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Abstract

Background: Liver is an important metabolic organ that plays a critical role in lipid synthesis, degradation,

and transport; however, the molecular regulatory mechanisms of lipid metabolism remain unclear in chicken.

In this study, RNA-Seq technology was used to investigate differences in expression profiles of hepatic lipid

metabolism-related genes and associated pathways between juvenile and laying hens. The study aimed to

broaden the understanding of liver lipid metabolism in chicken, and thereby to help improve laying

performance in the poultry industry.

Results: RNA-Seq analysis was carried out on total RNA harvested from the liver of juvenile (n = 3) and laying

(n = 3) hens. Compared with juvenile hens, 2567 differentially expressed genes (1082 up-regulated and 1485

down-regulated) with P ≤ 0.05 were obtained in laying hens, and 960 of these genes were significantly

differentially expressed (SDE) at a false discovery rate (FDR) of ≤0.05 and fold-change ≥2 or ≤0.5. In addition,

most of the 198 SDE novel genes (91 up-regulated and 107 down-regulated) were discovered highly expressed,

and 332 SDE isoforms were identified. Gene ontology (GO) enrichment and KEGG (Kyoto Encyclopedia of Genes

and Genomes) pathway analysis showed that the SDE genes were most enrichment in steroid biosynthesis,

PPAR signaling pathway, biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, three amino

acid pathways, and pyruvate metabolism (P ≤ 0.05). The top significantly enriched GO terms among the SDE

genes included lipid biosynthesis, cholesterol and sterol metabolic, and oxidation reduction, indicating that

principal lipogenesis occurred in the liver of laying hens.

Conclusions: This study suggests that the majority of changes at the transcriptome level in laying hen liver

were closely related to fat metabolism. Some of the SDE uncharacterized novel genes and alternative splicing

isoforms that were detected might also take part in lipid metabolism, although this needs further investigation.

This study provides valuable information about the expression profiles of mRNAs from chicken liver, and in-depth

functional investigations of these mRNAs could provide new insights into the molecular networks of lipid metabolism

in chicken liver.
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Background
Liver is the main metabolic organ where more than

70 % of the de novo synthesis of fatty acids occurs in

chicken [1–3]. Especially, the liver plays an important

role in lipid synthesis, degradation, and transport pro-

cesses. During the hen laying cycle, hydrophobic lipids

including triacylglycerols, cholesteryl esters, cholestery

esters, and free fatty acids are synthesized in the liver

and assembled to form egg-yolk precursors such as very-

low density lipoprotein (VLDL) and vitellogenin

particles. The particles are then secreted into the circula-

tion and transferred to the developing oocyte to meet

the requirements for embryo growth and development

[4–7]. The molecular regulatory mechanisms of these

crucial physiological processes have been investigated

extensively since the 1970s, and thus are reasonably well

understood [8–11].

It is generally agreed that the physiological processes

for lipids synthesis, secretion, and transfer in the liver of

laying hens are regulated tightly by estrogen. Estrogen

regulates the transcription of target genes containing

consensus estrogen response elements through the es-

trogen receptors (ERs) ERα, ERβ, and G protein-coupled

receptor (GPR30) [12–14]. The different receptors play

distinct roles in gene regulation [13]. Previous studies

have revealed that estrogen physiological functions could

be mediated by different receptors in various species [15,

16]. However, the specific nuclear receptor subtype that

mediates the production of yolk precursors in chicken

liver is unclear [17].

Although most of the genes and their products in-

volved in hepatic lipid metabolism are highly similar in

poultry and mammalian species, the functions of some

of these genes and their products are considered to be

slightly different in poultry compared with their func-

tions in mammals [4, 18–20]. For instance, a recent

study on lysophosphatidylglycerol acyltransferase 1

(LPGAT1) indicated that LPGAT1 may play an import-

ant role in lipid synthesis in mice [21] rather than in

poultry. Moreover, it has been suggested that poultry

species may have lost some of the genes related to lipid

metabolism during the evolutionary process [22]. There-

fore, the range of genes and their products involved in

hepatic lipid metabolism in laying hen remains to be

fully elucidated [23].

How VLDL particles are assembled and secreted in

chicken liver is still not fully understood. In mammals, it

has been well documented that microsomal triglyceride

transfer protein (MTTP) assists in lipoprotein assembly

to form low-density lipoprotein [21, 24–28]. The forma-

tion of VLDL particles in avian species is tightly regu-

lated by estrogen, and a previous study demonstrated

that the up-regulation of MTTP in liver was not

required for increased VLDL assembly during the laying

period in chicken [29]. Therefore, understanding the

synthesis, formation, and transport of yolk precursors in

the liver of laying hens is important.

In recent years, the study of gene regulation and inter-

actions has broadened considerably because of advances

in genomics, epigenomics, and bioinformatics, as well as

with the development of next generation sequencing.

RNA-Seq is a novel gene expression profiling technology

based on high-throughput sequencing [30]. Compared

with other large-scale gene expression profiling methods,

RNA-Seq is superior in detecting mRNA expression in

different tissues or at different development stages in a

single assay, which can help reveal novel genes and

splice variants [31].

In this study, expression profiles of hepatic lipid

metabolism-related genes and associated pathways were

investigated between juvenile and laying hens (two dif-

ferent physiological stages) using RNA-Seq technology.

Because lipogenesis is known to be highly stimulated in

the liver of sexually mature hens and to eliminate genes

that may be unrelated to lipid metabolism, liver expres-

sion profiles were compared between juvenile hens and

laying hens. Bioinformatics tools were used to analyze

the major differentially expressed genes and pathways.

The present study provides an overview of the genes

related to lipid metabolism that play a significant role

during embryonic development by synthesizing compo-

nents of the egg yolk.

Methods

Animals and liver tissue samples preparation

All animal experiments were performed in accordance

with the protocol approved by the Institutional Animal

Care and Use Committee (IACUC) of Henan Agricultural

University. The experimental animals used in this study

were one strain of the Chinese domestic breed laying hens

(Lushi green shell chicken).

All the chickens were raised in cages under the same

environment with ad libitum conditions. Six hens were

selected randomly from two different physiological

stages, juvenile hens and laying hens. The three juvenile

hens were slaughtered when they were 20 weeks old

(L20), and the three laying hens were slaughtered when

they were 30 weeks old (L30). Liver tissue samples were

harvested immediately. The collected samples were im-

mediately snap-frozen in liquid nitrogen and stored at

−80 °C for further use.

RNA extraction

Total RNA was extracted from the chicken liver tissues

using TRIzol® reagents following the manufacturer’s

manual (Invitrogen, Carlsbad, CA). Degradation and

contamination of the total RNA was detected on 1 %

agarose gels. The purity of the total RNA was assessed
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using a NanoPhotometer® spectrophotometer (IMPLEN,

CA). The integrity was estimated using a RNA Nano

6000 Assay Kit with the Agilent Bioanalyzer 2100 system

(Agilent technologies, Santa Clara, CA). The RNA con-

centration was checked with a Qubit® RNA Assay Kit in

a Qubit® 2.0 flurometer (Life Technologies, CA). The

28S/18S ratio of the qualified RNA ranged from 1.8 to

2.0 and the RNA integrity values ranged from 8.0 to

10.0. RNA samples were stored at −80 °C for further

analysis.

RNA-Seq library construction and sequencing

Six mRNA libraries were constructed, one for each of

the samples (L20-1, L20-2, L20-3 and L30-1, L30-2,

L30-3). A total of 3 μg RNA per sample was prepared

for mRNA sequencing using the TruSeq RNA Sample

Prep Kit v2 (Illumina) according to the manufacturer’s

protocol. Briefly, the mRNA was isolated from the

total RNA using oligo (dT) beads with two rounds of

oligo-dT purification. Following the rRNA depletion step,

the purified RNA was fragmented with the Ribo-Zero

rRNA Removal Kits (Epicentre). First-strand cDNA syn-

thesis was performed using the Invitrogen random hex-

amer primers and Superscript II reverse transcriptase

(Invitrogen). The second-strand was synthesized using

Invitrogen DNA polymerase 1 (Invitrogen). End repair

and poly-adenylation were performed, and the mRNAs

were ligated to adapters before PCR amplification. The

enriched cDNA templates that were 100 nucleotides (nt)

long were purified and used for further analysis. The li-

braries were qualified using a Qubit® 2.0 Fluorometer

(Invitrogen) and Qubit dsDNA HS Assay Kit (Invitrogen).

The purity and size of the libraries were checked on an

Agilent 2100 Bioanalyzer (Agilent Technologies). The

adapter-ligated cDNA fragment libraries were run on

an Illumina GAIIx analyzer to complete the cluster

generation and primer hybridization. Then the Illumina

PE flow cell (v3-HS) carrying clusters were sequenced

with paired-end 2 × 100 nt multiplex on an Illumina

HiSeq 2500 platform following the manufacturer’s instruc-

tion (Illumina).

Transcriptome sequencing data processing and

annotation

After the sequencing was completed, image data was

outputted and transformed into raw reads and stored

with a FASTQ format. The obtained raw reads were

cleaned using the FASTX-Toolkit (version: 0.0.13) [32].

Reads with adapter, low quality at 3′ end, containing

fuzzy N bases, rRNA, sequences shorter than 20 nt and

low quality with Q <20 were removed. The resultant

clean reads from each sample library were used for the

downstream analyses. The clean reads were mapped to the

chicken genome assembly (galGal4), which we downloaded

from Ensembl [33], using the spliced mapping algorithm in

TopHat2 (version: 2.0.9) [34]. We used TopHat2 as the

mapping tool because it can generate a database of splice

junctions based on Ensemble annotations of galGal4 and

thus can produce a better mapping result than other non-

splice mapping tools.

Transcript identification and alternative splicing analysis

We used the reference annotation-based transcript

(RABT) assembly method in Cufflink (version: 2.1.1)

[35] to construct and identify both known and novel

transcripts from the TopHat2 alignment results. The

AStalavist software (version: 3.2) [36, 37] can

characterize alternative splicing (AS) for whole tran-

scriptome data from reference annotated transcripts. We

used AStalavist to estimate AS events within and

between groups. The differentially expressed isoforms

were estimated by Cufflink.

Quantification of differential mRNA expression levels

The expression levels of the mapped genes were esti-

mated from the transcriptome sequencing data based

on the number of raw reads. HTSeq (version: 0.6.1)

[38] was used to count the numbers of reads mapped

to each gene. The reads for each gene were normal-

ized by using fragments per kilo base of exon model

per million mapped reads (FPKM). The quantification

and differential analyses were conducted according to

the Cufflink (version: 2.1.1) program. The criteria

normalization formula is as follows:

FPKM ¼

transcription reads

transcription length
� total mapped reads in run� 109

The Cuffdiff was used to analyze the differential ex-

pression genes. In our study, the false discovery rate

(FDR) was used to determine the threshold of the P-

value in multiple tests and analyses. Genes were identi-

fied as differentially expressed (DE) genes when P ≤ 0.05.

DE genes with fold changes ≥2 or ≤0.5 (FDR ≤0.05) were

identified as significantly differentially expressed (SDE)

genes [39].

Quantitative real time PCR (qRT-PCR)

To confirm the repeatability and accuracy of the RNA-Seq

gene expression data obtained from the chicken liver li-

braries, qRT-PCR was carried out on 12 randomly selected

DE genes that were prepared from the total RNA. The

PrimeScript™ RT Reagent kit with gDNA Eraser (TaKaRa,

Dalian, China) was used to synthesize the first-strand

cDNA. The qRT-PCRs were performed on a LightCycler®

96 Real-Time PCR system (Roche Applied Science) in

a 20-μl reaction volume containing 2 μL cDNA, 10 μL
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2 × SYBR®Premix Ex Taq™ II (TliRNaseH Plus) (TaKaRa),

0.5 μL each of forward and reverse primers (10 μM), and

7 μL deionized water. The β-actin gene was used as the

reference gene, and all the qRT-PCR gene-specific primers

were designed using the Oligo 6.0 software [40]. The pri-

mer sequences are presented in Additional file 1: Table S1.

The qPCR amplification procedure was as follows: 95 °C

for 3 min, 40 cycles of 95 °C for 12 s, 61 °C for 40 s, 72 °C

for 30 s, and an extension for 10 min at 72 °C. All the re-

actions were run with three replicates, and the relative

gene expression levels were analyzed using the compara-

tive CT method (also referred to as the 2-△△CT method)

[41]. In this study, the Wilcox rank sum test was used.

The statistical analyses were performed with R for win-

dows version 3.2.0 [42], with the test conducted as a one-

sided tail test and a significance level of P ≤ 0.05. The

values are presented as mean ± standard error.

Functional annotation analyses

Functional enrichment of the SDE genes was analyzed

using the web-based tools in DAVID [43] to identify

enriched gene ontology (GO) terms and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways,

group functionally related genes, and cluster the annota-

tion terms with a retained of EASE scores 0.1 [44, 45].

The P-value was calculated as

P ¼ 1−
Xm−1

i¼0

M

i

� �

N−M

n−i

� �

N

n

� �

where N is the total number of genes in the genome, n

is the total number of SDE genes, M is the number of

genes annotated with a certain GO term, and m is the

number of SDE genes annotated with the same certain

GO term. Only the GO terms and KEGG pathways with

P ≤ 0.05 were taken into account as significantly

enriched among the SDE genes [46].

Results
Identification of expressed transcripts in the chicken liver

transcriptome

In this study, we established six cDNA libraries L20-1,

L20-2, and L20-3 from the liver of 20-week-old juvenile

hens and L30-1, L30-2, and L30-3 from 30-week-old lay-

ing hens that represented two different physiological

stages. The RNA-Seq generated from 42,113,152 to

67,296,120 raw reads for each library, with an average of

54,373,054 and 50,986,088 paired-end reads for the L20

and L30 groups, respectively. The sequencing depth of

40 M reads for each library was saturated (Fig. 1). After

filtering the low quality reads, the average numbers of

clean reads were 51,554,387 (94.8 %) and 48,351,463

(94.8 %) for the L20 and L30 groups, respectively. The

clean reads were used for all further analyses. After as-

sembly, 13,523 mRNAs were obtained from the two

groups; 13,519 (99.97 %) were found in the juvenile hen

libraries and 13,436 (99.36 %) were found in the laying

hen libraries and 13,432 of these mRNAs were com-

monly expressed between the two groups. Approxi-

mately 85 % of the reads in each library were uniquely

mapped to the galGal4 assembly of the chicken genome,

and the average mapping rates were 83.0 and 84.2 % for

the L20 and L30 groups, respectively (Table 1). The

density of the mapped reads on different regions of the

genome is displayed in Fig. 2.

Fig. 1 Saturation analysis of the transcriptome sequencing data from six chicken liver libraries. L20-1, L20-2, and L20-3 from the liver

of 20 week-old juvenile hens and L30-1, L30-2, and L30-3 from 30 week-old laying hens. x-axis, sequencing depth; y-axis, proportion

of covered genes
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The top ten most abundantly expressed genes in both

groups (FPKM from 10,643 to 69,528 reads) ranked

by absolute abundance were ENSGALG00000018375

(uncharacterized protein), ATP synthase protein 8 (ATP8),

apovitellenin 1 (APOVLDLII), cytochrome c oxidase sub-

unit 1 (COX1), ENSGALG00000018372 (uncharacterized

protein), serum albumin (ALB), gallinacin-9 (GAL9), vi-

tellogenin 2 (VTG2), fatty acid binding protein 1 (FABP1),

and ATP6. The expression levels of APOVLDLII and

VTG2 were much lower in the liver of juvenile hens than

in laying hens (Fig. 3).

The correlation of transcript expression levels between

samples is a crucial indicator for the reliability of the ex-

perimental results and the rationality of sampling. Gen-

erally, the Pearson correlation coefficient shall be no less

than 0.92 (r2 ≥ 0.92) [47]. We performed correlation

analyses among the six samples to determine whether

differential gene expression was observed between the

L20 and L30 groups. The Pearson correlation coeffi-

cient demonstrated that the expression levels of the

three biological replicates in each group (L20 and

L30) were similar based on the normalized FPKM

values (i.e., all r2 ≥ 0.93).

Identification of differentially expressed genes and

isoforms between the two physiological development

stages

In this study, we identified a total of 13,532 genes in the

chicken liver libraries; 1767 of them were novel genes

and 198 of these novel genes showed significant changes

in expression (91 up-regulated and 107 down-regulated)

between the L20 and L30 groups (FDR ≤0.05) (Additional

file 2: Table S2). Among the annotated genes, we identified

2567 DE genes (1082 up-regulated and 1485 down-

regulated) in L30 compared with L20 with P ≤ 0.05; 960 of

these were SDE genes (473 up-regulated and 487 down-

regulated) with a fold-change ≥2 or ≤0.5 (FDR ≤0.05)

(Additional file 3: Table S3).

In mammals, splice variants are considered to be pri-

mary drivers of the evolution of phenotypic complexity

Table 1 Characteristics of the reads from six chicken liver libraries

Sample IDa Raw bases (Gb) Q20 value (%) GC content (%) Raw reads Clean reads Mapped reads Mapped unique readsb Mapping ratio (%)c

L20–1 4.5 95.4 47 44674654 42381020 36083033 35118821 85.1

L20–2 6.5 95.3 47 65393800 61933858 52824621 51312296 85.3

L20–3 5.3 95.5 47 53050708 50348282 43068094 41902030 85.5

L30–1 6.7 95.5 46 67296120 63775556 54827754 53528180 86.0

L30–2 4.2 95.5 46 42113152 39958736 34571635 33690669 86.5

L30–3 4.4 95.6 46 43548992 41320096 35784180 34935615 86.6

aL20, liver samples from juveniles; L30, liver samples from egg laying hens. bMapped unique reads, reads that matched the reference genome in only one position.
cMapping ratio, mapped reads/all reads

Fig. 2 Distribution of the mapped reads on different regions of the chicken reference genome. Non-coding regions include all the 5′UTR, 3′UTR

and other non-coding RNA regions
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[48–50]. We detected a total 14,212 splice variants in

both groups. A total of 332 DE isoforms (115 down-

regulated and 217 up-regulated; FDR ≤0.05) were de-

tected in L30 compared with L20, and 287 (86.4 %)

of them were annotated (Additional file 4: Table S4).

The chromosomal position of each transcript was ob-

tained by aligning the sequence to the chicken refer-

ence genome. The analysis detected six different

splice patterns in the chicken liver transcriptome

data, namely skipped exon (SE), alternative 5′ splicing

site (A5SS), alternative 3′ splicing site (A3SS),

retained intron (RI), mutually exclusive exon (MEX),

and complex. Four of these splice patterns, skipped

exon, alternative 5′ and 3′splicing sites, and retained

intron were the major splicing patterns found in our

study, representing 96.5 % of the total AS events; mu-

tually exclusive exon and complex were rare events

and accounted for only 3.5 % of the AS events (Fig. 4).

The average number of alternative transcripts per

chromosome was 721, and chromosomes 16 (93 tran-

scripts) and W (eight transcripts) had the smallest num-

bers of alternative transcripts.

Real-time PCR validation of differential genes expression

To confirm the accuracy of the RNA-Seq transcriptome

data, 12 genes were selected randomly including four

significantly up-regulated genes, three significantly

down-regulated genes, and five genes with no significant

differential expression. The expression levels of the se-

lected genes were quantified using qRT-PCR, and the re-

sults were consistent with the findings obtained by

RNA-Seq (Table 2). The results suggest that the RNA-

Seq reliably identified DE mRNAs and revealed novel

genes in the chicken liver transcriptome.

Functional analysis of differentially expressed genes

To better understand the regulation network of lipid

synthesis and transport during egg production, we ana-

lyzed the functional distribution of the DE genes in the

liver of laying hens liver compared with the liver of ju-

venile hens.

We detected 960 SDE genes in L30 compared with

L20 and clustered them based on the GO and KEGG

pathway analyses. The percentages of the SDE genes in-

volved in the GO biological process, molecular function,

and cellular component categories were 46.4, 50.7, and

30.7 %, respectively. We obtained a total of 113 clusters

based on the GO functional annotation of the SDE genes

(Additional file 5: Table S5). The cluster with the highest

score was most enrichment in sterol, cholesterol, and

steroid metabolic and biosynthetic processes, lipid me-

tabolism, lipid localization, protein-lipid complex, plasma

lipoprotein particle, VLDL particle, and triglyceride-rich

lipoprotein particle (Table 3). Thus, the GO term enrich-

ment analysis showed that the SDE genes were signifi-

cantly enriched in oxidation reduction, sterol and

cholesterol metabolic processes, and lipid biosynthetic

processes (Fig. 5). SDE genes enriched in terms related to

Fig. 4 Distribution of alternative splicing isoforms in liver libraries from juvenile and laying hens

Fig. 3 Top ten most abundantly expressed mRNAs in liver libraries

from juvenile and laying hens. FPKM values of up to 10,000 genes

are shown
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fat metabolism included apolipoprotein B (ApoB), apolipo-

protein A-I (APOA1), lecithin-cholesterol acyltransferase

(LCAT), insulin induced gene 1 (INSIG1), and VLDLR.

SDE genes enriched in terms related to signal, disulfide

bond, secreted and storage protein included VLDL,VTG1,

VTG2, and APOVLDII.

To identify critical signal regulation pathways during

laying period, we mapped the 960 SDE genes to KEGG

orthologs and performed an enrichment analysis with

the whole transcriptome as background. The SDE genes

were enriched in 13 KEGG pathways and nine of these

pathways were significantly (P ≤ 0.05) related to steroid

biosynthesis, PPAR signaling pathway, biosynthesis of

unsaturated fatty acids, glycerophospholipid metabolism,

pyruvate metabolism, and four amino acid-related me-

tabolism pathways (Table 4). Additionally, based on the

SDE genes pathway enrichment results, the DE genes

that were predicted to play important roles in lipid me-

tabolism and involved in PPAR signaling pathway and

steroid biosynthesis are shown in the Additional file 6:

Figure S1, and Additional file 7: Figure S2.

Discussion

Lipid synthesis and transfer is a dynamic and complex

process, and previous studies have suggested that the

Table 2 Expression patterns of the 12 mRNAs selected for

qRT-PCR validation

Gene name qRT-PCR RNA-Seq

Fold-changea

(L30/L20b)
P-value Fold-change

(L30/L20)
P-value

APAO1 −0.48 0.008 −0.34 0.004

CEPT1 3.71 0.004 2.73 0.000

CETP −0.05 0.010 −0.06 0.000

PRDX 0.61 0.056 0.94 0.732

RPL6 0.71 0.281 1.31 0.177

RPS24 0.97 0.192 1.27 0.177

FOXO3 2.43 0.006 3.86 0.000

SIRT1 2.62 0.054 1.32 0.087

MTP 1.51 0.068 1.12 0.537

ApoB 14.91 0.006 8.03 0.000

LPGAT1 −0.47 0.050 −0.64 0.010

ENSGALG- 159.23 0.000 92.77 0.000

00000010018

aMinus sign indicates the gene was down-regulated. bL30/L20, fold change in

gene expression in liver samples from egg laying hens (L30) compared with

liver samples from juveniles (L20)

Table 3 Top gene ontology clusters of SDE genes between liver samples from juvenile and laying hens

Categorya Term ID Term Genes P-value

GOTERM_BP_FAT GO:0016125 Sterol metabolic process APOB, APOA1, HMGCR, CYP7A1, LCAT, INSIG1, FDPS, LSS,
SC4MOL, VLDLR, DHCR24

1.68E-07

GOTERM_BP_FAT GO:0008203 Cholesterol metabolic process APOB, APOA1, HMGCR, CYP7A1, LCAT, INSIG1, FDPS, LSS,
VLDLR, DHCR24

7.58E-07

SP_PIR_KEYWORDS Lipid metabolism FAR1, APOB, APOA1, LCAT, INSIG1, ACSBG2, AACS, VLDLR 1.15E-05

GOTERM_BP_FAT GO:0008202 Steroid metabolic process OSBPL3, HMGCR, FDPS, LSS, SC4MOL, APOB, APOA1,
LCAT, CYP7A1, INSIG1, OSBPL10, VLDLR, DHCR24

8.40E-05

SP_PIR_KEYWORDS Cholesterol metabolism APOB, APOA1, LCAT, INSIG1, VLDLR 7.97E-04

GOTERM_BP_FAT GO:0006869 Lipid transport APOB, TPRXL, APOA1, PPARG, ANXA1, ATP11A, CETP, VTG2,
ATP8B3, VLDLR

8.29E-04

GOTERM_BP_FAT GO:0016126 Sterol biosynthetic process HMGCR, FDPS, LSS, SC4MOL, DHCR24 8.92E-04

SP_PIR_KEYWORDS Steroid metabolism APOB, APOA1, LCAT, INSIG1, VLDLR 0.00150

GOTERM_CC_FAT GO:0032994 Protein-lipid complex APOB, APOA1, CETP, APOVLDLII, VLDLR 0.00155

GOTERM_CC_FAT GO:0034358 Plasma lipoprotein particle APOB, APOA1, CETP, APOVLDLII, VLDLR 0.00155

GOTERM_BP_FAT GO:0010876 Lipid localization APOB, TPRXL, APOA1, PPARG, ANXA1, ATP11A, CETP, VTG2,
ATP8B3, VLDLR

0.00167

GOTERM_BP_FAT GO:0006695 Cholesterol biosynthetic process HMGCR, FDPS, LSS, DHCR24 0.00432

SP_PIR_KEYWORDS VLDL APOB, APOVLDLII, VLDLR 0.02855

GOTERM_CC_FAT GO:0034361 Very-low-density lipoprotein particle APOB, APOVLDLII, VLDLR 0.03533

GOTERM_CC_FAT GO:0034385 Triglyceride-rich lipoprotein particle APOB, APOVLDLII, VLDLR 0.03533

GOTERM_BP_FAT GO:0006694 Steroid biosynthetic process HMGCR, FDPS, LSS, SC4MOL, DHCR24 0.04625

SP_PIR_KEYWORDS Lipid transport APOB, APOA1, VLDLR 0.10992

a
GOTERM_BP GO term under the biological process category, GOTERM_CC GO term under the cellular component category, SP_PIR_KEYWORDS annotation from

the Swiss-Prot and Protein Information Resource databases
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enzymes involved in this process could play different roles

in mammal and chicken or other avian species [29]. In-

deed, recent studies have shown that some mammalian

genes related to lipid metabolism have been lost in

chicken [22]. As a consequence, the regulation in gene ex-

pression of lipid metabolism in chicken liver is yet to be

fully understood.

DE genes are considered to be important regulatory

factors of lipid synthesis and transport in liver during

the laying stage of chicken. In this study, we obtained a

total of 2567 DE genes between juvenile hens and laying

hens livers using RNA-Seq technology. Some of these

may participate in lipid biological synthesis, assemble,

and transfer at the two different physiological stages.

For example, SCD-1 (Stearoyl-CoA desaturase) together

with FADS2 (previously named Δ6 desaturase) were up-

regulated in the lipogenesis of the PPAR signaling path-

way in the liver of laying hen in this study. SCD, which

is regulated by a hormone, is a rate limiting enzyme of

monounsaturated fatty acid synthesis in liver, and the

mRNA expression and activity of SCD-1 have been

shown to be triggered by insulin to promote fat synthe-

sis [51]. FADS2, which catalyzes the initial desaturation

step to synthesize the long chain polyunsaturated fatty

acid (LC-PUFAs), was found to occur mainly in the liver

of laying hens [52], suggesting that FADS2 may

Fig. 5 GO enrichment analysis of SDE genes in the liver transcriptome of laying hens. Only the significantly enriched (P ≤ 0.05) biological process,

cellular component, and molecular function categories are shown
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contribute to yolk formation. In the liver of severe nega-

tive energy balance cows, the down-regulation of FADS2

was shown to suppress the synthesis of LC-PUFAs, ara-

chidonic acid, and eicosapentaenoic acid [53]. Taken to-

gether, these results indicated that the RNA-Seq data

generated by this study was sufficiently representative of

the chicken liver transcriptome.

VLDL assembly occurs in the endoplasmic reticulum

of hepatic cells. To assemble a lipoprotein particle that

is competent for transport through the secretory path-

way, ApoB has to interact with triglycerides, cholesteryl

esters, free cholesterol, and phospholipids. This is a

highly regulated process that requires the activity of

MTTP [54, 55]. It was reported that chicken MTTP con-

tained functionally important domains that are com-

monly found in the large lipid transport protein family

[56]. However, another study showed that MTTP did

not respond to the increase of VLDL induced by estro-

gen either in vivo or in vitro [29]. In this study, MTTP

was not significantly differentially expressed in the liver

of laying hens compared to juvenile hens. This study is

consistent with a previous finding in the coordinated

up-regulation of protein components, such as ApoB (8-

fold change) and ApoVLDL-II (320-fold change), along

with the up-regulation of lipid synthesis led to increased

production of VLDL during an egg-laying cycle in avian

[57, 58]. The female-specific yolk precursor proteins

VTG1 and VTG2, which are synthesized in the liver and

depend on estrogen stimulation [59], were found to be

abundantly expressed in the liver of laying hens, and the

expression of VTG2 was the main subtype [60]. Estrogen

works via the estrogen receptors (ERα and ERβ) and

GPR30 that regulate the transcription of target genes,

which contain estrogen response elements. Previous re-

search has suggested that in vitro, ERα rather than ERβ

and GPR30 could mediate estrogen’s effects on stimulat-

ing vitellogenin and ApoVLDL production, while in vivo,

ERβ was up-regulated in liver of laying hen in compari-

son to pullet [17]. Our finding is consistent with previ-

ous report that the expression of ERβ but not ERα was

significantly up-regulated in vivo. Since so many genes

are directly or indirectly involved in the complex physio-

logical process in liver during egg-laying stage, it is hard

to believe that estrogen mediates these genes only via

ERβ. Therefore, these results may still need to be further

validated in future studies.

FABPs have been reported to have multiple biological

functions, including roles in hepatic fatty acid oxidation

[61, 62], intracellular fatty acid transport [63], storage,

and export, as well as in cholesterol and phospholipid

metabolism [64–66]. In this study, FABP1 and FABP3

were both significantly up-regulated in the liver of laying

hens compared with juvenile hens, which suggests that

they may promote lipid metabolism in the PPAR signal-

ing pathway to meet the requirements of laying eggs.

Acyl-CoA binding protein (ACBP, also known as DBI)

was reported to act as an endogenous modulator to

regulate the levels of gonadal hormones in vivo [67]. The

transcriptional factor sterol regulatory element binding

protein (SREBP-1) and fatty acid synthase (FASN) genes

were both found to be elevated coordinately in laying

chicken liver that could synthesize fatty acids de novo

[68], which was consistent with a previous report [69].

Peroxisomal proliferator-activated receptor α (PPARα, a

Table 4 KEGG pathways associated with SDE genes between liver samples from juvenile and laying hens

Pathway code Term Genes P-value

gga00100 Steroid biosynthesis SOAT1, CYP51A1, DHCR7, LSS, HSD17B7, SC4MOL, NSDHL,
DHCR24, FDFT1

5.61E-07

gga03320 PPAR signaling pathway SCD, PPARG, FADS2, DBI, APOA1, ACSL1, CYP7A1, FABP3,
FABP1, FABP5, ACSL5, ACAA1, ANGPTL4

7.21E-04

gga00330 Arginine and proline metabolism ALDH7A1, ASL2, P4HA2, GATM, ASS1, GLUD1, MAOB, GAMT,
AGMAT, PRODH

0.00128

gga01040 Biosynthesis of unsaturated fatty acids PECR, SCD, FADS1, ELOVL2, FADS2, ELOVL6, ACAA1 0.00144

gga00260 Glycine, serine and threonine metabolism GATM, BHMT, MAOB, GCAT, GAMT, PSAT1, GLDC 0.01192

gga00564 Glycerophospholipid metabolism GPD2, GPD1, PLA2G4A, DGKQ, PLA2G12A, GNPAT, ETNK2,
PISD, GPAM, AGPAT2

0.02019

gga00620 Pyruvate metabolism ME1, LDHB, ALDH7A1, AKR1B1, PDHA1, ACSS2, PDHX 0.03314

gga00250 Alanine, aspartate and glutamate metabolism ASL2, ASS1, GLUD1, ABAT, GPT2, PPAT 0.03791

gga00380 Tryptophan metabolism KYNU, ALDH7A1, CYP1A1, MAOB, ACMSD, HAAO, AFMID 0.03816

gga00630 Glyoxylate and dicarboxylate metabolism HAO1, PGP, ACO1, AFMID 0.05155

gga00512 O-Glycan biosynthesis GALNT2, GALNT1, GALNT6, WBSCR17, GALNTL1, ST6GALNAC1 0.05928

gga00280 Valine, leucine and isoleucine degradation BCAT1, ALDH6A1, ALDH7A1, BCKDHB, ABAT, HIBADH, ACAA1 0.06290

gga02010 ABC transporters ABCG8, ABCG5, TAP2, ABCB6, ABCA3, ABCG1 0.09651
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transcriptional factor) controls the expression of fatty

acid oxidative metabolism by modulating the expression

of peroxisomal acyl-CoA oxidase and mitochondrial car-

nitine palmitoyltransferase [70], and it has been reported

to be highly expressed in rodent liver [71] and swine adi-

pose tissue [72]. However, in the present study, PPARα

was suppressed in the laying hen liver, suggesting that

adipose tissue may oxidize sizeable quantities of fatty

acids in avian species, and perhaps also in other mam-

malian species.

LPGAT1 belongs to a large group of acyltransferases

and is a member of the lysophosphatidic acid acyltrans-

ferase family. LPGAT1 promotes hepatic lipogenesis in

mice [21] and also may be involved in triacylglycerol

synthesis and secretion in liver [73]. However, in this

study we found that LPGAT1 was down-regulated in lay-

ing hens liver. In addition, in a related study we showed

that down-regulated LPGAT1 was induced by estrogen

both in vivo and in vitro (data not shown). All these re-

sults suggested that LPGAT1 may have different expres-

sion patterns in mammals and avian related to specific

functions in regulating fatty acid synthesis. Furthermore,

LPGAT1 may have multiple subcellular localizations,

and could therefore potentially have multiple functions

in different cells or within the same cells [74].

In mammals, lipogenesis is known to occur in liver,

adipose tissue, and mammary gland, whereas, in avian

species, it occurs mainly in avian liver [71]. During the

egg laying stage, fat synthesis in chicken liver is espe-

cially active [75]. The GO annotation cluster analyses

(Additional file 5: Table S5) showed that the SDE genes

were involved mainly in lipid biosynthesis, transport and

localization, sterol and cholesterol metabolism, as well

as in immune response and some other processes. In

poultry, the ovary cannot synthesize lipids; therefore,

liver lipoproteins are transferred in the plasma and de-

posited into the oocytes to form the egg yolk in laying

hens. Therefore, lipid synthesis in chicken liver and lipo-

protein transfer plays a crucial role on the egg produc-

tion performance of hens. Some of the SDE genes that

are not be involved in lipid metabolism may instead con-

tribute to liver homeostasis in response to the dramatic

increase in lipogenesis and protein biosynthesis in the

liver of hens at the laying stage.

Alternative splicing of pre-mRNA plays an import-

ant role in regulating gene expression in higher eu-

karyotes. A previous report indicated that 40–60 % of

human genes have alternative splicing isoforms, al-

though some variants exist only in relatively low

abundance [76]. It has been shown that proteins with

different functions can be produced by a diverse array

of mRNAs derived from a single pre-mRNA, suggest-

ing that alternative splicing is a crucial mechanism

for regulating life [77]. The three alternative splicing

isoforms α, δ, and γ of the PPAR gene were detected

in our transcriptomic data, isoform γ was significantly

down-regulated in L30 compared with L20, while iso-

forms α and δ were not differentially expressed. It

has been shown that PPARα and PPARγ may play sig-

nificant roles in glucose and lipid metabolism in the

early life stage of mouse [78]. Moreover, the DE novel

genes detected in this study may provide important

information about liver lipid metabolism in chicken.

For example, a significantly up-regulated novel gene

ENSGALG00000014190 with four alternative splicing

isoforms was observed in our transcriptome sequen-

cing data. This gene was predicated to encode a pro-

tein of 357 amino acids that could take part in the

lipid metabolic process (UniProt: F1NXW6), which

requires confirmation. Another up-regulated novel

gene ENSGALG00000023444 with three isoforms was

also observed, but its isoforms and function need to

be investigated further.

Lipid metabolism is controlled by multiple pathways

and influenced by multiple genes. These pathways in-

clude the PPAR signaling pathway, steroid biosynthesis,

steroid hormone biosynthesis, and biosynthesis of unsat-

urated fatty acids [79]. In our KEGG analysis, the PPAR

signaling pathway, which is essential for lipid metabol-

ism, showed one of the most significant associations

with the SDE genes in the livers of laying hens. Eighteen

DE genes involved in the PPAR pathway (Additional

file 6: Figure S1); 11 were up-regulated and seven

were down-regulated. In the PPAR pathway, a cyto-

chrome P450 (CYP7A1) catalyzes the rate limiting step

of conversion of cholesterol into bile acids. CYP7A1 is

also involved in the KEGG Bile secretion pathway, and

was reported to be up-regulated in severe negative en-

ergy balance cows [53]. The altered expression patterns

of hepatic genes in the PPAR signaling pathway could play

a role in regulating the lipid metabolism. In addition, a

total nine DE genes (Additional file 7: Figure S2) which all

were SDE ones were found to be involved in the steroid

biosynthesis pathway and all of them were up-regulated

except sterol O-acyltransferase (SOAT1, esterification to

fatty acids), which suggests that this pathway was quite ac-

tive in steroid hormone synthesis. SOATs (SOAT1 and

SOAT2) are known to synthesize cholesterol fatty acid es-

ters using fatty acids released from membrane phospho-

lipids [80].

During the laying stage, gene expression is highly stim-

ulated in liver to support the metabolic changes associ-

ated with the development of the reproductive organs.

In the present study, we identified 960 SDE genes with a

fold change ≥2 or ≤0.5 (FDR ≤0.05) in the livers of laying

hens compared with juvenile hens. Although species-

specific differences should be considered when compar-

ing chicken with mammalian systems, the current
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findings appear to be consistent with conservation of

lipid metabolism and adipogenesis processes in chicken

and mammal. The chicken liver transcriptome reported

here could greatly broaden our understanding of the

regulation and networks of gene expression related to

liver lipid metabolism in hens at different physiological

stages. Our results will serve as important resource for

revealing the mechanism of lipid metabolism during

egg-laying stage.

Conclusions

This study generated transcriptomic data using RNA-

Seq technology that will help to expand our understand-

ing of the molecular repertoire of lipid metabolism-

related genes at different physiological stages in chicken.

Differences in expressed genes were found between the

juvenile and egg laying stages, including highly expressed

novel genes, splice isoforms, and pathways. These find-

ings will be a valuable resource for biological investiga-

tions of liver lipid metabolism-related genes in chicken,

and may also provide clues for understanding the mo-

lecular mechanisms in other poultry and mammalian

species.
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