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Institute, University of Campinas (UNICAMP), Campinas, SP, Brazil

Abstract

Profiling the transcriptome that underlies biomass degradation by the fungus Trichoderma harzianum allows the
identification of gene sequences with potential application in enzymatic hydrolysis processing. In the present study, the
transcriptome of T. harzianum IOC-3844 was analyzed using RNA-seq technology. The sequencing generated 14.7 Gbp for
downstream analyses. De novo assembly resulted in 32,396 contigs, which were submitted for identification and classified
according to their identities. This analysis allowed us to define a principal set of T. harzianum genes that are involved in the
degradation of cellulose and hemicellulose and the accessory genes that are involved in the depolymerization of biomass.
An additional analysis of expression levels identified a set of carbohydrate-active enzymes that are upregulated under
different conditions. The present study provides valuable information for future studies on biomass degradation and
contributes to a better understanding of the role of the genes that are involved in this process.
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Introduction

The fungus Trichoderma harzianum is a well-known biocontrol

agent [1],[2]. Most previously published genetic studies concern-

ing this organism have explored its molecular mechanisms of

biocontrol. This biocontrol ability enables the fungus to identify

and degrade cell walls, and the mechanisms that underlie these

processes were explored in the present study.

Several studies have suggested that T. harzianum may be utilized

for the production of hydrolytic enzymes from a cellulolytic

complex [3],[4],[5],[6], due to its ability to produce high levels of

both b-glucosidase and endoglucanases [7]. These studies have

demonstrated that this fungus is a potential source of hydrolytic

enzymes and may aid in understanding the transcriptional

regulation of biomass degradation by filamentous fungi. The

utilization of sugarcane bagasse as a biomass for the production of

second-generation ethanol requires its degradation into mono-

oligosaccharides and small oligosaccharides that may be metab-

olized by ethanol-producing yeast. The major bottleneck for this

process is the enzymatic hydrolysis of sugarcane bagasse [8]. The

hydrolytic effectiveness of an enzymatic mixture is highly

dependent on the feedstock and any pretreatment it has received

[9]. A strategic issue to be considered during the development of

enzymatic mixtures optimized for second-generation ethanol

production is the cultivation of microorganisms utilizing the

lignocellulosic material that will be hydrolyzed. This cultivation

method may select for enzymes that are optimal for the hydrolysis

of a specific feedstock [9],[10]. One of the primary mechanisms of

the adaptive processes of cells in a complex medium is the

alteration of transcription levels, which can lead to the production

of specialized proteins, differences in membrane composition and

other changes in cellular machinery [11].

A large variety of enzymes with different specificities are

required to degrade the components of lignocellulose

[10],[12],[13],[14]. However, many other proteins may also

contribute to lignocellulose degradation in ways that are not yet

clearly understood, such as the glycoside hydrolase family 61

proteins, the expansins and the swollenins [10],[14],[15]. Three

types of enzymes are required to hydrolyze cellulose into glucose

monomers: exo-1,4-b-glucanases, such as EC 3.2.1.91 and EC

3.2.1.176 (cellobiohydrolase); endo-1,4-b-glucanases, such as EC

3.2.1.4; and b-glucosidases, such as EC 3.2.1.21 (cellobiases)

[10],[16]. Cellobiohydrolases attack the reducing or nonreducing

ends of the cellulose chains, whereas endo-glucanases cleave these

chains in the middle and reduce the degree of polymerization

[10],[17]. The composition of hemicellulose is more variable than

that of cellulose; therefore, more enzymes are required for its

effective hydrolysis. The enzymes that degrade hemicellulose can

be divided into depolymerizing enzymes, which cleave the

backbone of the molecule, and enzymes that remove the
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substituent of the molecule, which may sterically hinder the

depolymerizing enzymes. The core enzymes for the degradation of

xylan to monomers are the endo-xylanases, which cleave the xylan

backbone into shorter oligosaccharides, and b-xylosidase, which

cleaves short xylo-oligosaccharides into xylose. Similarly, the core

enzymes for the degradation of mannan are endo-mannanase and

b-mannosidase. However, xylans and mannans generally contain a

number of different substituents linked to their main backbones,

including arabinose, acetyl groups, galactose and glucose. A host

of ancillary enzymes are required to remove these substituents and

allow the core enzymes to degrade the xylan and mannan

backbones. These ancillary enzymes include the a-L-arabinofur-

anosidases, a-glucuronidase, ferulic acid esterase, a-galactosidase,

feruloyl esterase, acetyl xylanesterase and acetyl mannan esterase.

The ferulic acid esterases specifically cleave the linkages between

hemicellulose and lignin. The a-L-arabinofuranosidases also

possess different specificities; some cleave 1,2 linkages or 1,3

linkages, whereas others cleave doubly substituted arabinose

residues from arabinoxylan [10],[18].

Fungi from the genera Trichoderma, Penicillium, Aspergillus and

Humicola grisea var. thermoidea degrade lignocellulose components,

including sugarcane bagasse [8]. These fungi can degrade

cellulose, hemicellulose and lignin in decaying plants using a

complex set of excreted hydrolytic and oxidative enzymes,

including glycosyl hydrolases from different families [10].

Although many studies have been conducted to characterize the

action of the enzymes involved in lignocellulose degradation, little

is known regarding the transcription and genomic regulation of

the genes that encode these enzymes. Trichoderma reesei is the major

industrial source of the cellulases and hemicellulases that are

utilized in the depolymerization of biomass to simple sugars, which

are then further converted into chemical intermediates and

biofuels. Unexpectedly, despite the industrial utility and effective-

ness of the carbohydrate-active enzymes of T. reesei, the genome of

this species encodes fewer cellulases and hemicellulases than that

of any other sequenced fungus that can hydrolyze plant cell wall

polysaccharides [19],[20]. Thus, a better understanding of the

genetic mechanisms of this fungus is necessary to explore its

extraordinary biotechnological potential. The present study

analyzes the transcriptome of T. harzianum IOC-3844 grown in a

sugarcane bagasse-based culture medium and the induction of

hydrolytic activity in this medium, with particular emphasis on the

potential contributions of the fungus to fuel biotechnology and

other industrial applications. This organism is available in public

collections, and studies addressing the mechanisms of regulating

and gene expression in this fungus are important to make its use in

biotechnological processes viable. This work seeks to contribute to

the understanding of the reactions involved in biomass degrada-

tion at the enzymatic level and will serve as the basis for other

studies exploring the biotechnological potential presented by T.

harzianum. The primary goal of these analyses was to identify,

characterize and catalog the transcripts expressed by T. harzianum

that are involved in the degradation of complex substrates, thereby

revealing the complexity of the hydrolytic pathways involved in

biomass degradation.

Materials and Methods

Regarding the Ethics Statement, we confirm that no specific

permits were required for the present studies. Additionally, we

confirm that the field studies did not involve endangered or

protected species.

Strain and Culture Media
The T. harzianum IOC-3844 strain used in this study was

provided by Professor Dr. Nei Pereira Jr. (Federal University of

Rio de Janeiro, Rio de Janeiro, Brazil). The species was confirmed

by comparing its ITS1 and ITS2 sequences with those of standard

strains of T. harzianum. (available at Institute Oswaldo Cruz, Rio de

Janeiro, RJ, Brazil and Centro de Pesquisas Quı́micas e Biológicas

na Agricultura (CPQBA) - CBMAI, UNICAMP, Campinas, SP,

Brazil). The stock cultures were stored at 4uC on potato dextrose

agar (PDA) slants. The fungi were grown on PDA plates

(90615 mm) at 29uC for 8 days.

The composition of the basal medium was adapted from

Mandels and Weber (1969) [21] and included (g L21) KH2PO4

(2.0), NH4SO4 (1.4), MgSO4?7H2O (0.3), CaCl2?2H2O (0.3),

CoCl2 (0.002), MnSO4?H2O (0.0016), ZnSO4?H2O (0.0014),

FeSO4?7H2O4 (0.005) and urea (0.3). The pH was adjusted to

5.2. Three different preculture media for mycelial production were

prepared from the basal medium through the addition of 2 g L21

glucose, 1 g L21 peptone, 1 mL L21 Tween 80 and 10 g L21 of a

carbon source. The carbon sources used in the three preculture

media were lactose, crystalline cellulose and delignified sugarcane

bagasse (DSB, from a local mill, Usina Vale do Rosário, Orlândia,

SP, Brazil), which was prepared and characterized according to

Rocha et al. (2012) [22]. The percentage composition of the DSB

was 89.561.6 cellulose, 3.460.3 hemicellulose and 5.560.2 lignin

[4]. The preculture media were sterilized at 121uC for 20 min.

The production medium was composed of the basal medium,

10 g L21 DSB as a unique carbon source, 1 g L21peptone and

1 mL L21 Tween 80; the medium was then sterilized at 121uC for

20 min. All other chemicals were of at least analytical grade. The

following libraries were classified based on the preculture media:

the ‘‘DSB’’ library was generated from a preculture medium that

contained DSB, the ‘‘CEL’’ library was generated from a

preculture medium that contained crystalline cellulose, and the

‘‘LAC’’ library was generated from a preculture medium that

contained lactose. This latter condition was designated as the

control.

Preculture and fermentation
Conidial suspensions were prepared through the addition of

sterilized distilled water and Tween 80 to the PDA plates, which

resulted in conidial suspensions of 96105 spores mL21. After

preparation, 4.0 mL of each conidial suspension was transferred to

Erlenmeyer flasks containing 600 mL of each preculture medium,

and the flasks were incubated for 72 h at 29uC on a rotary shaker

at 200 rpm. A volume of 30 mL of each medium was transferred

to individual Erlenmeyer flasks containing 270 mL of the

production medium. The flasks were incubated at 29uC for

129 h on a rotary shaker at 200 rpm. Samples of the mycelia and

the fermentation extracts were removed to determine the

enzymatic activity and to conduct the transcriptome analyses.

Analytical measurements
The filter paper activity (FPase) was determined as described by

Ghose (1987) [23], with modifications to diminish the scale of the

procedure by a factor of 10. All statistical comparisons were done

using Student’s t test (P,0.05).

RNA extraction and transcriptome sequencing
The mycelial samples from the LAC, CEL and DSB conditions

were extracted after 96 h of fermentation, stored at 270uC and

Transcriptome of Trichoderma harzianum IOC-3844
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used for RNA extraction. The fungal mRNA was isolated

according to Jones et al. (1985) [24] with some modifications.

Two grams of each mycelial sample was frozen using liquid

nitrogen in a mortar and ground with a pestle into a fine powder.

Next, NTES buffer (4.5 mL, 0.1 M NaCl, 0.01 M Tris-HCl at

pH 7.5, 1 mM EDTA and 1% SDS) and phenol/chloroform/

isoamyl alcohol [3 mL of a 1:1:1 mixture] were added, and the

sample was ground until the mixture had thawed. After vortexing

for 10 min, the solution was centrifuged at 8,000 rpm for 10 min

at 4uC. To the aqueous phase, 3 mL of phenol/chloroform/

isoamyl alcohol [1:1:1 mixture] was added, and the solution was

centrifuged at 8,000 rpm for 10 min. The aqueous phase was then

removed, and the nucleic acid was precipitated through the

addition of a 0.1 volume aliquot of 2 M NaAc, pH 4.5, and two

volumes of 100% ethanol. The precipitate was centrifuged at

8,000 rpm for 10 min, and the pellet was resuspended in 2.5 mL

of sterile water. To remove the DNA, 2.5 mL of 4 M LiAc was

added, and the solution was incubated for 48 h at 220uC. The

precipitate was collected by centrifugation at 8,000 rpm for

10 min, then washed with 70% ethanol, resuspended in 50 mL of

sterile water and stored at 270uC.

The RNA samples were quantitated using a fluorescence-based

method, and their quality was determined using a 2100

Bioanalyzer (Agilent Technologies, Palo Alto, CA).

The libraries were constructed using 4 mg of each RNA sample

and the TruSeq RNA sample preparation kit (Illumina Inc., San

Diego, CA) according to the manufacturer’s instructions. The

expected target sizes were confirmed using a 2100 Bioanalyzer

(Agilent Technologies, Palo Alto, CA), and the libraries were

quantified using qPCR. The average insertion size was 260 bp.

The clustering was conducted using 10 mM of each library and a

TruSeq PE Cluster Kit on cBot (Illumina Inc., San Diego, CA).

The sequencing was performed on the Illumina Genome

AnalyzerIIx, which is a next-generation high-throughput sequenc-

er (Illumina Inc., San Diego, CA), according to the manufacturer’s

specifications for paired-end reads of 72 bp in individual lanes.

Downloading and processing the sequence data
After the sequencing was completed, the data were transferred

to a local high-performance computing server at CBMEG

(University of Campinas, Campinas, Brazil). The results were

submitted to NCBI under accession number SRX189214, and the

raw sequences (archives of paired and paired-end sequences) were

submitted to the NCBI Sequence Read Archive (SRA) under

accession numbers SRR579379, SRR631745 and SRR631746 for

the DSB, CEL and LAC libraries, respectively. Initially, all

sequences were trimmed. We utilized the CLC Genomics

Workbench (v4.0; Finlandsgade, Dk) to perform the reads

trimming, and parameters were set to: quality limit: 0,03;

ambiguous limit: 2; minimum final number of nucleotides in

reads: 65; phred scale: 15. De novo assembly was conducted using

CLC Genomics Workbench (v4.0; Finlandsgade, Dk) with the

following parameters: similarity = 0.98 and length fraction= 0.9.

The resulting contigs were compared with the NCBI non-

redundant protein database (NR) using BLAST to identify

homologous sequences [25], with an E-value cutoff of #l e25.

The sequences were functionally annotated according to Gene

Ontology terms [26], and the annotations were compared with the

Kyoto Encyclopedia of Genes and Genomes [28] to establish

biochemical pathway associations using Blast2Go, which is a

universal web-based annotation application [27] The sequences

were aligned against the Carbohydrate-Active Enzymes (CA-

Zymes) database to identify glycosyl hydrolases [29],[30],[31],

[32],[33], glycosyltransferases [34],[35], carbohydrate-binding

modules [36] and carbohydrate esterases [37].The T. harzianum

IOC-3844 genome was provided by Dr. Reginaldo M. Kuroshu

(University of São Paulo, São Carlos, Brazil). Only the best

alignments showing expectation values lower than 161025 were

considered for functional gene annotation. To compare the

transcript sequences with the genome and CAZyme datasets,

CLC Genomics Workbench was used. The archive of the

assembly scaffolds for T. harzianum CBS 226.95, which is available

on JGI (sequence data produced by the US Department of Energy

Joint Genome Institute in collaboration with the user community)

[38], was used to calculate the similarity between the data.

Expression pattern
A paired Kal’s t-test was conducted on the log2-transformed

data to determine whether significant differences existed between

the expression ratios found in each treatment and the control.

Contigs were identified as being differentially expressed in

upregulated groups when significance was detected with a false

discovery rate lower than 161023. Hierarchical clustering analysis

and K-means clustering were performed on the CAZymes that

were identified as being differentially expressed. Clustering was

performed using Euclidean distance as the distance metric in three

partitions according to the cluster features, on the transformed

expression values.

Real-Time PCR analysis
To validate the expression profiles of the assembled genes

obtained through sequencing data analysis, quantitative real-time

(RT-qPCR) was performed for selected genes. Genes associated

with biomass degradation processes were selected and are shown

in Table S1, together with the primers and annealing tempera-

tures.

Quantification of gene expression was performed by continu-

ously monitoring SYBR Green fluorescence. The reactions were

performed in triplicate in a total volume of 6.25 ml. Each reaction

included 3.12 ml of SYBR Green Master Mix (Invitrogen,

Carlsbad, CA), 1.0 ml of direct and reverse primers, 0.5 mL of

cDNA and 1.6 ml of water. The reactions were assembled in 384-

well plates. PCR amplification-based expression profiling of the

selected genes was performed using a gene for squalene-epoxidase

as endogenous control. Four genes were tested as endogenous

control: genes for actin, beta-tubulin, glyceraldehyde 3-phosphate

dehydrogenase, and squalene-epoxidase. The last one had the best

performance in RT-qPCR analysis, remaining constant in all

treatments. The enzyme squalene-epoxidase catalyses the conver-

sion of squalene to 2,3-(S) oxidosqualene, which is an intermediate

in the synthesis of the fungal cell membrane component ergosterol.

RT-qPCR was conducted in an ABI PRISM 7500 HT (Applied

Biosystems, Foster City, CA). Gene expression was calculated via

the Delta-Delta cycle threshold method [47]. All statistical

comparisons were done using Student’s t test (P,0.05). The

obtained RT-qPCR results were in agreement with the RNA

expression analyses of the generated assemblies. The same

expression profile was observed for the genes encoding GH16,

GH10, CE5, and GH5. Figure 1 shows the expression of the

selected genes.

Transcriptome of Trichoderma harzianum IOC-3844
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Results

Enzymatic Activity Profile
The FPase was evaluated to determine the enzymatic activity

profile of the cellulases during 129 h of fermentation (Figure 2)

using DSB as a carbon source. RNA was isolated from the mycelia

at 96 h of cultivation; this time point was associated with a

significant production of FPase (0.53 FPU mL21) (Figure 2). This

96 h cultivation period included a 48 h adaptation phase. Previous

studies have indicated that the enzymatic activity of this fungus, as

measured by cellulase production, is lower when grown on soluble

carbon sources than when grown on DSB, and these results are in

agreement with the present study [4]. The substrate acts as both

an adhesion surface and as fermentable biomass for the fungi, and

it activates the synthesis of hydrolytic complexes.

The increased FPase activity indicated the enhanced ability of

the fungus to metabolize and degrade compounds in the biomass.

The maximum activity was observed between 72 and 96 h, after

which the activity was repressed due to the formation of

degradation products.

To identify the origin of the enzymatic activity in the extracts,

we evaluated the transcriptome expression at 96 h of fermenta-

tion.

Sequencing assembly
In total, 246 million raw sequencing reads were generated with

a target length of 72 bp (Table 1). After quality trimming, 84.11%

of the data were retained for a total of 14.7 Gbp of sequencing

data. De novo assembly using trimmed reads from all libraries

resulted in 32,494 contigs, with an N50 of 1,251 bp. The

assembled transcripts redundancy was determined through CD-

HIT-EST. After this analysis, the final number of contigs was

32,396.

Analysis of the transcriptome under the influence of
sugarcane bagasse as a substrate
Transcript profiling is an important strategy for studying the

expression of large gene sets under particular conditions. To

determine the influence of the complex sugarcane bagasse

substrate on gene expression, the contigs generated from the de

Figure 1. Expression profiles of selected glycosyl hydrolase genes determined by RT-qPCR. The squalene-epoxidase gene was used as
endogenous control. The differences between groups were considered significant at P,0.05 (Student’s t test) and are indicated by *.
doi:10.1371/journal.pone.0088689.g001
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novo assembly of the transcriptome were analyzed. The generated

assembly was compared with the archive of the assembly scaffolds

for T. harzianum CBS 226.95 [38], which demonstrated a similarity

of 96% with the contigs derived from the assembly of the

transcriptome. To identify the responses of the transcriptome

under the different conditions tested, the contigs were annotated

and classified according to their predicted functions (Figure 3).

The high number of sequences generated in this study, which

were produced only through the use of next-generation sequenc-

ing, allows a precise overview of the different biological processes

that occur in an organism at a given moment, and classifying these

sequences allows for analysis of the genes that may be involved in

biomass degradation. Sequences that were classified as possessing

catalytic activity (6,975) or regulating enzymatic activity (143) may

be involved in biomass degradation. When analyzed according to

biological processes, the majority of the annotations were classified

as participating in metabolic processes (7,393), followed by cellular

processes (6,294). Regarding molecular functions, binding and

catalytic activity were the most frequent classifications. Concern-

ing cellular components, genes involved in cellular (5,184) and

organelle (2,665) components and the membrane (2,143) were the

most abundant.

For the hydrolysis of complex substrates such as sugarcane

bagasse, a microorganism must produce an array of specialized

enzymes that can hydrolyze lignocelluloses. The interaction

between different classes of enzymes has been extensively studied

[12],[13] and was observed in the present study. Figure 4

summarizes several of the enzyme classes that are potentially

involved in biomass degradation and the number of contigs

assigned to each of them. Of the contigs formed after assembly,

Figure 2. Filter paper activity enzymatic profiles (FPU mL21 h21). T. harzianum fermentation on a complex substrate (DSB) from extracts
grown on preculture media using DSB (n), cellulose (e) or lactose (%) as the carbon source. The differences were considered significant at P,0.05
(Student’s t-test) and are indicated by (a) for cellulose, (b) for DSB and (c) for lactose samples.
doi:10.1371/journal.pone.0088689.g002

Table 1. Results of next-generation sequencing, trimming analysis, de novo assembly and mapping.

Library DSB CEL LAC Length (bp) N50

Number of Raw reads 81,705,758 84,301,646 80,468,986 72.0

Number of trimmed reads 68,720,401 68,644,205 67,912,155 71.8

Single reads 5,820,501 6,451,047 5,586,409

Paired reads 62,899,900 62,193,158 62,325,746

Number of Mapped reads 28,377,065 28,663,344 29,343,868

Single reads 2,463,163 2,803,982 2,477,029

Paired reads 25,913,902 25,859,362 26,866,839

Unmapped reads 40,343,336 39,980,861 38,568,287

Single reads 3,357,338 3,647,065 3,109,380

Paired reads 36,985,998 36,333,796 35,458,907

Contigs 32,494 1,251

CD-HIT-EST contigs 32,369

The raw reads were de novo assembled to generate contigs for further analysis and annotation.
doi:10.1371/journal.pone.0088689.t001
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Figure 3. Molecular functions, biological process distribution and cellular localization of the transcriptome assembly. Contigs were
assigned putative classifications based on homology and evaluated for their predicted involvement in molecular functions (A), biological processes
(B) and cellular localization (C).
doi:10.1371/journal.pone.0088689.g003

Figure 4. Identified sequences that catalyze reactions that are potentially involved in biomass degradation. The results of
identification based on homology using the NCBI NR database indicate the presence of genes that are related to the depolymerization of biomass in
the transcriptome.
doi:10.1371/journal.pone.0088689.g004
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36.18% were classified according to GO terms, with 21.46% being

involved in catalytic reactions. Approximately 164 contigs were

classified as being potentially involved in metabolic reactions

related to biomass degradation.

The b-glucosidase classification are specifically involved in the

hydrolysis of cellulose. These sequences catalyze the hydrolysis of

terminal, nonreducing b-D-glucose residues through the release of

b-D-glucosidase (EC 3.2.1.21) and glucan 1,4-a-glucosidase (EC

3.2.1.3), which in turn catalyze the hydrolysis of terminal (1R4)-

linked a-D-glucose residues from the nonreducing ends of the

chains. Both of these steps release b-D-glucose, which is the

monomer that is further metabolized.

Hemicellulose possesses a more varied composition than

cellulose and requires enzymes to be effectively hydrolyzed.

Sequences were classified as being involved in the degradation

of xylan to monomers, including both endo-xylanases (EC 3.2.1.8),

which cleave the xylanbackbone into shorter oligosaccharides, and

b-xylosidase (EC 3.2.1.37), which cleaves short xylo-oligosaccha-

rides into xylose. Similarly, sequences were related to mannan

degradation (EC 3.2.1.113, EC 3.2.1.25, EC 3.2.1.24, EC 3.2.1.78

and EC 3.2.1.101). Several ancillary enzymes were also identified,

including a-glucuronidase (EC 3.2.1.139), a-galactosidase (EC

3.2.1.22) and arabinofuranosidase (EC 3.2.1.55).

Systematic synergisms between the different enzyme classes

could be observed for specific metabolic pathways in the T.

harzianum transcriptome. These pathways included the metabolism

of different sugars, which are associated with the depolymerization

of biomass and were classified according to specific criteria of the

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Table 2)

[28].

In this manner, different classes of enzymes that act together to

degrade the cellulose backbone were identified. The application of

enzymes to catalyze the degradation of cellulose to glucose and

heteroxylans to pentose is now considered to be the most viable

strategy for providing cost-efficient second-generation ethanol

processes [39],[18], and the present study confirms that a variety

of different metabolic pathways are necessary for sugar degrada-

tion in this yeast.

Classification according to CAZymes
To determine the number of encoded genes related to biomass

degradation in the transcriptome, we searched for the following

carbohydrate-active enzyme groups: glycoside hydrolases (GHs),

glycosyltransferases (GTs), carbohydrate esterases (CEs) and the

corresponding carbohydrate-binding modules (CBMs). We com-

pared the transcriptome with a group of annotated sequences from

the CAZymes database, including the annotated sequences for 17

cellulases from T. reesei. To identify CAZymes in T. harzianum
IOC-3844, the assembled transcriptome was aligned against the

specific CAZy dataset, and only the best alignment was considered

for each gene sequence. A total of 527 CAZymes were identified in

the T. harzianum IOC-3844 predicted gene set (unpublished

results). We identified 487 predicted CAZymes in the transcrip-

tome using a cutoff E-value of 161025. From the predicted

CAZymes, we identified 23 genes that encoded proteins of the

glycoside hydrolase families that are involved in cellulose

depolymerization: three genes were classified as GH5, one gene

as GH7, two genes as GH12, two genes as GH45, three genes as

GH1, 10 genes as GH3, one gene as GH6 and one gene as GH61.

In the cellulose depolymerization group, we found 10 different

sequences that encoded carbohydrate-binding modules. Regard-

ing genes involved in hemicellulose depolymerization, 22 genes

were identified from the following glycoside hydrolase families:

three genes from GH10, three genes from GH11, two genes from

GH26, three genes from GH43, three genes from GH54, one gene

from GH62, two genes from GH67, one gene from GH74 and

four genes from GH95. Six carbohydrate-binding module

sequences were classified as belonging to enzymes that degrade

hemicellulose (Figure 5).

Comparative expression analysis
To analyze the differences in expression levels among the tested

growth conditions, we compared the total assembly generated

from all of the sequenced transcriptome libraries (DSB+CEL+-

LAC library) with each individual transcriptome assembly. The

mapping results are shown in Table 1.

To identify the transcriptomic responses under each condition,

we analyzed the distribution of the genes that were identified as

being differentially expressed. Pairwise comparisons of the subsets

indicated the total number of genes that were overexpressed under

each condition. The classification of differentially expressed

contigs allowed us to determine the set of genes for carbohy-

drate-active enzymes that were upregulated in each group

(Table 3, Figure 6 and 7).

Different genes corresponded to different glycoside hydrolase

families involved in carbohydrate metabolism in the different

upregulated groups. According to the Carbohydrate-Active

Enzymes database [40], the glycoside hydrolases of family 1

include enzymes that possess b-glucosidase (EC 3.2.1.21), b-

galactosidase (EC 3.2.1.23) and b-mannosidase (EC 3.2.1.25)

activities; the glycoside hydrolases of family 18 possess chitinase

(EC 3.2.1.14) activity; the glycoside hydrolases of family 55 exhibit

exo-b-1,3-glucanase (EC 3.2.1.58) and endo-b-1,3-glucanase (EC

3.2.1.39) activities; the glycoside hydrolases of family 3 exhibit b-

glucosidase (EC 3.2.1.21) and xylan 1,4-b-xylosidase (EC 3.2.1.37)

activities; the glycoside hydrolases of family 5 possess chitosanase

(EC 3.2.1.132), b-mannosidase (EC 3.2.1.25), endo-b-1,4-gluca-

nase/cellulase (EC 3.2.1.4) and glucan b-1,3-glucosidase (EC

3.2.1.58) activities; the glycoside hydrolases of family 11 present

endo-1,4-b-xylanase (EC 3.2.1.8) activity; and the glycoside

hydrolases of family 16 exhibit endo-1,3-b-glucanase (EC

3.2.1.39) or endo-1,3(4)- b-glucanase (EC 3.2.1.6) activity. The

LAC library contained 33 classified genes, whereas the CEL

library contained 23 genes and the DSB library contained 22

genes. These gene classifications included glycosyltransferases

(GTs), which catalyze the transfer of sugar moieties from activated

donor molecules to specific acceptor molecules to form glycosidic

bonds; carbohydrate esterases (CEs); and the corresponding

carbohydrate-binding modules (CBMs). Glycosyltransferases can

be classified as either retaining or inverting enzymes according to

the stereochemistry of their substrates and reaction products. The

glycosyltransferases of family 2 (GT2) exhibit cellulose synthase

(EC 2.4.1.12) and chitin synthase (EC 2.4.1.16) activities and

appear in all three libraries. The glycosyltransferases of family 4

(GT4) exhibit sucrose synthase (EC 2.4.1.13) and sucrose-

phosphate synthase (EC 2.4.1.14) activities. Therefore, some of

the genes that are responsible for biomass degradation reactions

are highly expressed, whereas others, though not highly expressed,

may also confer the ability to degrade organic compounds for

energy in this fungus. Thus, the fungus can adapt its cellulolytic

system to the composition of its medium by increasing or

decreasing the expression of certain genes, as observed in the

present study.

Discussion

The ability of filamentous fungi to efficiently degrade plant

polymers is an important aspect of microbial ecology and may
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Table 2. Metabolic pathways expressed in different libraries.

Metabolic Pathway Library Enzyme Code Classification

Fructose and mannose metabolism DSB EC 1.1.1.17: 5-dehydrogenase

CEL EC 3.2.1.78: endo-1,4-b-mannosidase

Lysine biosynthesis DSB EC 1.2.1.31: dehydrogenase

Lysine degradation DSB EC 1.2.1.31: dehydrogenase

Purine metabolism CEL EC 2.7.7.7: DNA polymerase

CEL EC 3.6.1.3: adenylpyrophosphatase

CEL EC 3.6.1.15: nucleoside triphosphate phosphohydrolase

LAC EC 3.6.1.3: adenylpyrophosphatase

Thiamine metabolism CEL EC 3.6.1.15: nucleoside triphosphate phosphohydrolase

Methane metabolism CEL EC 1.14.13.8: monooxygenase

CEL EC 1.11.1.7: lactoperoxidase

Phenylpropanoid biosynthesis CEL EC 1.11.1.7: lactoperoxidase

Phenylalanine metabolism CEL EC 1.11.1.7: lactoperoxidase

Glycerophospholipid metabolism CEL EC 4..1.1.65: decarboxylase

LAC EC 1.1.1.8: dehydrogenase (NAD+)

Pyrimidine metabolism CEL EC 2.7.7.7: DNA polymerase

Starch and sucrose metabolism CEL EC 3.2.1.1: endo-1,4-b-D-glucanase

LAC EC 3.2.1.37: 1,4-b-xylosidase

Drug metabolism: cytochrome P450 CEL EC 1.14.13.8: monooxygenase

Drug metabolism: other enzymes LAC EC 3.1.1.1: aliesterase

Riboflavin metabolism CEL EC 1.1.1.193: reductase

Fructose and mannose metabolism CEL EC 3.2.1.78: endo-1,4-b-mannosidase

Amino sugar and nucleotide sugar metabolism LAC EC 3.2.1.37: 1,4-b-xylosidase

EC 3.2.1.55: arabinosidase

Pyruvate metabolism LAC EC 2.3.3.9: synthase

Nitrogen metabolism LAC EC 1.9.3.1: oxidase

Other glycan degradation LAC EC 3.2.1.45: psychosine hydrolase

Glycerolipid metabolism LAC EC 1.1.1.72: dehydrogenase (NADP+)

Oxidative phosphorylation LAC EC 1 1.9.3.1: oxidase

Glyoxylate and dicarboxylate metabolism LAC EC 2.3.3.9: synthase

Sphingolipid metabolism LAC EC 3.2.1.45:psychosine hydrolase

Fructose and mannose metabolism DSB EC 1.1.1.17: 5-dehydrogenase

CEL EC 3.2.1.78: endo-1,4-b-mannosidase

Lysine biosynthesis DSB EC 1.2.1.31: dehydrogenase

Lysine degradation DSB EC 1.2.1.31: dehydrogenase

Purine metabolism CEL EC 2.7.7.7: DNA polymerase

CEL EC 3.6.1.3: adenylpyrophosphatase

CEL EC 3.6.1.15: nucleoside triphosphate phosphohydrolase

LAC EC 3.6.1.3: adenylpyrophosphatase

Thiamine metabolism CEL EC 3.6.1.15: nucleoside triphosphate phosphohydrolase

Methane metabolism CEL EC 1.14.13.8: monooxygenase

CEL EC 1.11.1.7: lactoperoxidase

Phenylpropanoid biosynthesis CEL EC 1.11.1.7: lactoperoxidase

Phenylalanine metabolism CEL EC 1.11.1.7: lactoperoxidase

Glycerophospholipid metabolism CEL EC 4..1.1.65: decarboxylase

LAC EC 1.1.1.8: dehydrogenase (NAD+)

Pyrimidine metabolism CEL EC 2.7.7.7: DNA polymerase

Starch and sucrose metabolism CEL EC 3.2.1.1: endo-1,4-b-D-glucanase

LAC EC 3.2.1.37: 1,4-b-xylosidase
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afford many potential industrial applications. The fungal strain T.

harzianum demonstrates promising results for on-site cellulase

production and is a potential candidate for the production of

hydrolytic enzymes [4],[6].

To evaluate the cellulase activity of this fungus on pretreated

sugarcane bagasse, we measured FPase, which reflects the overall

activity of multicomponent enzyme complexes for cellulose

hydrolysis [41]. An increase in cellulose activity is observed over

the course of cultivation until 96 h, which represents the

maximum cellulolytic activity (Figure 2). The DSB sample, which

was used as the inducer, initiated fermentation at a level 4-fold

greater than cellulolytic activity, which is most likely due to

previous adaptation of the fungus to the substrate during the

production of mycelia (during the preculture). In this case, the set

of genes that were activated during the induction of mycelial

growth was identical to the set used in fermentation, which

allowed for a higher rate of fermentation in the first 24 h. In the

first 48 to 96 h, the cellulolytic activity profile of the sample

induced with DSB maintained a growth profile and FPase that was

statistically similar to that of samples induced with cellulose. This

Table 2. Cont.

Metabolic Pathway Library Enzyme Code Classification

Drug metabolism: cytochrome P450 CEL EC 1.14.13.8: monooxygenase

Drug metabolism: other enzymes LAC EC 3.1.1.1: aliesterase

Riboflavin metabolism CEL EC 1.1.1.193: reductase

Fructose and mannose metabolism CEL EC 3.2.1.78: endo-1,4-b-mannosidase

Amino sugar and nucleotide sugar metabolism LAC EC 3.2.1.37: 1,4-b-xylosidase

EC 3.2.1.55: arabinosidase

Pyruvate metabolism LAC EC 2.3.3.9: synthase

Nitrogen metabolism LAC EC 1.9.3.1: oxidase

Other glycan degradation LAC EC 3.2.1.45: psychosine hydrolase

Glycerolipid metabolism LAC EC 1.1.1.72: dehydrogenase (NADP+)

Oxidative phosphorylation LAC EC 1 1.9.3.1: oxidase

Glyoxylate and dicarboxylate metabolism LAC EC 2.3.3.9: synthase

Sphingolipid metabolism LAC EC 3.2.1.45: psychosine hydrolase

The classification of the contigs according to the NCBI NR and KEGG databases [46],[28] indicates which metabolic pathway is active under a specific culture condition.
doi:10.1371/journal.pone.0088689.t002

Figure 5. Encoded genes related to cellulose and hemicellulose depolymerization. Genes classified in the transcriptome analysis of
T. harzianum fermentation on sugarcane bagasse.
doi:10.1371/journal.pone.0088689.g005
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result indicates that the set of genes that were active after the

adaptation phase of fermentation may have been similar between

the samples; however, the sample induced with DSB must have

differentially expressed some genes in the first 24 h of growth

because it reached a higher peak of cellulolytic activity

(0.260.01 FPU mL21) compared with the samples induced with

cellulose and lactose. The sample that used lactose as the inducer

of mycelial growth maintained lower levels of activity throughout

the fermentation. Notably, in the first 24 h of fermentation, the

CEL and LAC samples both achieved similar (0.0560.004 and

0.0260.002 FPU mL21, respectively) levels of FPase, suggesting

that the set of genes that were activated during the preculture

phase generated similar rates of cellulose-degrading enzymatic

activity.

To elucidate how the complex sugarcane bagasse substrate

influences the set of fungal gene transcripts that conferred

enzymatic activity, we analyzed the transcription profiles of the

samples. The results represent the first characterization of global

gene expression in T. harzianum grown on a complex substrate

(Figure 3). In the analysis of 32,494 contigs from the cDNA library,

6,975 sequences were classified as possessing catalytic activity

(21.46% of total contigs), of which 2,555 possess hydrolase activity

and act on chemical bonds such as ester, carbon-nitrogen and

carbon-carbon bonds (Table 4). The high number of identified

hydrolase sequences allowed us to determine the gene sequences

that were related to specific degradation reactions. A similar

annotation profile, which was generated using Gene Ontology

(GO), was described by Steindorff et al. (2012) [5] for an EST

sequencing library of 2,927 high-quality sequences. In both

experiments, catalytic activity and binding represented the major

classified molecular functions, with metabolic and cellular

processes being the most prevalent classifications, and the cell

and organelle category constituting the most common cellular

localization.

The current study identified genes that were upregulated by

different substrates in the preculture phase (Table 3). The DSB

library contained 792 classified contigs, 514 of which were

homologous to the T. harzianum genome and 22 of which were

related to the CAZyme library. Among the 377 classified contigs in

the CEL library, 243 were related to the genome, and 23 were

identified among the CAZyme. Among the 299 classified contigs

in the LAC library, 272 genes were related to the genome, and 33

were identified in the CAZyme dataset (Table 3). Therefore,

according to the CAZyme classification, 79 genes were differen-

tially expressed between two conditions and exhibited an

expression level that was measurable in the other conditions. In

this analysis, the gene expression values fell into three profiles after

K-means clustering (Figure 6). Cluster 1 (Figure 7A) contained the

genes (members of the glycoside hydrolase family) that were most

highly expressed in the DSB library; cluster 2 (Figure 7B)

contained the most highly expressed genes in the CEL library

and.Cluster 3 (Figure 7C) contained the most highly expressed

genes in the LAC library; A difference observed between the set

group of GHs could be related to the influence of the different

substrates. Several contigs were analyzed further in terms of their

expression values and similarity.

Among the differentially expressed genes, we identified genes

related to extracellular degradative enzymes that play an

important role in pathogenesis. These enzymes include the

carbohydrate esterase family 5 protein, whose cutinase domain

(contig 25106, classified based on CAZ similarity as EHK47149.1,

IPR000675) hydrolyzes cutin and facilitates fungal penetration

Figure 6. K-means clustering of differentially expressed genes identified as CAZymes (summarized in Table 3).
doi:10.1371/journal.pone.0088689.g006
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through the cuticle. Inhibition of this enzyme can prevent fungal

infection through intact cuticles. When cutin monomers are

released from the cuticle due to small amounts of cutinase on

fungal spore surfaces, these monomers can greatly increase the

amount of cutinase secreted by the spore, although the mechanism

underlying this process remains unknown. Another, more highly

expressed, contig was classified as a member of the GH11 family

(contig 20286).The overwhelming majority of the glycoside

hydrolases of this family are xylanases. These enzymes carry out

the endohydrolysis of (1R4)-beta-D-xylosidic linkages in xylans

and random hydrolysis of (1R3)-beta-D-glycosidic linkages in

(1R3)-beta-D-xylans. Contig 27456 exhibited similarity to family

GH71, which includes a-1,3-glucanase (EC 3.2.1.59). O-Glycosyl

hydrolases (EC 3.2.1.) are a widespread group of enzymes that

hydrolyze glycosidic bonds between two or more carbohydrates or

between a carbohydrate and a noncarbohydrate moiety

(IPR005197), and they are also related to CBM24 (a-1,3-glucan

(mutant)-binding function) [42].

In the DSB library, contig 20009 was found to be differentially

expressed at a significant RPKM level (103.86) and was similar to

a GH16 protein from Trichoderma virens (EHK18881.1,

IPR000757). The GH16 family contains a variety of enzymes

with a range of known activities. Lichenase (EC 3.2.1.73),

xyloglucan xyloglucosyltransferase (EC 2.4.1.207), agarase (EC

3.2.1.81), kappa-carrageenase (EC 3.2.1.83), endo-b-1,3-glucanase

(EC 3.2.1.39), endo-b-1,3-1,4-glucanase (EC 3.2.1.6) and endo-b-

galactosidase (EC 3.2.1.103) are all members of this family.

In this study, we identified sequences related to different classes

of enzymes that act on the cellulose backbone, such as GH5, which

exhibits endo-b-1,4-glucanase activity in T. reesei (EC 3.2.1.4) and

is responsible for the hydrolysis of the (1R4)-b-D-glucosidic

linkages in cellulose. The GH3 family exhibits b-glucosidase

activity in T. reesei (EC 3.2.1.21), where it hydrolyzes terminal,

nonreducing b-D-glucosyl residues and releases b-D-glucose. This

monomer can enter into the eukaryotic energy pathway of

glycolysis. Glycolysis produces energy and requires an input of

two ATP molecules. This input is used to generate four new ATP

molecules, resulting in a net gain of two ATP molecules. Two

NADH molecules are also produced; these molecules serve as

electron carriers for other biochemical reactions in the cell. The

enzymes that are necessary to catalyze the degradation of glucose

molecules are expressed throughout the growth of the fungus on

the complex substrate, possibly to produce energy through

glycolysis and support cell survival and reproduction. The

enzymes that act in biomass degradation were the focus of this

work, and this analysis allowed us to identify a set of enzymes that

are involved in carbohydrate metabolism based on expression

profiles.

Regarding expression differences, the LAC library contained

numerous genes receiving CAZyme classifications. Lactose, an

Figure 7. The identified genes (summarized in Table 3) were resolved into three clusters. The identified genes were further classified into
one of three response profiles based on where they were most highly expressed: (A) in the DSB library, (B) in the CEL library or (C) in the LAC library.
doi:10.1371/journal.pone.0088689.g007

Transcriptome of Trichoderma harzianum IOC-3844

PLOS ONE | www.plosone.org 12 February 2014 | Volume 9 | Issue 2 | e88689



Table 3. Classification of sequences present in upregulated groups, according to the CAZyme database.

Upregulated

group Cluster Contig

Length

(bp) Lowest E-value CAZy RPKM

DSB CEL LAC

DSB 1 6765 1,521 0.00 GT69 58.25 28.90 29.42

7294 1,155 3.72E-33 GT39 84.76 51.53 42.58

14029 3,726 0.00 GT2 97.16 35.91 58.69

15954 665 3.74E-13 GH28 64.39 28.07 32.29

16314 1,044 0.00 GH76 144.84 88.02 98.48

19203 218 1.86E-34 GH28 293.39 163.56 212.91

19252 218 1.37E-47 GT2 81.63 42.09 33.30

19677 250 1.52E-24 GT2 58.78 31.54 24.40

20009 209 5.02E-35 GH16 103.86 68.61 58.86

21947 1,631 0.00 GT2 194.11 123.70 142.81

22621 1,184 0.00 GH125 151.61 80.77 97.54

23959 898 0.00 GT20 251.35 144.52 151.95

24020 330 2.94E-173 GT4 359.77 167.88 260.13

24053 1,141 0.00 GT48 210.54 152.82 151.10

24197 823 1.37E-36 CE11 156.59 115.13 101.66

24491 696 0.00 GH128 332.95 226.17 240.71

25186 416 2.98E-6 CE11 228.13 132.09 154.75

27900 309 5.9E-42 GH78 373.50 176.02 247.26

28105 267 2.72E-97 GH72 201.54 119.69 131.08

28257 262 1.35E-19 GH1 70.75 37.95 31.09

29726 1,876 0.00 GH5 118.25 83.09 68.79

31930 361 3.11E-150 GH43 447.09 355.16 205.51

CEL 2 15484 1,124 0.00 GT24 37.62 129.12 77.71

15510 596 0.00 GH5/CBM1 49.83 239.69 88.81

15808 642 1.32E-64 GH5 54.56 95.81 60.99

17441 1,93 5.04E-34 GH10 83.44 257.14 120.21

19410 217 2.19E-39 GH3 24.20 49.84 17.90

19509 227 3.56E-37 GT2 287.20 425.57 320.97

19636 212 5.34E-29 GT2 38.56 103.35 54.65

19662 220 7.85E-39 GT2 115.65 220.27 135.39

20286 203 2.77E-26 GH11 954.08 2,397.6 1,835.5

20620 1,993 9.99E-31 CE15 16.83 58.90 22.72

23663 557 0.00 CBM20 257.18 433.50 330.20

23934 1,045 0.00 GT2 221.66 416.88 256.88

24061 1,256 0.00 GT2 115.31 164.11 77.22

24114 526 0.00 GT48 363.92 467.54 372.60

24258 1,118 0.00 GT2 111.80 187.01 75.47

24717 1,283 0.00 GT2 279.09 550.73 376.59

25735 222 5.84E-52 GT2 211.60 375.59 260.66

26247 262 2.93E-56 GH18 153.47 228.37 111.86

28387 203 2.13E-33 GH18 71.69 119.10 73.19

31105 817 1.17E-141 GH10 47.92 166.37 67.24

32239 223 3.49E-37 GT48 36.66 74.47 42.48

5331 2,885 0.00 GH2/GH27 34.36 80.30 42.64

6707 1,307 0.00 GH10 80.29 185.68 77.10

LAC 3 7215 1,907 0.00 GH43 78.81 91.29 130.49

10859 1,914 0.00 GH47 193.40 198.30 294.08

18143 324 2.36E-87 GH76 79.40 74.62 126.43
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inexpensive, soluble substrate, leads to reasonably good induction

for cellulase production [43],[44]. The fungus does not directly

take up lactose but instead hydrolyzes the compound to galactose

and glucose. Cellulase synthesis cannot be induced by galactose,

and the addition of galactose to the medium decreases FPase levels

in the supernatant [45], as reported in this work. Karaffa et al. [43]

reported that lactose induces significantly higher cellulase levels

compared to galactose, but galactose induces cellulase gene

expression at low growth rates in T. reesei. In this study, the

highest degradation rate would have occurred in the fungi

precultured on the lactose medium, followed by cellulose and

DSB, due to the complexity of the substrate and the stability of the

organic chains involved. The presence of lactose in the early stages

of the experiment would have induced genes that are sensitive to

lactose and galactose, which may explain the low level of FPase

observed in the sample that used lactose as the inducer of

hydrolytic systems (even in the fermentation step). As shown in the

results, sugarcane bagasse was able to activate the expression of a

different set of genes that were differentially expressed compared

with the control, and this difference was associated with an

increase in cellulose enzymatic activity during fermentation.

This strain of T. harzianum demonstrates a complex and efficient

genetic mechanism for biomass degradation. The use of RNA-Seq

technology was shown to be an efficient strategy for the discovery

and selection of potential target genes. The results reported here

are valuable for further studies on the expression, purification and

characterization of recombinant enzymes for efficient cellulose

degradation.

Table 3. Cont.

Upregulated

group Cluster Contig

Length

(bp) Lowest E-value CAZy RPKM

DSB CEL LAC

18902 221 3.46E-37 CE5/CBM1 84.67 146.97 206.94

19230 225 7.7E-45 GH18/CBM1 90.84 121.41 184.33

19615 210 9.28E-38 CE5/CBM1 101.02 123.10 210.96

20453 1,983 0.00 GH5 9.49 10.24 135.54

22045 1,22 0.00 GH18 13.66 30.17 53.55

22732 1,036 0.00 GH43/CBM1 73.44 129.52 179.90

23357 1,136 0.00 CE5 32.57 49.05 88.74

23867 1,884 0.00 GH55 187.33 207.94 318.03

24034 1,109 0.00 GH2 192.75 286.72 354.68

24118 1,48 0.00 GH3 122.62 153.22 248.20

24121 392 5.3E-90 GH72/CBM43 242.90 397.74 516.40

24529 582 2.79E-147 GH31 171.29 177.98 249.27

24859 367 3.48E-109 GH62 148.35 184.33 413.59

25106 622 0.00 CE5/CBM1 228.89 287.24 445.60

25478 230 6.87E-92 GH3 87.18 84.79 179.73

25634 386 1.23E-143 GH18 209.61 190.08 393.49

26359 317 7.11E-105 GH18/CBM1 115.17 144.83 221.46

26916 303 1.61E-158 GH31 113.16 169.49 238.66

27290 226 2.98E-32 GH11 86.07 60.98 133.60

27342 313 2.27E-116 GH62 35.46 47.15 115.85

27456 265 4.58E-54 GH71/CBM24 49.47 79.91 132.71

28080 593 2.34E-32 GH6 702.66 565.85 859.84

28132 364 0.00 GH31 315.80 392.58 588.33

28344 358 2.73E-110 GH11 83.67 144.72 220.94

28732 330 5.55E-31 GH92 93.23 96.63 159.65

29910 1,762 0.00 GH54/CBM42 48.08 58.71 115.27

29947 1,601 0.00 CE5/CBM1 96.47 169.32 259.20

30067 1,876 0.00 GH64 47.94 54.27 84.11

31154 1 0.00 GH13/CBM48 307.18 336.14 398.07

31183 505 0.00 GH62/CBM1 253.87 274.20 429.39

The sequences presenting expectation values lower than 161023, and the best alignment scores are summarized. The clusters are classified according to Figure 6 and 7.
doi:10.1371/journal.pone.0088689.t003

Transcriptome of Trichoderma harzianum IOC-3844

PLOS ONE | www.plosone.org 14 February 2014 | Volume 9 | Issue 2 | e88689



Table 4. Contig sequences classified according to their putative hydrolytic activity.

GO ID TERM Number of classified sequences

GO:0016787 hydrolase activity 2,555

GO:0004553 hydrolase activity, hydrolyzing O-glycosyl compounds 336

GO:0016788 hydrolase activity, acting on ester bonds 494

GO:0016798 hydrolase activity, acting on glycosyl bonds 373

GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides 778

GO:0016798 hydrolase activity, acting on glycosyl bonds 373

GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides 778

GO:0016817 hydrolase activity, acting on acid anhydrides 789

GO:0016810 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds 140

GO:0016820 hydrolase activity, acting on acid anhydrides, catalyzing transmembrane
movement of substances

174

GO:0042578 phosphoric ester hydrolase activity 155

GO:0052689 carboxylic ester hydrolase activity 77

GO:0017171 serine hydrolase activity 113

GO:0008081 phosphoric diester hydrolase activity 54

GO:0016811 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds in
linear amides

40

GO:0016790 thiolester hydrolase activity 45

GO:0008484 sulfuric ester hydrolase activity 17

GO:0016813 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds in linear
amidines

17

GO:0016814 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds in cyclic
amidines

25

GO:0047617 acyl-CoA hydrolase activity 9

GO:0033961 cis-stilbene-oxide hydrolase activity 8

GO:0016803 ether hydrolase activity 10

GO:0016289 CoA hydrolase activity 9

GO:0016801 hydrolase activity, acting on ether bonds 11

GO:0019238 cyclohydrolase activity 9

GO:0004416 hydroxyacylglutathione hydrolase activity 4

GO:0016799 hydrolase activity, hydrolyzing N-glycosyl compounds 5

GO:0019120 hydrolase activity, acting on acid halide bonds, in C-halide compounds 3

GO:0003933 GTP cyclohydrolase activity 5

GO:0004848 ureidoglycolate hydrolase activity 3

GO:0003935 GTP cyclohydrolase II activity 3

GO:0004477 methenyltetrahydrofolate cyclohydrolase activity 2

GO:0004045 aminoacyl-tRNA hydrolase activity 2

GO:0003934 GTP cyclohydrolase I activity 2

GO:0008474 palmitoyl-(protein) hydrolase activity 2

GO:0004463 leukotriene-A4 hydrolase activity 2

GO:0016823 hydrolase activity, acting on acid carbon-carbon bonds in ketonic substances 3

GO:0016824 hydrolase activity, acting on acid halide bonds 3

GO:0016822 hydrolase activity, acting on acid carbon-carbon bonds 3

GO:0004039 allophanate hydrolase activity 1

GO:0004635 phosphoribosyl-AMP cyclohydrolase activity 1

GO:0004649 poly(ADP-ribose) glycohydrolase activity 1

GO:0033971 hydroxyisourate hydrolase activity 1

GO:0018738 S-formylglutathione hydrolase activity 1

GO:0004301 epoxide hydrolase activity 1

GO:0033699 DNA 59-adenosine monophosphate hydrolase activity 1

GO:0003937 IMP cyclohydrolase activity 1
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Supporting Information

Table S1 Primers used for RT-qPCR detection of glycosyl

hydrolase genes. The squalene-epoxidase gene was used as

endogenous control and the sequences analyzed encoded genes

of glycoside hydrolases (GHs), carbohydrate esterases (CEs) and

carbohydrate-binding modules (CBM).
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