. 

In the module 4 we identified genes that were 
progressively upregulated in DCIS and basal-like tumors 

and were mainly related to cell cycle/division, and 

DNA replication. This finding is not surprising as basal-
like tumors have a high proliferation rate and present 

genomic instability, therefore agents targeting mitosis 

and producing DNA damage have clinical efficacy [4]. Of 
note, some of the genes codify for proteins that have a 

relevant presence in the PPI network analysis like PLK1, 

AURKA/B, CDK1, MCM2 or PCNA. Interestingly 

some are druggable kinases involved in the regulation of 

mitosis like PLK1 or AURKA/B. It should be mentioned 

that drugs against some of these proteins are currently in 

clinical development in different solid tumors, but not in 

basal-like tumors [29]. It could be expected that some of 

these kinases were associated with poor clinical outcome. 

Consistently with this idea, our survival curves showed 

that relatively low expression of genes in M4 predicts 

increased survival.

In module 7 we observed upregulation of genes 

related to the immune system. Activation of the immune 

system is a therapeutic strategy against cancer that has 

reached the clinical setting with the incorporation of 

Figure 5: Kaplan-Meyer survival curves for modules showing the strongest differences between patients with high 
and low expression values in the Metabric dataset.
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check-point inhibitors to the current armamentarium 

[8, 9, 30]. Check point inhibitors pretend to activate the 

immune system provoking a response against the tumor 

[30]. In this context, one of the top hubs includes CD86 

that is the ligand of the cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4) [31]. Finally, the identification of HLA 
components suggests that this family of proteins can have 

a relevant role in the activation of the immune response by 

presenting antigens to effector lymphocytes [31]. Globally, 

our findings reinforced the role of the immune system in 
basal-like tumors, supporting the current development of 

this type of agents in this indication.

In M9 module we identified upregulated genes in 
basal-like tumors related to protein location, small GTPase 

mediated signal transduction or cellular component 

organization. Protein location is essential when cells have a 

high proliferating rate like is the case of basal-like tumors 

[3]. In line with this, lower expression was associated 

with better survival. This module was found also highly 

correlated in DCIS in the replica dataset. The PPI network 

analysis reveals relevant proteins included in this function 

like HSP90, YWHAE, or proteins that act on ubiquitination. 

Deubiquitinating agents are current in preclinical stage of 

drug development, and HSP90 inhibitors are in different 

stages of clinical development [32]. Of note ubiquitination 

or ubiquitin-like processes where specifically upregulated in 
DCIS as observed in module M10. 

M4 and M9 genes were expressed at lower levels by 

patients with higher survival rates. This makes of them a 

logical therapeutic target for inhibition. Indeed, we found 

druggable opportunities among proteins observed in the 

PPI network analyses for these two modules. Some targets 

included AURKA, AURKB, PLK1, MCM2 or CDK1, from 

M4, and YWHAE and HSP90AB1 in the M9 module. 

In conclusion, we have identified modules of 
genes that have changed between normal breast tissue, 

DCIS and basal-like tumors. Our findings identify novel 
functions at a transcriptomic level which are potentially 

druggable, and therefore suggest therapeutic opportunities. 

The identification of distinct cellular functions such 
as regulation of protein location, activation of the 

immune system, cell cycle or DNA replication suggest 

potential therapeutic combinations, like the concomitant 

administration of checkpoint and HSP90 inhibitors or 

deubiquitinating agents; or agents acting on cell division or 

DNA with chaperones or immunomodulators. Evaluation 

of these combinations in animal models is a future step.

MATERIALS AND METHODS

Selection of datasets from public databases

We screened the Gene Expression Omnibus (GEO) 

database from NCBI for raw microarray data derived 

from samples of normal epithelial breast tissue, DCIS and 

basal-like tumors. To avoid difficulties produced by cross-

platform comparisons, we mined datasets using the same 

chip platform. We downloaded in total 29 normal tissue, 

16 DCIS and 59 basal-like tumor samples from five studies 
with the following GEO accession numbers: GSE21422, 

GSE26910, GSE3744, GSE3893 and GSE6519, all of 

them loaded onto an Affymetrix Human Genome U133 

Plus 2.0 Array. We downloaded and additional dataset 

(GSE33692) of 6 normal tissue and 19 DCIS to check 

replicability. This second dataset was produced using the 

Affymetrix Human Exon 1.0 ST Array. 

Data normalization and weighted gene co-

expression network analysis (WGCNA)

Microarray data analyses were performed using R 

Bioconductor packages. CEL files we read and normalized 
together using the robust multichip average (rma) 

algorithm [33]. Expression of all probes for each gene 

were collapsed by calculating the average value using 

the collapseRows function [34]. Standard deviation of 

expression among samples was calculated for each gene 

and we retained for further analysis only those belonging 

to the last quartile. Principal component analysis was 

performed using the R function prcomp. We constructed 

a gene co-expression network with all samples using the 

R implementation of the WGCNA method [35]. A gene 

co-expression network was constructed from a Pearson 

correlation matrix between all genes that was then 

converted into an unsigned adjacency matrix applying 

a power function with a customizable power parameter. 

We used a soft-power threshold of 6 after assessing 

the goodness of fit into a scale-free topology network 
trying a range of values. Modules were identified using 
hierarchical clustering of a dissimilarity measure derived 

from a topological overlap matrix (TOM) [17]. We 

calculated module eigengenes (first principal component 
of the modules gene expression across samples) and 

highly correlated genes (Pearson R >/=0.8) were merged 

obtaining a total of 17 modules labelled with colors and 

numbers. Genes not assigned to any module were labeled 

as ‘M0-grey’.

Gene ontology enrichment analysis and protein-

protein interaction network

Gene Ontology enrichment analysis was performed 

using GOstats [36]. Physical protein-protein interactions 

were obtained from BioGrid latest release. Subnetworks of 

genes were obtained using the function induced_subgraph 

implemented in R package rTRM [24]. Network analysis 

and visualization were performed using Cytoscape [25].

Processing of the metabric dataset

All together 1,988 cancer samples measured by 

Illumina gene chips published in the Metabric project 
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were obtained from the European Genome-phenome 

Archive (EGA) (https://www.ebi.ac.uk/ega/) [23]. 

As a substitute of using the processed dataset, the 

entire dataset including each individual arrays was re-

processed. In this, the raw expression data were imported 

into R (https://www.r-project.org/) and summarized 

using the beadarray package [37]. For annotation, the 

illuminaHumanv3 database of Bioconductor was used 

(http://www.bioconductor.org). All unmapped probes 

were removed during summarization (n = 319). At 

the next step, a quantile normalization was completed 

using the preprocessCore package (https://github.

com/bmbolstad/preprocessCore). Finally, a scaling 

normalization was performed to set the mean expression 

on each array to a pre-defined value. Several genes had 
multiple probes for a given gene–in these cases the one 

with the highest span of detection range was utilized.

Association with clinical outcome 

Survival was analyzed by Cox regression, and 

Kaplan-Meier plots were drawn to visualize the results. 

Cox regression analysis was performed using the 

“survival” R package v2.38 downloaded from CRAN 

(https://cran.r-project.org/web/packages/survival/index.

html). Kaplan-Meier plots were generated applying 

the “surviplot” R package v0.0.7 (http://www.cbs.dtu.

dk/~eklund/surviplot/). Cutoff value for the survival 

analysis was determined by running the analysis using 

each percentile between the lower and upper quartiles of 

expression as thresholds to dichotomize the patients as 

described previously [38]. There were all together 144 

normal samples in addition to the cancer samples. Gene 

expression comparing normal and tumor samples was 

computed by a Mann-Whitney test.

Gene-drug interactions

For the evaluation of compounds that could 

potentially interact with the identified genes we used the 
Drug Gene Interaction Database (DGIdb) (www.dgidb. 

genome.wustl.edu).
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