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Abstract: Polyploidy plays a crucial role in plant evolution and speciation. The development of
male and female gametes is essential to the reproductive capacity of polyploids, but their gene
expression pattern has not been fully explored in newly established polyploids. The present study
aimed to reveal a detailed atlas of gene expression for gamete development in newly synthetic Brassica
allohexaploids that are not naturally existing species. Comparative transcriptome profiling between
developing anthers (staged from meiosis to mature pollen) and ovules (staged from meiosis to mature
embryo sac) was performed using RNA-Seq analysis. A total of 8676, 9775 and 4553 upregulated
differentially expressed genes (DEGs) were identified for the development of both gametes, for male-
only, and for female-only gamete development, respectively, in the synthetic Brassica allohexaploids.
By combining gene ontology (GO) biological process analysis and data from the published literature,
we identified 37 candidate genes for DNA double-strand break formation, synapsis and the crossover
of homologous recombination during male and female meiosis and 51 candidate genes for tapetum
development, sporopollenin biosynthesis and pollen wall development in male gamete development.
Furthermore, 23 candidate genes for mitotic progression, nuclear positioning and cell specification
and development were enriched in female gamete development. This study lays a good foundation
for revealing the molecular regulation of genes related to male and female gamete development
in Brassica allohexaploids and provides more resourceful genetic information on the reproductive
biology of Brassica polyploid breeding.

Keywords: transcriptome; Brassica; allohexaploid; polyploid; male and female gamete development;
meiosis; anther; ovule

1. Introduction

Polyploidy has long been recognized as an important evolutionary force in plants [1–3].
The formation of polyploids is attributed to genomic plasticity, and polyploid-induced
changes can result in new genetic diversity and advantageous adaptations to the envi-
ronment [4,5]. Polyploids generally have multiple phenotypes and greater growth vigor
compared with their parents [6]. Polyploidy also leads to an increase in plant organs to
improve outputs and adapt to various biological and abiotic stresses in plant breeding [7,8].
Allopolyploidy results concomitantly from the genome double after the hybridization of
two or more species [9]. Brassica has long been considered as a model to explore poly-
ploidization. Three basic diploid species in Brassica, Brassica rapa (AA, 2n = 20), Brassica
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nigra (BB, 2n = 16) and Brassica oleracea (CC, 2n = 18), have hybridized to give rise to three
allotetraploid species, Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38) and
Brassica carinata (BBCC, 2n = 34). The combination of genetic variation from six species
in Brassica could result in crops with increased adaptation and agronomic potential as
well as improved heterosis from the contribution of alleles [10–12]. Brassica allohexaploids
(2n = AABBCC) do not exist in nature but can be synthesized by hybridization between
diploid and/or allotetraploid species of Brassica. The cross between B. carinata and B.
rapa is the most commonly attempted and successful method in the five possible species
combinations that can produce Brassica allohexaploids [13]. Hybridization and genomic
doubling may lead to extensive transcriptomic changes in the synthesized trigenomic Bras-
sica allohexaploids relative to their parents [14]. Brassica allohexaploids not only provide
an effective way to improve the genetic diversity of Brassica and the intergenic hybridiza-
tion of oilseed crops in the future, but they also offer excellent material for the study of
polyploid plants.

So far, studies on Brassica allohexaploids have mainly focused on agronomic traits,
meiotic behaviors and subgenome stabilities [15,16]. The development of male and fe-
male gametes is crucial to the reproductive capacity of sexually reproducing organisms,
especially polyploids, and is strictly regulated by complex processes. However, the genes
involved in male and female gamete development are not fully understood in Brassica
allohexaploids. Therefore, it is very important to establish a reproductive transcriptome
profiling of Brassica allohexaploids.

The male germline matures within the anther, whereas the female germline develops
within the ovule [17]. The male and female gametophyte are the important reproductive
units of angiosperms and are essential for sexual reproduction [18,19]. Both male and
female germline development of angiosperms consist of two main stages: microsporoge-
nesis and microgametogenesis, giving rise to male gametes, and megasporogenesis and
megagametogenesis, leading to the formation of female gametes. Microsporogenesis and
megasporogenesis are key to male and female reproduction and require the completion
of meiosis to form microspores and functional megaspores (FM). Microgametogenesis
includes an asymmetric division to form vegetative and generative cells, and the generative
cells produce two male gametes after a mitotic division [20]. FM undergoes three rounds of
mitosis, nuclear migration, cellularization and differentiation to form a mature seven-celled
embryo sac, containing three antipodal cells, two synergid cells, one egg cell and one central
cell that contains two polar nuclei, which complete megagametogenesis [19,21]. During
gamete generation, male and female gametes have similar ploidy transition and cell cycle
progressions, while they show many differences in gamete development and specialization.

RNA-Seq technology is used to analyze the structure and function of genes at the
organismal level and to explore a range of biological pathways [22,23]. The establishment
of Brassica transcriptome databases, such as the B. napus transcriptome database BnTIR,
provide a lot of useful resources for the study of Brassica polyploidy at the transcriptional
level [24]. In recent years, RNA-Seq has been successfully used in anther and ovule
development in many species. In Brassica napus L., lipid metabolism genes involved
in pollen extine formation, elaioplast and tapetosome biosynthesis were preferentially
expressed in early anthers, and carbohydrate metabolism genes to form pollen intine
and to accumulate starch in mature pollen grains were preferentially expressed in late
anthers [25]. Comparative analysis of differential gene expression revealed multiple signal
pathways during flowering of autotetraploid B. rapa [26]. The molecular processes involved
in the development of female gametes in plants are much less understood than those
involved in the development of male gametes due to the small number and difficult
availability of female gametophytes. Using high-throughput sequencing analysis, female
gamete development in Arabidopsis has been intensively studied, and a number of key
genes regulating megasporogenesis and megagametogenesis have been found, offering
fundamental knowledge of these developmental processes [21,27].
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The aim of the study was to reveal a detailed atlas of gene expression for gamete
development in synthetic Brassica allohexaploids. We performed differential expression
analysis to identify common and preferential genes that regulate the developmental events
of male and female gametes. This study provides rich genetic resources for the cloning
and functional verification of genes related to male and female gamete development and
lays a good foundation for revealing the molecular regulatory mechanism of reproductive
development in Brassica allohexaploids.

2. Results
2.1. Transcriptome Sequencing and Sequence Alignment

RNA-Seq of anthers from meiosis to the mature pollen stage (Anther), ovules from
meiosis to mature embryo sac stage (Ovule) and young leaves (Leaf) was performed by
Illumina in synthetic Brassica allohexaploids. Leaf was used as vegetative tissue (organ)
control, and each Brassica allohexaploid tissue (organ) received three biological replicates.
RNA-Seq results are presented in Tables 1 and 2. The number of clean reads from the
nine RNA-Seq libraries ranged from 40,202,856 to 47,450,126 (Table 1). The Clean Q30
Bases Rate was greater than 94.29%, and the higher the value is, the better the sequencing
quality (Table 1). All clean reads were then aligned to B. rapa, B. nigra and B. oleracea
genome sequences using HISAT2 software. Mapped genome reads ranged from 21,502,559
to 39,794,184, and genome mapping rates ranged from 53.49% to 85.19% (Table 2). These
results suggested that their quality met the requirements for transcriptome sequencing.
Fragments per kilobase per million reads (FPKM) were determined for all genes of Anther,
Ovule and Leaf in Brassica allohexaploids (Table S1). Correlation heat maps of the tran-
scriptome from Anther, Ovule and Leaf showed that the three biological replicates of each
tissue were grouped together with high correlation (Figure S1). These results indicated that
the three biological replicates of per tissue had good repeatability in this study.

Table 1. Statistics of the RNA-Seq data in the Brassica allohexaploids.

Sample Name Raw Reads
Number

Clean Reads
Number

Clean Reads
Rate (%)

Raw Q30
Bases

Rate (%)

Clean Q30
Bases

Rate (%)

Leaf1 49,970,344 46,345,462 92.75 93.65 94.55
Leaf2 45,415,696 40,202,856 88.52 93.22 94.63
Leaf3 47,653,708 44,057,944 92.45 93.56 94.54

Ovule1 51,752,802 45,556,284 88.03 92.76 94.86
Ovule2 49,874,912 46,197,038 92.63 93.56 94.53
Ovule3 48,619,388 45,120,190 92.8 93.36 94.36
Anther1 55,572,362 47,450,126 85.38 91.81 94.29
Anther2 50,943,546 45,328,282 88.98 92.73 94.42
Anther3 50,431,536 46,943,730 93.08 93.67 94.51

Table 2. Statistics for clean reads mapped in the Brassica allohexaploids.

Sample Name Total Reads
Number

Mapped Reads
Number

Mapping
Rate (%)

MultiMap
Reads

Number

MultiMap
Rate (%)

Leaf1 46,345,462 25,110,254 54.18 991,570 2.14
Leaf2 40,202,856 21,502,559 53.49 868,719 2.16
Leaf3 44,057,944 23,720,073 53.84 978,530 2.22

Ovule1 45,556,284 38,811,219 85.19 1,467,965 3.22
Ovule2 46,197,038 39,142,941 84.73 1,469,346 3.18
Ovule3 45,120,190 38,282,041 84.84 1,488,352 3.30
Anther1 47,450,126 39,735,180 83.74 1,558,104 3.28
Anther2 45,328,282 38,359,513 84.63 1,487,356 3.28
Anther3 46,943,730 39,794,184 84.77 1,508,397 3.21
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2.2. Anthers at Male Gamete Development Stage and Ovules at Female Gamete Development Stage
Contained More Genes Than Leaves in Brassica Allohexaploids

A total of 100,804 genes were identified in the RNA-Seq data of Brassica allohexaploids,
among which 96,286, 86,712 and 79,875 genes were expressed in Anther, Ovule and Leaf,
respectively, providing sufficient data for studying male and female gamete development
(Figure 1a). Among the 100,804 genes, 74,597 genes were expressed in all three tissues,
and 9948, 1870 and 1514 genes were specifically expressed in Anther, Ovule and Leaf,
respectively (Figure 1a). Comparative analysis showed that Anther and Ovule overlapped
most, with 9111 genes commonly expressed in these two tissues; 2630 genes were commonly
expressed in Anther and Leaf; and 1134 genes were commonly expressed in Ovule and
Leaf (Figure 1a). Anther and Ovule contained more genes and more specific genes than
vegetative tissue Leaf. In all three tissues, transcript abundance analysis indicated 74.1%
to 78.6% genes with low expression (FPKM >0 to ≤10) and 19.6% to 24.0% genes with
moderate expression (FPKM >10 to ≤100) but only 1.4% to 1.9% genes with high expression
(FPKM > 100) (Figure 1b).
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Figure 1. Overview of gene expression in Anther, Ovule and Leaf of Brassica allohexaploids: (a) Venn
diagram showing the overlap between expressed genes in Anther, Ovule and Leaf; (b) distribution of
FPKM range in Anther, Ovule and Leaf; (c) the number of genes from A, B and C-genomes in Anther,
Ovule and Leaf and the proportion of genes in the reference genomes; and (d) results of pairwise
differential expression analysis in Anther, Ovule and Leaf.

In Anther, Ovule and Leaf, 33,837, 30,501 and 28,078 genes, respectively, were ex-
pressed from A-genome; 35,126, 31,413 and 28,842 genes, respectively, were expressed
from B-genome; and 27,323, 24,798 and 22,955 genes, respectively, were expressed from
C-genome (Figure 1c). The reference genomes of B. rapa, B. nigra and B. oleracea con-
tained 41,020, 47,953 and 61,279 genes, respectively, thus the percentage of genes expressed
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in Anther, Ovule and Leaf from A-genome was 82.5%, 74.4% and 68.4%, respectively,
while from B-genome the values were 73.3%, 65.5% and 60.1%, respectively, and from
C-genome 44.6%, 40.5% and 37.5% (Figure 1c), respectively. These results indicated that
the B-genome contained the largest number of genes in Anther, Ovule and Leaf in Brassica
allohexaploids, while the A-genome was bias expressed. Three groups of differentially
expressed genes (DEGs) were generated by pairing differential expression analysis of genes
between all three tissues (Table S2). Volcano plots show DEGs of Anther vs. Ovule, Ovule
vs. Leaf and Anther vs. Leaf (Figure S2). Among all comparisons, the number of DEGs
in Anther and Ovule was the smallest, and 22,305 genes (14,366 upregulated and 7939
downregulated) were differentially expressed in Anther compared with Ovule (Figure 1d).
Compared with Leaf, 30,893 genes (14,830 upregulated and 16,063 downregulated) were
differentially expressed in Ovule (Figure 1d). However, 35,849 genes (19,513 upregulated
and 16,336 downregulated) were differentially expressed in Anther compared with Leaf,
which was the largest number of DEGs (Figure 1d). The findings showed that there were
differences in gene expression between reproductive tissue and vegetative tissue and
male gamete development had more genes expressed than female gamete development in
Brassica allohexaploids.

2.3. Identification of Upregulated Genes Co-Expressed and Preferentially Expressed Genes in Male
and Female Gamete Development of Brassica Allohexaploids

In order to study the common characteristics of male and female gamete develop-
ment in Brassica allohexaploids, the 19,513 upregulated genes in Anther relative to Leaf
and the 14,830 upregulated genes in Ovule relative to Leaf were overlapped. There were
25,667 upregulated genes co-expressed and 8676 preferentially expressed genes in male
and female gamete development of Brassica allohexaploids (Figure 2a); 8605 of the 25,667
upregulated genes co-expressed in male and female gamete development were annotated
using clusters of orthologous groups (COG) classification and functionally divided into
25 COG categories (Figure 2b). COG clusters were mainly showed in General function
prediction only [1494~13.43%]; Transcription [1079~9.70%]; Posttranslational modifica-
tion, protein turnover, chaperones [861~7.74%]; Replication, recombination and repair
[778~6.99%]; Carbohydrate transport and metabolism [775~6.97%]; Signal transduction
mechanisms [590~5.30%]; Translation, ribosomal structure and biogenesis [576~5.18%]; Cell
cycle control, cell division, chromosome partitioning [559~5.03%]; Amino acid transport
and metabolism [557~5.01%]; and Lipid transport and metabolism [470~4.23%] (Figure 2b).
To identify the key biological process pathways of common genes in male and female
gamete development of Brassica allohexaploids, 8676 preferentially expressed genes at male
and female gamete development stages were analyzed by gene ontology (GO) biological
process enrichment analysis. The significantly enriched GO terms had DNA repair (GO:
0006281), DNA replication (GO: 0006260), synapsis (GO: 0007129), cell cycle (GO: 0007049),
microtubule-based movement (GO: 0007018), DNA recombination (GO: 0006310), double-
strand break repair via homologous recombination (GO: 0000724), mismatch repair (GO:
0006298), resolution of meiotic recombination intermediates (GO: 0000712), double-strand
break repair (GO: 0006302), chiasma assembly (GO: 0051026), double-strand break repair
via synthesis-dependent strand annealing (GO: 0045003), homologous recombination (GO:
0035825), regulation of double-strand break repair (GO: 2000779) and regulation of double-
strand break repair via homologous recombination (GO: 0010569) (Figure 2c). These results
suggested that common genes in male and female gamete development may be related to
the homologous recombination of meiosis in Brassica allohexaploids.
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Figure 2. Identification and functional analysis of upregulated genes co-expressed and preferentially
expressed genes in Anther and Ovule of Brassica allohexaploids: (a) Venn diagram showing the
overlap of upregulated genes between Anther vs. Leaf and Ovule vs. Leaf; (b) clusters of orthologous
groups (COG) classification of upregulated genes co-expressed in Anther and Ovule; and (c) gene
ontology (GO) biological process pathway enrichment analysis of preferentially expressed genes in
Anther and Ovule.

Arabidopsis orthologs of seven genes, BniB034973 (orthologous to SPO11-1 (Sporulation
11-1)), BniB027699 and Bol025700 (orthologous to PRD1 (PUTATIVE RECOMBINATION
INITIATION DEFECT 1)), Bra024921, Bra033241 and Bol007924 (orthologous to PRD3
(PUTATIVE RECOMBINATION INITIATION DEFECT 3)) and BniB044390 (orthologous to
MTOPVIB (Meiotic topoisomerase VIB-like)) are necessary for meiotic double-strand breaks
(DSBs) formation (Figure 3). SPO11-1 is essential for formation of DSBs in plants, and PRD1,
PRD3 and MTOPVIB have already been shown to play a key role in DNA DSBs formation
in Arabidopsis (Figure 3) [28–31]. In addition, some meiosis genes related to synapses are
also enriched in the GO biological process during the development of male and female
gametes. Bra004222 and BniB009412 are orthologous to ASY1 (Asynaptic 1), which encodes
a protein essential for meiotic chromosomal synapsis and localizes to axis-associated
chromatin [32]. In B. rapa, the axis-associated mutant plants of Bra004222 produce fewer
crossovers (COs) due to abnormalities in meiosis (Figure 3) [33]. BniB041399 is a homolog
of ASY3 (Asynaptic 3) (Figure 3). AYS3 and ASY1 have similar roles in Arabidopsis, and
its deletion also disrupts synaptic complex (SC) formation [34]. Similarly, Bra003654,
Bra035016 and Bol027500 are orthologs of ZYP1a encoding synaptonemal complex protein,
which regulates chromosome synapsis and normal fidelity of crossing over (Figure 3) [35].
The orthologs of these candidate genes, Bra039674, Bra038126, BniB027427, BniB026849,
BniB009174, Bol039109 and Bol035122 (orthologous to HEI10 (Homolog of human hei10)),
Bra029127 (orthologous to SHOC1 (Shortage in chiasmata 1)) and Bra037488, BniB000031
and Bol043105 (orthologous to SPO22) are ZMM proteins, which are required for the
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formation of class I meiotic COs (Figure 3) [36–38]. The Arabidopsis orthologous gene MSH5
(Muts homolog 5) of Bra035777 and BniB043474 partners orthologous gene MSH4 (Muts
homolog 4) of Bol032857 in class I meiotic CO pathway [39]. The Arabidopsis ortholog TOP3a
(Topoisomerase 3alpha) of BniB047025 and RMI1 (RecQ mediated instability 1) of Bra035838,
Bra031944 and BniB045608 maintain genome stability by limiting CO formation in favor of
non-crossover (NCO) events (Figure 3) [40,41]. Bra034416, BniB042826 and Bol031970 are
orthologous to FANCM (Fanconi anemia complementation group M), a highly conserved
helicase, which functions as a major factor limiting meiotic CO formation (Figure 3) [42].
RECQ4A, an Arabidopsis ortholog of Bra018418, Bra031741 and Bol022020, has been found to
play a key role in DNA repair and homologous recombination suppression (Figure 3) [43].
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2.4. Identification of Preferentially Expressed Genes in Male Gamete Development of
Brassica Allohexaploids

To better understand the development of male gametes in Brassica allohexaploids, we
analyzed the preferentially expressed genes in male gamete development. Venn diagrams
showed that the overlap of 14,366 upregulated genes in Anther vs. Ovule and 19,513
upregulated genes in Anther vs. Leaf was 9775 preferentially expressed genes in male
gamete development (Figure 4a). We used GO annotation to functionally classify these
9775 genes based on their biological process. We found that GO terms associated with the
activation of protein kinase activity (GO: 0032147), protein ubiquitination (GO: 0016567),
pollen wall assembly (GO: 0010208), anther wall tapetum development (GO: 0048658),
pollen exine formation (GO: 0010584), sporopollenin biosynthetic process (GO: 0080110),
pollen development (GO: 0009555), callose deposition in cell walls (GO: 0052543), anther
development (GO: 0048653) and pollen sperm cell differentiation (GO: 0048235) were
significantly overrepresented within the preferentially expressed genes in male gamete
development (Figure 4b). These findings showed that preferentially expressed genes in
male gamete development were concentrated in pollen wall formation and other related
pathways in Brassica allohexaploids.



Plants 2022, 11, 1556 8 of 17

Plants 2022, 11, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 4. Identification and functional analysis of preferentially expressed genes in male gamete 
development of Brassica allohexaploids: (a) Venn diagram showing the overlap of upregulated 
genes between Anther vs. Ovule and Anther vs. Leaf and (b) GO biological process pathway en-
richment analysis of preferentially expressed genes in Anther. 

The transcription factor AMS (ABORTED MICROSPORES), Arabidopsis ortholog of 
Bra002004, Bra013041, BniB011765, BniB025753, Bol004758 and Bol042692, plays a vital 
role in tapetum and pollen development (Figure 5) [44]. Arabidopsis ortholog MYB80 (MYB 
domain protein 80) also called MS188 (Male Sterile 188), a member of the R2R3 MYB tran-
scription factor gene family, of Bra002847, Bra035604, BniB030464, BniB044215, Bol009875 
and Bol035011, is required for tapetal and pollen development (Figure 5) [45]. Bra025337, 
BniB025201 and Bol042967 are orthologous to TDF1 (Tapetal Development and Function 
1), regulating tapetal differentiation and function (Figure 5) [46]. Arabidopsis orthologs 
CYP703A2 of Bra032631, Bra033272, BniB042784, Bol018458 and Bol040704, as well as 
CYP704B1 of Bra004386, BniB031958 and Bol023932, are essential for sporopollenin syn-
thesis in pollen development (Figure 5) [47,48]. Furthermore, Arabidopsis orthologs of 
some genes (Bra036646 and BniB001185 orthologous to ACOS5 (Acyl-CoA Synthetase 5), 
Bra034658, Bra011566, Bra017681, BniB036573, BniB040820, BniB048407, Bol013698 and 
Bol034656 orthologous to LAP5 (Less adhesive pollen 5) and Bra017147, BniB016901 and 
Bol025267 orthologous to LAP6 (Less adhesive pollen 6)) have been shown to perform 
important roles in pollen development and sporopollenin biosynthesis (Figure 5) [49,50]. 
Other important candidate genes Bra010535 and BniB015834 are orthologous to TKPR1 
(TETRAKETIDE alpha-PYRONE REDUCTASE 1) (previously called DRL1 (Dihydrofla-
vonol 4-reductase-like1)), regulating a metabolic pathway critical for sporopollenin mon-
omer biosynthesis, pollen wall formation and male fertility (Figure 5) [51,52]. Bra004316, 
Bra008822, BniB031910 and Bol024018 are orthologous to TKPR2 (TETRAKETIDE alpha-
PYRONE REDUCTASE 2), which regulates the biochemical pathway for sporopollenin 
monomer biosynthesis in Arabidopsis (Figure 5) [51]. Bra034793, Bra038691, BniB010680, 
BniB035126, Bol007277 and Bol010336 are orthologous to MS2 (Male Sterile 2), which en-
codes for a plastid-localized fatty acyl carrier protein reductase, is essential for pollen wall 
development in Arabidopsis (Figure 5) [53]. ABCG26 (ATP-Binding Cassette Transporter 
G26), Arabidopsis ortholog of Bra039378, BniB034970 and Bol015793, is important for male 
fertility and pollen exine formation (Figure 5) [54].  
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The transcription factor AMS (ABORTED MICROSPORES), Arabidopsis ortholog of
Bra002004, Bra013041, BniB011765, BniB025753, Bol004758 and Bol042692, plays a vital
role in tapetum and pollen development (Figure 5) [44]. Arabidopsis ortholog MYB80
(MYB domain protein 80) also called MS188 (Male Sterile 188), a member of the R2R3
MYB transcription factor gene family, of Bra002847, Bra035604, BniB030464, BniB044215,
Bol009875 and Bol035011, is required for tapetal and pollen development (Figure 5) [45].
Bra025337, BniB025201 and Bol042967 are orthologous to TDF1 (Tapetal Development and
Function 1), regulating tapetal differentiation and function (Figure 5) [46]. Arabidopsis
orthologs CYP703A2 of Bra032631, Bra033272, BniB042784, Bol018458 and Bol040704, as
well as CYP704B1 of Bra004386, BniB031958 and Bol023932, are essential for sporopol-
lenin synthesis in pollen development (Figure 5) [47,48]. Furthermore, Arabidopsis or-
thologs of some genes (Bra036646 and BniB001185 orthologous to ACOS5 (Acyl-CoA
Synthetase 5), Bra034658, Bra011566, Bra017681, BniB036573, BniB040820, BniB048407,
Bol013698 and Bol034656 orthologous to LAP5 (Less adhesive pollen 5) and Bra017147,
BniB016901 and Bol025267 orthologous to LAP6 (Less adhesive pollen 6)) have been shown
to perform important roles in pollen development and sporopollenin biosynthesis (Fig-
ure 5) [49,50]. Other important candidate genes Bra010535 and BniB015834 are orthologous
to TKPR1 (TETRAKETIDE alpha-PYRONE REDUCTASE 1) (previously called DRL1 (Di-
hydroflavonol 4-reductase-like1)), regulating a metabolic pathway critical for sporopol-
lenin monomer biosynthesis, pollen wall formation and male fertility (Figure 5) [51,52].
Bra004316, Bra008822, BniB031910 and Bol024018 are orthologous to TKPR2 (TETRAKE-
TIDE alpha-PYRONE REDUCTASE 2), which regulates the biochemical pathway for
sporopollenin monomer biosynthesis in Arabidopsis (Figure 5) [51]. Bra034793, Bra038691,
BniB010680, BniB035126, Bol007277 and Bol010336 are orthologous to MS2 (Male Sterile
2), which encodes for a plastid-localized fatty acyl carrier protein reductase, is essential
for pollen wall development in Arabidopsis (Figure 5) [53]. ABCG26 (ATP-Binding Cas-
sette Transporter G26), Arabidopsis ortholog of Bra039378, BniB034970 and Bol015793, is
important for male fertility and pollen exine formation (Figure 5) [54].
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2.5. Identification of Preferentially Expressed Genes in Female Gamete Development of
Brassica Allohexaploids

We next analyzed the preferentially expressed genes involved in female gamete de-
velopment to explore their key events in Brassica allohexaploids. 4553 genes preferen-
tially expressed in female gamete development were identified by overlapping 7939 and
14,830 upregulated genes of Ovule vs. Anther and Ovule vs. Leaf (Figure 6a). These genes
were analyzed by GO biological process pathway analysis. These GO terms related to
cell differentiation (GO: 0030154), auxin biosynthetic process (GO: 0009851), integument
development (GO: 0080060), cell division (GO: 0051301), glucosinolate biosynthetic process
(GO: 0019761), auxin-activated signaling pathway (GO: 0009734), polarity specification of
adaxial/abaxial axis (GO: 0009944), regulation of proanthocyanidin biosynthetic process
(GO: 2000029), plant ovule development (GO: 0048481) and regulation of jasmonic acid
mediated signaling pathway (GO: 2000022) were significantly enriched in female gamete
development (Figure 6b). These results suggested that genes preferentially expressed in
female gamete development may be related to cell division, nuclear positioning, cell differ-
entiation and auxin-activated synthesis and signal transduction of Brassica allohexaploids.

Megagametogenesis begins when FM passes through three rounds of nuclear division,
producing an eight-nucleate syncytium. Many genes have been implicated in the mitosis
entry and progression during female gametophyte development. Arabidopsis ortholog
AUX1 (AUXIN RESISTANT 1) of Bra000160 and Bol020456, and PIN1 (PIN-FORMED 1) of
Bra015983, BniB013785, BniB015990, Bol026255 and Bol039419 are essential in sporophytes
for auxin import and local auxin biosynthesis to regulate mitosis (Figure 7) [55,56]. The
anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit E3 ligase, which
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plays a critical role in regulating cell-cycle progression [57]. Bra028755 and BniB038334 are
orthologous to APC1 (Figure 7). The three mutants apc1-1, apc1-2, and apc1-3 had similar
problems in female gametogenesis, such as degradation, aberrant nuclear number, and al-
tered nuclei polarity in the embryo sac, as well as embryogenesis [57]. Arabidopsis ortholog
NOP10 of Bra036475 affects megaspore mitosis and polar nuclear fusion in female gameto-
phyte development (Figure 7) [58]. Bra007730, Bra040432, BniB007136 and Bol045717 are
orthologous to RanGAP1 (Ran GTPase Activating Protein 1), which is essential in sporo-
phytes and may regulate mitotic cell cycle progression of female gametophyte development
(Figure 7) [59]. Arabidopsis ortholog TUBG1, γ-tubulin gene, of Bra007622 is involved in
the position of the nuclei (Figure 7) [60]. Bra025912, Bra031027, BniB047288, Bol009730 and
Bol030782 are Arabidopsis ortholog of NACK1 (NPK1-ACTIVATING KINESIN 1), which is
necessary for cellularization and nuclear positioning during female gametophyte develop-
ment (Figure 7) [61]. In addition, some genes play an important role in cell specification
and development. BniB000251 is orthologous to NFD1 (Nuclear fusion defective1), encod-
ing the Arabidopsis RPL21M protein, which regulates karyogamy in female gametophyte
development (Figure 7) [62]. The Arabidopsis ortholog AMP1 (Altered meristem program 1)
of Bra014794 and BniB007415 has been shown to play an essential role in synergid cell fate
for megagametogenesis (Figure 7) [63].
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2.6. Validation of Expression Profiling by Real-Time Quantitative PCR (RT-qPCR)

We further tested the reliability of RNA-Seq results by RT-qPCR. The randomly se-
lected male and female gamete development-related genes BniB000031 (SPO22), Bra035838
(RMI1), Bol022020 (RECQ4A), Bra000160 (AUX1), Bol039419 (PIN1), BniB025753 (AMS),
Bra025337 (TDF1), Bol034656 (LAP5) and BniB031910 (TKPR2) were verified by RT-qPCR.
The results showed that the selected genes were positive by RT-qPCR (Figure 8). The ex-
pression patterns showed the same trend as that detected by RNA-Seq analysis (Figure 8).
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3. Discussion
3.1. Meiosis-Related Genes May Affect Homologous Recombination during Male and Female
Gamete Development in Brassica Allohexaploids

The key events in both the male and female gamete development of Brassica allo-
hexaploids mainly focused on meiosis-related genes and pathways. Polyploidy species
may be used more as model organisms for meiosis in the future, and Brassica has attracted
attention as model of allopolyploid meiotic regulation mechanisms [64]. Meiosis leads to
the production of genetically unique haploid spores, which contribute to genome stability
and genetic diversity. Crossover of homologous recombination ensures faithful segregation
of homologous chromosomes in meiosis I [65]. Meiotic CO produces new combinations of
alleles, increasing the genetic diversity of gametes [66]. Meiosis forms DNA DSB through
programming, processes and repairs DSB by homologous recombination. In all eukaryotes,
SPO11-1 is a strict requirement for meiosis DSB formation. In Arabidopsis and Brassica, mei-
otic DSB formation is required for synapsis and SC formation. Crossover or non-crossover
recombination products can be isolated and genetically tested by recombination inter-
mediates formed between homologous chromosomes. Consequently, we hypothesized
that meiosis-related genes may affect homologous recombination during male and female
gamete development in Brassica allohexaploids.
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3.2. TDF1, AMS and MS188 May Influence Tapetum Development and Pollen Wall Formation in
Brassica Allohexaploids

Male gamete development affects the effective pollination control system, which is
the premise of utilizing heterosis of Brassica allohexaploids. The development of male
gametes is accompanied by tapetal development, sporopollenin synthesis and pollen
wall formation. Tapetum is the innermost layer of the four anther somatic cell layers,
and provides material for pollen development. The main component of the exine is
sporopollenin, which is produced by the tapetum. The tapetal development regulatory
network during male gamete development has been studied in Arabidopsis, in which
TDF1 may be involved in redox and cell degradation [67–69]. AMS is thought to control
lipid transfer proteins in pollen wall building, repressing of upstream regulators and
promoting of AMS protein degradation [44,67]. Most cell wall–related genes are regulated
by transcription factor MS188, which is involved in both tapetum cell wall degradation and
pollen wall synthesis [67]. TDF1 controls AMS directly through an AACCT cis-element, and
TDF1 and AMS control downstream genes in a feed-forward loop [68]. In addition, MS188
can activate the expression of CYP704B1, ACOS5 and TKPR1, and form a feedforward loop
with its direct upstream regulatory factor AMS to activate the sporopollenin biosynthesis
pathway and rapidly form pollen wall in Arabidopsis [69]. Therefore, we speculated that
these genes in Brassica allohexaploids may also potentially affect tapetum development
and pollen wall formation.

3.3. AUX1 and PIN1 May Regulate the Formation of the Seven-Cell Embryo Sac in
Brassica Allohexaploids

Female gamete development is rarely studied compared to male gamete development.
To enable female gametophyte fertilization, hence plant reproduction, megagametogenesis
comprises carefully controlled mitotic divisions, repositioning of nuclei along a polar axis
and the acquisition of different identities by individual cells [70]. Auxin levels are known to
be controlled by biosynthesis and transport, and it is critical for sporophytic developmental
processes. During embryo sac development, localized auxin biosynthesis and import are
essential for mitotic divisions, cell growth and patterning [55]. AUX1 and PIN1 influence
mitosis progression at one-, two- and four-nucleate stages [55]. The final position of the
nuclei foreshadows the cellularization pattern that divides the female gametophyte into
seven cells. Furthermore, cellular identity is most likely determined by the location of the
nuclei and related cells along the micropylar–chalazal axis. Therefore, these genes involved
in mitosis, nuclear localization, cell differentiation and development may be related to the
formation of mature seven-cell embryo sac in Brassica allohexaploids.

4. Materials and Methods
4.1. Plant Materials, Tissue Collection and RNA Extraction

A trigenomic Brassica allohexaploid (BBCCAA, 2n = 54) was generated by interspecific
hybridization and chromosome doubling between maternal B. carinata (“VI047487”, BBCC,
2n = 34) and paternal B. rapa (“JK66-83”, AA, 2n = 20) in this study. These Brassica allo-
hexaploid materials were grown in greenhouse with a 16-h light/8-h dark cycle at 22 ◦C.
These plants were later chromosomally identified as allohexaploid (2n = 54). Anthers and
ovules of these Brassica allohexaploids were collected according to the previous methods
reported [25,27]. After flowering, anthers from meiosis to mature pollen stage (Anther) and
ovules from meiosis to mature embryo sac stage (Ovule) were collected, and young leaves
(Leaf) of main inflorescences were also collected as vegetative tissue (organ) control. Three
biological replicates were taken from each tissue of Brassica allohexaploids. These samples
were rapidly frozen in liquid nitrogen and stored at −80 ◦C to extract RNA. The purity of
the samples was determined by NanoPhotometer® (IMPLEN, Westlake Village, CA, USA).
The concentration and integrity of RNA samples were detected using Agilent 2100 RNA
nano 6000 detection kit (Agilent Technology, Santa Clara, CA, USA).
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4.2. cDNA Library Construction, Filter and Alignment

A total amount of 1–3 µg RNA per sample was used as input material for the RNA
sample preparations. Sequencing libraries were generated using VAHTS Universal V6
RNA-Seq Library Prep Kit for Illumina ®. In order to guarantee the data quality used to
analysis, the useful Perl script was used to filter the original data (Raw Data). The reference
genomes and the annotation file were downloaded from B. rapa genome v1.5 sequence, B.
nigra genome v1.1 sequence and B. oleracea genome v1.0 sequence (http://Brassicadb.cn,
accessed on 1 May 2021). Bowtie2 v2.2.3 was used for building the genome index, and
Clean Data was then aligned to the reference genomes using HISAT2 v2.1.0 [71]. The RNA-
Seq data was uploaded to the NCBI Gene Expression Omnibus (GEO), and its accession
number, GSE201456, may be used to retrieve it.

4.3. FPKM and DEGs

Reads count for each gene in each sample was counted by HTSeq v0.6.0 (Simon
Anders, Heidelberg, Germany), and FPKM was then calculated to estimate the expres-
sion level of genes in each sample. DESeq2 estimated the expression level of each gene
in per sample by the linear regression, then calculated the p-value with Wald test [72].
The p-value was corrected by the BH method. Genes with fold change ≥ 2 and q-value
(adjusted p-value) ≤ 0.05 were identified as DEGs.

4.4. Function Enrichment Analysis

The DEGs aligned to COG were classified according to functions of genes (http:
//www.ncbi.nlm.nih.gov/COG/, accessed on 7 August 2021). The GO enrichment of
DEGs was implemented by the hypergeometric test, in which p-value was calculated
and adjusted as q-value, and data background was genes in the whole genome (http:
//geneontology.org/, accessed on 27 August 2021). GO terms with q-value < 0.05 were
considered to be significantly enriched. GO enrichment analysis could exhibit the biological
functions of the DEGs. The information about Arabidopsis ortholog of Brassica was obtained
from Brassicaceae Database (BRAD) (http://Brassicadb.cn, accessed on 1 May 2021).

4.5. RT-qPCR

In order to verify the accuracy of RNA-Seq, nine candidate genes were randomly
selected for RT-qPCR. The cDNA used the same RNA samples of the RNA-Seq. The
RT-qPCR analysis was performed using the SYBR Green I. To standardize the results,
BrGAPDH was employed as an internal reference control. Three biological replicates were
used for each sample. Primer Premier 5.0 was used to design gene-specific primers for nine
genes and these primer sequences were listed in Table S1. The CT values (the fractional
cycle number at which the fluorescence crosses the specified threshold) were generated
using CFX manager software and evaluated using the 2−∆∆Ct method [73].

5. Conclusions

The transcriptome profiling of anthers and ovules revealed the candidate genes of
homologous recombination in male and female meiosis, the genes of tapetum development,
sporopollenin biosynthesis and pollen wall formation in male gamete development and
the genes of mitosis, nuclear localization, cell differentiation and development in female
gamete development of Brassica allohexaploids. Our findings enhance the understanding of
the genes involved in the male and female gamete development of Brassica allohexaploids
and lay a foundation for the reproductive study of polyploids.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11121556/s1, Figure S1: Correlation heat map of the nine
samples of Brassica allohexaploids using Pearson correlation coefficients; Figure S2: Volcano plots
of differentially expressed genes (DEGs) for three comparisons in Brassica allohexaploids; Table S1:
FPKM of all genes in Anther, Ovule and Leaf of Brassica allohexaploids; Table S2: Statistics of
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differentially expressed genes (DEGs) in Anther, Ovule and Leaf by pairwise comparison in Brassica
allohexaploids; Table S3: List of primer sequences for quantitative fluorescence verification involving
selected genes and internal reference.
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