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Gene expression is an important phenotype that informs about
genetic and environmental effects on cellular state. Many studies
have previously identified genetic variants for gene expression phe-
notypes using custom and commercially available microarrays1–5.
Second generation sequencing technologies are now providing
unprecedented access to the fine structure of the transcriptome6–14.
We have sequenced the mRNA fraction of the transcriptome in 60
extended HapMap individuals of European descent and have com-
bined these data with genetic variants from the HapMap3 project15.
We have quantified exon abundance based on read depth and have
also developed methods to quantify whole transcript abundance.
We have found that approximately 10 million reads of sequencing
can provide access to the same dynamic range as arrays with better
quantification of alternative and highly abundant transcripts.
Correlation with SNPs (small nucleotide polymorphisms) leads to
a larger discovery of eQTLs (expression quantitative trait loci) than
with arrays. We also detect a substantial number of variants that
influence the structure of mature transcripts indicating variants
responsible for alternative splicing. Finally, measures of allele-
specific expression allowed the identification of rare eQTLs and
allelic differences in transcript structure. This analysis shows that
high throughput sequencing technologies reveal new properties of
genetic effects on the transcriptome and allow the exploration of
genetic effects in cellular processes.

Genetic variation in gene expression is an important determinant of
human phenotypic variation; a number of studies have elucidated
genome-wide patterns of heritability and population differentiation
and are beginning to unravel the role of gene expression in the aetiology
of disease1–5. Interrogation of the transcriptome in these studies has
been greatly facilitated by the use of microarrays, which quantify tran-
script abundance by hybridization. However, microarrays possess
several limitations and recent advances in transcriptome sequencing
in second generation sequencing platforms have now provided single-
nucleotide resolution of gene expression providing access to rare tran-
scripts, more accurate quantification of abundant transcripts (above
the signal saturation point of arrays), novel gene structure, alternative
splicing and allele-specific expression6–14. Although RNA-Seq studies
have addressed issues of transcript complexity, they have not yet
addressed how genetic studies can benefit from this increased resolu-
tion to reveal novel effects of sequence variants on the transcriptome.

To understand the quantitative differences in gene expression
within a human population as determined from second generation
sequencing, we sequenced the mRNA fraction of the transcriptome of
lymphoblastoid cell lines (LCLs) from 60 CEU (HapMap individuals
of European descent) individuals (from CEPH—Centre d’Etude du
Polymorphisme Humain) using 37-base pairs (bp) paired-end
Illumina sequencing. Each individual’s transcriptome was sequenced

in one lane of an Illumina GAII analyzer and yielded 16.9 6 5.9
(mean 6 s.d.) million reads that were then mapped to the NCBI36
assembly of the human genome (Supplementary Fig. 1) using MAQ16.
We subsequently filtered reads that had low mapping quality, mapped
sex chromosomes or mitochondrial DNA and were not correctly
paired, which yielded 9.4 6 3.3 million reads. On average, 86% of
the filtered reads mapped to known exons in Ensembl version
54(ref. 17) and 15% of read pairs spanned more than one exon.
Evaluation of sequence and mapping quality measures was preformed
to ensure that the data quality is acceptable for analysis (Sup-
plementary Fig. 2, also see methods).

We quantified reads for known exons, transcripts and whole genes.
Read counts for each individual were scaled to a theoretical yield of 10
million reads and corrected for peak insert size across corresponding
libraries. Each quantification was filtered to exclude those with miss-
ing data for . 10% of the individuals. For exons, this resulted in data
for 90,064 exons for 10,777 genes. Of these, 95% had on average more
than 10 reads, 38% more than 50 reads and 20% had a mean quan-
tification of $ 100 reads (Supplementary Fig. 3). For transcript quan-
tification, new methods needed to be developed to map reads
into specific isoforms18,19. We developed a methodology, called the
FluxCapacitor, to quantify abundances of annotated alternatively
spliced transcripts (see Methods). Using this method, we obtain rela-
tive quantities for 15,967 transcripts from 11,674 genes. For each
individual, we compared whole-gene read counts to array intensities
generated with Illumina HG-6 version 2 microarrays. Correlations
coefficients between RNA-Seq and array quantities and among
RNA-Seq samples were high and consistent with previous studies20

(Supplementary Figs 4 and 5). Finally, we explored whether the cor-
relation structure of abundance among exons could facilitate the
development of a framework that will allow the imputation of abund-
ance values for exons that are not screened, given a set of reference
RNA-Seq samples. This is the same principle as using the correlation
structure (Linkage Disequilibrium) of genetic variants to impute
variants from a reference to any population sample of interest21. For
each of the 10,777 genes, we assessed the pairwise correlation of all exons
and on average, any two pairs of exons within a gene were moderately
correlated (mean Pearson’s correlation R2 5 0.378 6 0.261) (Sup-
plementary Fig. 6). This correlation increased with increase in total
number of reads present in each exon. It is worth noting that the average
correlation coefficient between SNPs within the same recombination
hotspot interval in HapMap3 is R2 5 0.326 6 0.174, indicating that the
correlation structure within genes is stronger and probably more acces-
sible by imputation methodologies than SNPs; however, this needs to be
assessed in a tissue-specific context.

Association of gene expression measured by RNA-Seq with genetic
variation was evaluated in cis with the use of 1.2 million HapMap3
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SNPs (methods described previously22). We evaluated association in
exons, transcripts and genes and determined the unique number of
genes containing a significant association through permutation23

(Table 1). RNA-Seq eQTLs, significant at 0.001 and 0.01 permutation
thresholds, replicate significantly (46% for 0.01 and 81% for 0.001) in
the array data for the same SNP-gene combinations, as indicated by
the enrichment in low P-values (Fig. 1) and the effect sizes are of very
similar magnitude (Supplementary Fig. 7). Overall, the number of
genes with eQTLs at the 0.01 permutation threshold using exon
quantification was higher than the number of genes discovered by
arrays for the same sample of individuals (836 genes vs 539 genes at
the 0.01 permutation threshold), even when normalized for the
number of genes tested (Supplementary Table 1), indicating that
increased resolution contributed to the identification of a larger
number of genetic regulatory effects. The RNA-Seq exon eQTLs were
mainly enriched in the higher abundance classes relative to array
eQTLs and whole-gene eQTLs (Supplementary Figs 8–10). This is
probably due to two reasons: (1) exons capture genetic effects in
splicing complexity, which is higher in higher abundance genes
(Spearman rank correlation between abundance and number of
transcripts in Ensembl, P , 2.2 3 10216); (2) saturation of intensity
signal above a certain abundance level in arrays but not in RNA-
Seq data. RNA-Seq exon eQTLs have lower representation in low
abundance genes indicating that rare transcripts are not well quan-
tified at this level of coverage. Finally, we performed eQTL analysis of
102 well-quantified long noncoding RNAs (not overlapping any
known protein-coding gene, see Methods), and found six with
significant eQTLs (Table 1), highlighting that regulatory variation
extends beyond well-characterized protein-coding genes.

To replicate our eQTL discoveries, we compared associations
between our study and those obtained from sequencing the tran-
scriptomes of an African population24. We assessed the P-value dis-
tribution of matching CEU associations given the top associated SNP
for 500 genes from the African population (Supplementary Fig. 11).
We estimated that ,33% of these signals were shared (P , 0.0001
assessed by permutations). This result shows the robustness of the
eQTL discovery of the two transcriptome-sequencing-based studies
and, given the degree of differentiation of the two populations, the
magnitude of replication is consistent with past array studies for the
same samples22.

As observed previously22, we have detected enrichment of eQTLs
around the transcription start site (TSS) (Supplementary Fig. 12).
We have further investigated the discovery rate and distribution of
eQTLs given an exon’s location in multi-exonic genes. We identified
increased number of discoveries for the first, second and last exon
compared to any middle exons (Fig. 2). We find that we make more
discoveries for the last exon than for the first exon. When we assess
the distribution of significant eQTLs around the 59 end of the exon
of interest, we find that significant eQTLs when found associated
with the last exon are closer to the last exon than any other exon
followed by first exons, second exons and middle exons (Sup-
plementary Fig. 13). This is consistent with our understanding of
expression modulating effects within the 39 UTR and upstream
region of genes25.

Transcriptome sequencing allows the quantification of allele-
specific expression (ASE)26–28. We found an average of 4,000 hetero-
zygote confirmed HapMap3 SNP positions per individual, which
could be used to assess ASE. Of these we assessed the proportion

Table 1 | eQTL Discoveries. eQTL discoveries for genes, transcripts, exons, splicing events and long non-coding RNAs for each of the two sequencing-
based quantifications (by-transcript and by-exon) and matching array samples are shown using Spearman rank correlation.

Associations Number of traits Number of SNPs Permutation thresholds*

0.05 0.01{ 0.001

Exon quantification 90,064 exons/10,777 genes 1,171,085 3,258 836 (0.13) 103

Transcript quantification 15,967 transcripts/11,674 genes 1,171,085 1,129 293 (0.40) 66

Whole gene quantification 11,210 genes 1,171,085 875 256 (0.43) 62

Long non-coding RNAs 232 exons/102 genes 1,171,085 14 6 (0.17) 1

Transcript events 6,468 events 1,171,085 416 110 (0.59) 21

Array-based quantification 21,800 probes/17,420 genes 1,171,397 1,682 539 (0.32) 194

*Thresholds at the gene level
{ False discovery rate (FDR) in parentheses
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Figure 1 | Array association P-values for RNA-Seq significant eQTLs.
P-value distribution using array data for RNA-Seq eQTLs significant at the
0.01 and 0.001 permutation threshold from both the exon and transcript
quantification data. In each of the plots, the significant tail of the P-value
distribution is substantially enriched, indicating that eQTLs discovered

through transcriptome sequencing are also significant in arrays. For each
plot this excess is quantified using the q-value statistic 1 2 p0 to estimate the
proportion of true positives. Enrichment in the P-value distribution is
higher for eQTLs discovered via transcript quantification and for eQTLs that
are more significant at a more stringent permutation threshold.
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where both alleles were detected in the sequencing of that individual
as a function of mapping quality using SAMtools (Supplementary
Fig. 14)29. At MAQ mapping quality 10, we find that 72% of hetero-
zygote sites have both alleles detectable at least once. As expected,
this fraction slightly reduces with increasing mapping quality.
Furthermore, we find 41% of the heterozygotes have more than six
reads. We tested for ASE after correcting for reference to non-
reference differential mapping for each library (Supplementary
Fig. 15). We tested the relationship between eQTLs and ASE by first
phasing double heterozygotes for both. We found that as the number
of reads increased, the correlation between the eQTL effect size
and the strength of ASE increased (Supplementary Fig. 16). Reads
were then summed across individuals to assess the one-sided ASE
binomial P-value distribution with respect to eQTL phasing. We
found that for 0.01 and 0.001 significant eQTLs, the tail of the ASE
P-value distribution was enriched. For exons without eQTLs, both
tails of this distribution were enriched (Supp Fig. 17), which high-
lights the presence of other non-genetic or rare genetic factors that
affect ASE.

To investigate if ASE signals could be marking recent rare eQTLs,
undetected through standard genotypic association, we selected SNPs
heterozygous in six or more individuals in exons with no evidence for
an eQTL (exons not significant at permutation threshold of 0.05), and
examined patterns of haplotype homozygosity between individuals
that shared a significant ASE signal (at P , 0.05) with those that did
not. Haplotype homozygosity assesses the length of perfectly shared
alleles on a haplotype as a proxy for the age of a haplotype30. We
calculated haplotype homozygosity comparing those haplotypes that
had an ASE signal to each other and then separately with those that did
not have an ASE signal, and found greater haplotype homozygosity for
haplotypes sharing a common ASE signal (Fig. 3). This differentiation
was highly significant when only two–three individuals had signifi-
cant ASE (Wilcoxon paired test, P 5 0.00039) and disappeared when
or more individuals had significant ASE (Wilcoxon paired test,
P 5 0.55), consistent with the idea that these rare ASE effects are a
result of recent and rare eQTL variants. We also assessed the direction
of effect for these potential rare eQTL haplotypes and found no sig-
nificant bias in the direction of effect for new mutations (48.5%
increased expression for two–three individuals compared to 47.1%
for haplotypes shared in four or more individuals). These results
highlight the potential of using second generation sequencing to
identify rare regulatory haplotypes.

We have investigated features of the genetic basis of alternative
splicing further. First, we performed association between known

variants affecting splicing signals with their respective genes and
exons; in total, we tested 963 variants for 788 genes. We compared
associations for gene RNA-Seq quantification and arrays and found
similar enrichment (8.30% vs 8.51% true positives). We stratified
splice variants in donor and acceptor variants and tested against
abundance of exons 59 and 39 to the intron where they are residing.
For donor variants we found a large enrichment (3.17 fold) of asso-
ciations with the 59 exon relative to the 39 exon, whereas for acceptor
variants we found large enrichment of associations with the 39 exon
relative to the 59 exon (7.02 fold), consistent with them affecting the
inclusion/exclusion of the associated exon in the mature transcript.
We further propose that if genetic variants are effecting transcript-
specific expression, we should be able to detected heterogeneity in the
transcript distribution found between chromosomes within an indi-
vidual. To verify this hypothesis we tested for heterogeneity in
paired-end insert sizes, used as proxy to heterogeneity in the tran-
script distribution. We compared reads over one allele relative to the
other in significant ASE SNPs vs non-significant ASE SNPs for posi-
tions with at least 50 reads to have adequate comparable transcript
distributions, which resulted in 901 heterozygote positions. We
found a significant enrichment in transcript distribution (insert size)
heterogeneity (Kolmogorov–Smirnov P-value , 0.05) over signifi-
cant ASE SNPs relative to non-significant ASE SNPs (Supplemen-
tary Fig. 18 and example in Fig. 4). Of the heterozygotes, 235 were
significant for ASE and of those 105 had significant transcript distri-
bution heterogeneity; this corresponded to 72 of 105 genes that con-
tained an ASE significant heterozygote. Visual inspection indicated
that such heterogeneity is driven both by differential structure in
internal exons as well as alternative 39 ends of genes. Genotypic
associations with mean insert size and 39 ends of genes showed
enrichment in low P-values indicating the presence of genetic
variants affecting such processes (Supplementary Figs 19 and 20).
Finally, we assessed the effect of genetic variants on events that
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Figure 3 | Haplotype homozygosity for shared ASE haplotypes versus
shared and unshared ASE haplotypes. a, We assessed the degree to which
shared ASE indicated a rare regulatory haplotype. We selected heterozygotes
that were present in six or more individuals and assessed haplotype
homozygosity between haplotypes that shared a significant ASE effect
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share an ASE effect (labelled as Control in plot) for all exons for which we did
not have evidence for an eQTL (not significant at 0.05 permutation
threshold). We see that when comparing among significant (ASE) extent of
haplotype homozygosity with that of significant vs non-significant
haplotypes (Control) where two or three individuals share the ASE
significant signal, there is greater haplotype homozygosity for the haplotypes
that share the ASE signal, indicating that these are on a more recent and rarer
haplotype. This signal decreases when the ASE signal is shared in four or
more individuals. Here the derived allele was selected as the one with the
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each heterozygote we plotted the extent of haplotype homozygosity for
significant ASE haplotypes versus significant (x-axis) against ASE vs not
significant ASE haplotypes (y-axis). We observed that the length of
homozygosity is greater in the significant haplotypes compared to each other
than when compared to non-significant corresponding haplotypes. Here the
derived allele was selected as the one with the longest haplotype
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contribute to alternative isoforms (for example, inclusion/exclusion
of exons) derived from the FluxCapacitor quantification. We found
that of 6,600 quantified events, 110 are significant at the 0.01 per-
mutation threshold (Table 1). Of these 41% were exon skipping, 17%
were due to an alternative acceptor, 13% were double or triple exon
skipping, 6% were alternative donors, 5% were mutually exclusive
exons and 5% were retained introns. This analysis indicates extensive
genetic variation in the determination of isoform diversity and tran-
script structure, which is expected to have direct consequences in
protein sequence diversity.

Our study and ref. 24 have described the first attempts of inter-
rogation of genetic effects on the transcriptome using second
generation sequencing technologies. The increasing accessibility of
sequencing has increased our ability to resolve new features of regu-
latory complexity. We have confirmed the feasibility of interrogating
eQTLs in population transcriptome sequencing and have discovered
more eQTLs than with array data for the same population sample.
Furthermore, despite relatively low sequencing depth, the association
signals were well replicated across populations. We have also iden-
tified the potential and power of such studies in resolving rare regu-
latory haplotypes. Finally, we have uncovered a variety of genetic
effects influencing isoform abundance and transcript structure. As
sequencing technologies continue to increase the depth and breadth
of the interrogation of the genome and the transcriptome, it is antici-
pated that our understanding of finer scale cellular processes will
become more detailed and robust.

METHODS SUMMARY
RNA sequencing and hybridization. Total RNA was extracted from lympho-

blastoid cell lines in 63 HapMap individuals of European origin. We sequenced

each individual with 37-bp paired end sequenced in one sequencing lane in an

Illumina GAII. Array-based gene expression data was also collected for each

individuals on the Illumina HG-6 version 2 array.

Expression quantification. Each paired-end read was quantified for individual

exons and genes given known transcripts from Ensembl (version 54) and nor-

malized for insert size variability using regression. We also quantified transcript

abundance using a method we developed call the FluxCapacitor that works by

distributing the reads mapping to a given exonic region (or splice junction)

among the transcripts including the exon.

Association analysis and multiple testing corrections. We conducted spear-

man rank correlation analyses of 1.2 million HapMap3 SNPs with MAF (minor

allele frequency) . 5% to the exon, transcript and gene sequencing quantifica-

tions and the array-based data. For each data set, we performed SNP by func-

tional unit associations within 1 megabases of the transcription start site. P-value

significance was evaluated in each data set by permuting the expression pheno-

type 10,000 times and summarizing the extreme P-value distribution for each

particular exon, transcript, gene or probe. To control for multiple testing within

each analysis we set gene-level permutation thresholds by taking the most strin-

gent gene-level P-value distribution.

Allele-specific expression. Allele-specific expression was determined on a per-

heterozygote per-individual basis. Reads were filtered to be above MAQ 10

mapping quality. For each individual’s sequencing lane a binomial probability

of success was determined based on the probability that a reference allele maps to

the genome compared to a non-reference allele. When comparing to eQTLs, a

one side binomial P-value was used for the phased ASE heterozygote.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
RNA preparation, library construction and sequencing. Total RNA was

extracted from lymphoblastoid cell lines in 63 individuals of CEPH origin from

the HapMap Consortium. Poly-A-containing mRNAs were purified using

poly-T oligo-attached magnetic beads and subsequently fragmented using

divalent cations under elevated temperature. Single-strand cDNA was made

from RNA fragments using reverse transcriptase followed by second strand

synthesis with DNA polymerase I and RNase H. We sequenced each individual

with 37-bp paired end sequenced in one sequencing lane in an Illumina GAII.

Lanes were assessed for multiple quality metrics including number of reads, read

quality and percentage of reads mapping known exons (Supplementary Fig. 2).

Two individuals failed sequencing quality control in three rounds of sequencing

and were excluded from further analysis.

Read mapping. Reads were mapped to the reference human genome (NCBI36)

using MAQ (using a theoretical insert-size upper limit of 2 Mb). Reads were

subsequently filtered to include only those which were called as properly paired

and had a mapping quality score greater than or equal to 10. This yielded between

3.5 and 17.1 million reads per individual (9.4 mean 6 3.3 s.d. million reads).

Read quantification of known exon and genes. Each paired-end read was

assessed for overlap with known transcripts from Ensembl (version 54). Reads

were only considered if the overlap for each mate pair was constrained to be first

in the same transcript or in two separate genes. Reads spanning multiple exons

were independently quantified given the same conditions in addition to the

restriction that exons were located more than 200 bp away from one another.

Furthermore, in the case of multiple overlapping exons for one mate, we con-

sidered only the exon with the largest number of supporting reads. These con-

ditions were used to prevent spurious relationships being quantified when

multiple overlapping exon annotations existed.

Raw exon read counts were subsequently normalized by scaling read count to

a total of 10 million reads per sample. For gene counts, the same procedure was

applied to the summed raw reads determined for exons of the respective gene. It

has been observed by other investigators that the Poisson nature of the data can

create a correlation between read depth and abundance estimation as well as GC

content of the reads analysed. We tested this hypothesis and found that in our

data no such correlation was observed. As a further normalization check, after

eQTL analysis, we assessed the degree to which the Poisson nature of RNA-Seq

data as reported in ref. 31 affected exon quantification and eQTL discovery by

examining the correlation P-values of expression abundance of all genes with

read depth (Supplementary Fig. 22). We observed no difference in the effect of

read depth between genes with and without an eQTL.

Read quantification of known transcripts. We have developed a method we call

the FluxCapacitor, to recontruct abundances of known transcript forms from

RNa-Seq data. Our algorithm works by distributing the reads mapping to a given

exonic region (or splice junction) among the transcripts including the exon (or

splice junction). For each locus, that is, a set of overlapping transcripts {ti}, the

FluxCapacitor adopts an underlying graph structure G 5 (V, E) similar to splic-

ing graphs32. The nodes v[V in the graph are sites (that is, transcription start or

termination sites, splice donor or acceptor sites). These are ordered by their

genomic position pv in directionality [ of the annotated transcript, from 59

to 39. Edges e~(v?w), e[E are correspondingly non-overlapping (parts of)

exons and introns. The support of each edge is the set of transcripts which

include the edge: support(e) 5 {t1, …, tn} (Supplementary Fig. 23).

Then, assuming a strict uniform read distribution along transcripts, the

observed number of reads mapping to edge Xi (the flux of Xi) is equal to the

sum of number or reads (the fluxes) produced by each transcript that includes

the edge tj[support(Xi), normalized by the edge length:

flux(Xi)~
X

j
flux(tj) ð1Þ

where flux(tj) is the a priori unknown number of reads that were produced by

transcript tj normalized to the edge length.

Each edge recasts the sequence of a unique genomic region to which a given

read is mapped iff it aligns to a substring of the edge sequence {sv, …, sw}. Reads

that align to a consecutive suffix/prefix pairs of exonic edges that are adjacent in

ordering [, that is, reads that align to splice junctions or span alternative exon

boundaries, are correspondingly aligned to k-super edge tuples {e1, …, ek}, where

k depends on the length jpw 2 pvj spanned by each of the edges compared to the

length of the read. During the alignment of reads we require minimality on the

size k of a tuple a read aligns to, that is, a read that aligns to {e1, …, ek} will not get

assigned to tuple {e1, …, ek 1 1}. The minimality criterion assigns each region

along the genomic sequence uniquely to one tuple {e1, …, ek}, k $ 1, and we

denote the sum of reads aligned to that tuple as the frequency of the observation

freq{{e1, …, ek}}.

In practice, the assumption of strict uniformity in read distribution along the

transcript is too strong, because RNA-Seq experiments suffer from systematic

biases in read coverage (Supplementary Fig. 23)33. In our approach we estimate

the biases characteristic of each experiment by collecting read distribution pro-

files in non-overlapping transcripts, binned by several transcript lengths and

expression levels. From these profiles, we estimate for each edge and transcript

a flux correction factor b
j
i , that following the language of hydro-dynamic flow

networks34 we denote as the capacity of the edge, as the area under the transcript

profile between the edge boundaries (Supplementary Fig. 23).

Additionally we allow at each edge a certain deviation Di[R that accounts for

statistical fluctuations resulting from the limited depth of the sequencing process

and deviation from the estimated flux capacity corrections. Equation (1) is thus

extended in the following way:

flux(Xi)~Diz
X

j
b

j
i flux(tj) ð2Þ

The application of equation (2) to each edge in the splicing graph for a given

locus results in a system of linear equations. The FluxCapacitor solves the linear

system as an optimization problem with the objective of minimizing the devi-

ation from all observations
P

i Dij j. To find a solution we apply a standard linear

program solver35. As a result all transcripts ti corresponding to a locus are quan-

tified by the value flux(tj ).

To account for reads that have been derived from different ends of the same

cDNA molecule (so-called mates), we generalize our mapping to k-super edges

so that the set of edges that form a k-super edge no longer need to be consecutive,

but can be formed by two distant regions, each one corresponding to the mini-

mal edge set covering the region to which one of the mate aligns. Mate-specific

orientations are taken into account, when deciding on valid mate pairs, but no

constraints on the size of the insert are applied. Flux capacity correction factors

are estimated as before, as the sum of areas under the read distribution profile a

certain k-super edge covers.

Read quantification of long non-coding RNAs. We used the Gencode annota-

tion (data freeze 3b) that contains 9,937 long non-coding transcripts (attribute

transcript_type ‘non-coding’ or ‘processed’) with 32,979 exons in 6,333 non-

protein coding loci (without attribute gene_type ‘protein_coding’). To exclude

any influences in cis with protein-coding genes transcription, we additionally

filtered out about half (3,031 of the loci with 4,875 transcripts) which are located

close (that is, 1 kilobase upstream or downstream, regardless of the strand) to an

annotated protein-coding gene. The majority (96%) of the remaining 5,062

transcripts have been annotated manually—some of them even including experi-

mental confirmation—such that we further excluded 221 transcripts that stem

from computational prediction pipelines (that is, attribute annotation level ‘3’).

Filtering for those lncRNAs with # 10% missingness across individuals resulted

in 232 quantifiable exons for association analysis.

Mixed insert size normalization. RNA-seq quantifications for each individual/lane

were identified as having excess correlation with the maximum peak of their

respective insert size distributions. We modelled this relationship as polynomials

of order 21, 0.5, 1, 2 and 3 and found the best fit, where correlation was maximized,

using a linear (order 1) model. This fit was similarly observed when excluding genes

that contained a transcript less than 500 bp, 1,000 bp and 2,000 bp in length. The

residuals of the regression were used as input to the association analyses.

Hybridization protocol and quantification. Array-based gene expression data

was collected for each of the individuals on the Illumina HG-6 version 2 array.

Two technical replicates were performed for each. We quantile-normalized

within replicates and calculate a weighted mean at each rank given the average

signal by the number of beads. Individuals are subsequently median-normalized

and log2-transformed. We selected only probes that uniquely mapped to an

Ensembl gene and did not contain a SNP; this resulted in 21,800 probes corres-

ponding to 17,420 genes.

Array versus sequencing comparison. To compare array versus sequencing

quantification we determined RPKM (reads per kilobase per million reads)

values for each gene for each individual and compared them to the mean probe

intensity for the same gene. For association analyses (described below) two

sequenced individuals did not have matching array data. For these individuals

we replaced them with their fathers for whom we had expression data. As such,

NA10847 was replaced with father NA12146 and NA10851 with father NA12056.

Association analyses and multiple testing corrections. We conducted spear-

man rank correlation analyses of 1.2 million HapMap3 SNPs with MAF . 5% to

the exon, transcript and gene sequencing quantifications and the array-based

data. For the exon quantification, we selected 90,064 exons corresponding to

10,777 genes where at least 10% of the individuals had data. We similarly selected

from the transcript quantification 15,967 transcripts corresponding to 11,674

genes and from the gene quantification we obtained 11,210 genes For each of the

three data sets, exon, transcript, gene and array we performed SNP-by functional
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unit associations within 1 Mb of the transcription start site. P-value significance
was evaluated in each data set by permuting the expression phenotype 10,000

times and summarizing the extreme P-value distribution for each particular

exon, transcript, gene or probe. To control further for multiple testing within

each analysis, given that several quantifications were available for a gene (such as

for the exon, transcript and array-based quantifications), we set gene-level per-

mutation thresholds by taking the most stringent P-value distribution.

Imputation. We imputed genotypes in four individuals (NA0851, NA12004,

NA12414 and NA12717) with Beagle version 3.0.4 that were not present in the

HapMap 3 (release 3) but had been typed on the Affymetrix 6.0. Imputation of

Affymetrix 6.0 into the full HapMap 3 set, for SNPs greater than 5% minor allele

frequency has a demonstrated true positive rate of 96.4% (A. Price, personal

communication). We further used 410 CEU1TSI (Tuscans from Italy) phased

chromosomes from HapMap 3 to conduct the imputation. Inclusion of the

phased chromosomes from TSI has also demonstrated an increased true positive

rate (J. Barrett, personal communication). In total, 595,716 SNPs were imputed.

We assessed the mean difference in genotype probability between the imputed

genotype and second best call as 0.95, 0.94, 0.94 and 0.94, across each of the

imputed individuals respectively. Two of these individuals (NA12004 and
NA12717) had been genotyped previously in HapMap 2 and we replaced all

imputed genotypes with these genotypes where possible. We assessed genotype

concordance between the imputed genotypes against the HapMap Phase 2

genotypes for both individuals as 3.4%. We also performed PCA (principal

component analysis) within CEU and across the eleven populations in

HapMap 3 and observed no significant clustering of the imputed individuals

outside the component 1 and 2 CEU group means (Supplementary Fig. 21).

Allele-specific expression detection. Allele-specific expression was determined

on a per-heterozygote per-individual basis. Reads from heterozygote SNPs over-

lapping exons were assessed directly for their allelic state given SNP calls from

HapMap3 (www.hapmap.org) and by using the SAMtools pileup utility29. Reads

were filtered to be above MAQ 10 mapping quality. For each individual’s sequen-

cing lane a binomial probability of success was determined on the basis of the

probability that a reference allele maps to the genome compared to a non-

reference allele. As such each individual had their own binomial probability of

success given a heterozygote allele matching the reference sequence that

accounted for potential biases in the sequencing reaction. We also computed a

weighted metric of effect size using this probability where each occurrence of an

allele was weighted by the probability of observing it. A weighted difference

between both alleles was then computed by summing all observations.

When comparing to eQTLs, phasing data from HapMap3 was used to phase

the eQTL with respect to heterozygote SNPs. Here, a one side binomial P-value

was then used using the individual specific reference allele mapping probability

to enforce the direction of effect in same direction.

For haplotype homozygosity based analyses, haplotype homozygosity was

assessed for a heterozygote by comparing the extent of homozygosity for each

allele and choosing the allele with the longer homozygous tract as the derived

allele. This allele was then used to compare haplotype homozygosity within ASE-

containing and ASE-containing versus no ASE haplotypes.

Alternative splicing analyses. Known splice variants were taken from Ensembl

(version 54). We selected those variants that we had tested as part of our asso-
ciation analysis and for which at least one exon had been quantified within the

relevant gene. We quantified the proportion of true positives (using q-value

statistics) for associations of splicing variants to gene RNA-seq and array quan-

tification. For arrays, we chose only genes that had been quantified once to

correct for multiple testing. We further quantified and compared the proportion

of true positives for donor SNP–donor exon, donor SNP–acceptor exon,

acceptor SNP–donor exon and acceptor SNP–acceptor exon associations.

To perform genotypic associations of mean insert size we selected the best
quantified exon per gene and determined the mean of all insert sizes over this

exon. For genotypic associations of 39 ends, we selected reads that only mapped to

the 39 exon and calculated the mean of distance from the exon’s start to the end of

any given read. Both associations were corrected for insert size heterogeneity across

individuals using the same method as in the quantification-based associations.
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