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Abstract

Background: Schistocephalus solidus is a well-established model organism for studying the complex life cycle
of cestodes and the mechanisms underlying host-parasite interactions. However, very few large-scale genetic
resources for this species are available. We have sequenced and de novo-assembled the transcriptome of
S. solidus using tissues from whole worms at three key developmental states - non-infective plerocercoid, infective
plerocercoid and adult plerocercoid - to provide a resource for studying the evolution of complex life cycles
and, more specifically, how parasites modulate their interactions with their hosts during development.

Findings: The de novo transcriptome assembly reconstructed the coding sequence of 10,285 high-confidence
unigenes from which 24,765 non-redundant transcripts were derived. 7,920 (77 %) of these unigenes were
annotated with a protein name and 7,323 (71 %) were assigned at least one Gene Ontology term. Our raw
transcriptome assembly (unfiltered transcripts) covers 92 % of the predicted transcriptome derived from the
S. solidus draft genome assembly currently available on WormBase. It also provides new ecological information
and orthology relationships to further annotate the current WormBase transcriptome and genome.

Conclusion: This large-scale transcriptomic dataset provides a foundation for studies on how parasitic species with
complex life cycles modulate their response to changes in biotic and abiotic conditions experienced inside their
various hosts, which is a fundamental objective of parasitology. Furthermore, this resource will help in the validation
of the S solidus gene features that have been predicted based on genomic sequence.

Keywords: Transcriptome, RNA-seq, de novo assembly, Schistocephalus solidus, Parasite, Cestode, Flatworm,
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Data description
Background

Parasites are increasingly recognized as critically important

ecological agents that play a key role in nutrient cycling,

influence inter-specific interactions and engineer the

physicochemical properties of ecosystems [1]. Increased

connectivity between trophic levels due to parasitic

infections has been systematically investigated for more

than 200 years. Peter Christian Abildgaard, a Danish

veterinarian, was the first to identify a parasite being

transmitted from one species to another via predation [2].

Abildgaard discovered the existence of complex parasite

life cycles after observing that threespine sticklebacks

(Gasterosteus aculeatus) and various fish-eating birds

seemed to be infected by different forms of the same

flatworm, named by Abildgaard as Taenia gasterostei. In a

classic experiment, Abildgaard showed that ducks could

acquire and maintain healthy T. gasterostei following the

ingestion of infected threespine sticklebacks. This was the

first demonstration of a complex life cycle, in which a

parasite is transmitted from one host species to an-

other [2]. After 155 years, in 1945, J.D. Smyth utilized
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T. gasterostei, by then named Schistocephalus solidus,

as an experimental model. In an influential publication,

Smyth described how S. solidus could be cultivated in

vitro in the laboratory using specific experimental condi-

tions to mimic the conditions within different hosts [3].

The infection of threespine stickleback by S. solidus has

now become a model system in various research areas,

including evolution, physiology, immunology, ecology,

behavior (reviewed in [4]) and genomics of host parasite

interactions, as fully sequenced genomes for G. aculeatus

[5] and S. solidus [6, 7] are now available.

The life cycle of S. solidus can be simulated in vivo

and in vitro using Smyth’s techniques [4, 8, 9]. In brief,

eggs hatch in the water to release the coracidium larvae.

Any species of cyclopoid copepod can eat the coraci-

dium, after which the larva develops into the procercoid

stage in the body cavity of its crustacean host. Three-

spine sticklebacks feed on infected copepods, allowing

the procercoid to migrate into the coelom of the fish.

The procercoid then undergoes a transformation to be-

come an early, immature plerocercoid entering in a

growth phase that will last 8–16 weeks. This growth

period results in gains of up to 300 times its initial mass

[10, 11]. Once the plerocercoid reaches a critical body

mass (50 mg or more [12]) it is able to infect its final

host, which is typically any species of piscivorous bird

[13]. Trophic transmission of the competent (‘infective’)

plerocercoid allows the parasite to complete its sexual

maturation and reproduction, either by self- or cross-

fertilization, in the digestive tract of the bird [14, 15].

The eggs are finally released in the water through the

bird’s faeces.

Despite complex parasite life cycles being first de-

scribed more than 200 years ago, the question of why

and how some parasites evolved to acquire this complex

strategy still remains elusive [16]. One approach to un-

derstanding the evolution of these strategies involves

characterizing the molecular mechanisms that allow the

parasite to transition from one stage to another as it

transfers through several different hosts. The transcrip-

tome of the parasite, consisting of all of the mRNA mol-

ecules that can be produced by the organism, represents

a critical level of biological organization. It plays a key

role in modulating the concentration of proteins at the

interface of the molecular interactions between the para-

site and its host [17, 18]. Changes in gene expression

represent a major mechanism by which phenotypic traits

can be ‘fine-tuned’ to achieve success in variable envi-

ronments [19], including those experienced by parasites

as they transit successive host species.

Understanding how parasites interact with their host

environments and how they respond to changes in the

biotic and abiotic conditions present at each stage is a

fundamental objective of parasitology. Understanding

these interactions at a molecular level requires the devel-

opment of genetic resources. Here we present a compre-

hensive de novo transcriptome sequence that covers three

key developmental life cycle stages of S. solidus that occur

in vertebrate hosts, namely the non-infective plerocercoid,

the infective plerocercoid and the adult. This experimental

host-parasite system also represents a unique opportunity

to collect valuable empirical data that will increase our

knowledge of how parasites impact ecological and evolu-

tionary processes, through effects on host behavior, sexual

development and physiology [20–25]. Finally, this first

large-scale transcriptomic dataset will help in the valid-

ation of the S. solidus gene features that have been pre-

dicted based on genome sequence.

Specimen collection and laboratory infections

Parasites used in this study were obtained from

experimentally-infected, laboratory-raised threespine stick-

lebacks at the University of Leicester (Leicester, England)

according to previously described protocols [3, 26, 27].

Culturing and RNA extraction protocols are also available

via the protocols.io repository [28]. Parasite eggs utilized in

these experimental infections were previously produced

from adult worms following the in vitro culture of plerocer-

coids [3] extracted from wild-caught threespine sticklebacks

collected from Clatworthy Reservoir in Somerset, England

(51°06’86”N, 3°35’39”W). Experimentally-infected fish were

the F1 progeny of adult parents collected from the same

lake as the parasite population, and from two other

locations in the United Kingdom: Carsington Water in

Derbyshire, England (53°06’05.09”N, 1°64’36.58”W) and

Inverleith Pond in Edinburgh, Scotland (55°96’78.57”N, 3°

21’67.21”W).

In brief, parasite eggs were placed in Petri dishes filled

with tap water for two weeks and exposed to light to

stimulate hatching. Hatched larvae were fed to laboratory-

cultured copepods (Cyclops strennus Fischer) and three to

four weeks later they were fed to the laboratory-raised

threespine sticklebacks. Fish exposed to infected copepods

were randomly selected and killed in a benzocaine so-

lution (15 mM) between 10 and 17 weeks post-

exposure. The timing of the sampling and subsequent

dissection allowed both ‘non-infective’ plerocercoids

(<50 mg) and ‘infective’ plerocercoids (>50 mg) to be

recovered aseptically from the coelom of infected fish

[12]. Non-infective worms were collected between 10

and 13 weeks post-infection, while infective worms

were collected between 16 and 17 weeks post-infection.

Additional infective plerocercoids extracted aseptically

from naturally infected threespine sticklebacks caught

from Clatworthy Reservoir were cultured in vitro to simu-

late the avian digestive tract environment [3] in order to

obtain samples of the sexually mature adult worm life

stage.
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RNA extraction and library preparation

All of the worms were washed carefully with UltraPure

RNase free water (Ambion Inc., Austin, TX, USA) im-

mediately after being extracted aseptically from the fish

coelom (non-infective and infective plerocercoids) or

collected from incubated test tubes (adults), then quickly

cut with a scalpel into square pieces of five millimeters

by five millimeters, placed into RNAlater (Ambion Inc.,

Austin, TX, USA) at 4 °C overnight, then transferred the

next morning to −80 °C until RNA extraction. Total

RNA was extracted from S. solidus worms following the

method developed by Chomczynski & Sacchi [29], based

on acid guanidinium thiocyanate-phenol-chloroform

(Trizol® reagent, Invitrogen, Carlsbad, CA, USA).

Total RNA quality assessment using an Agilent 2100

Bioanalyzer® (Agilent, Santa Clara, CA, USA) revealed

profiles similar to sub-optimal, or potentially degraded

sample (see [30] for sample-specific profiles). However,

this profile has been consistently observed across mul-

tiple independent cestode extractions (unpublished data)

and has also been documented in other taxa from the

Platyhelminthes phylum (classes Trematoda, Tricladida),

Nematoda phylum (classes Chromadorea, Adenophorea)

and other taxonomic groups including Arthropoda and

therefore is not likely to indicate degradation [31]. These

profiles are most likely the result of thermal conversion

producing gap-deletion patterns in the 28S rRNA, ultim-

ately leading to its fragmentation [31]. All of our RNA

samples exhibited this same gap-deletion pattern.

Total RNA samples from 14 individual worms were

used to produce individual TruSeq cDNA Illumina

sequencing libraries (San Diego, CA, USA) according to

the manufacturer’s protocol (see Table 1). Libraries were

evenly and randomly distributed into three Illumina HiSeq

2000 lanes so that each lane contained samples from all

three developmental stages. Sequencing was performed on

the Illumina HiSeq 2000 system at Centre de Recherche

du CHU de Québec (Québec, QC, Canada) to generate a

total of 375 million 100 bp paired-end reads. RNA from

one adult worm was used to prepare an additional

Illumina TruSeq sequencing library used to perform

preliminary optimization tests on assembly parameters

(see Table 1, sample cltw.A.01). This library was se-

quenced on the MiSeq system at Plateforme d’ana-

lyses génomiques (Institut de Biologie Intégrative et

des Systèmes, Université Laval, Québec) and yielded

19.4 million 300 bp paired-end sequences (deposited

into the NCBI Sequence Read Archive (SRA) with acces-

sion number SAMN04296611 associated with BioProject

PRJNA304161).

Transcriptome assembly

Three worm libraries of similar size, one from each life

stage were used for the initial de novo assembly (Table 1,

in bold). Only one individual per life stage was used to

obtain an initial set of raw de novo transcripts in order

to i) minimize redundancy in assembled contigs due

to allele splitting, ii) obtain the best possible balance

Table 1 Schistocephalus solidus specimens from three different developmental stages used to generate the de novo reference
transcriptomeb

Sample ID Mass (mg) Stagea Library size (no. raw reads) Platform Ave. read quality (PHRED score)

ssol.cltw.NI.05 1.7 NI 95.7 M HiSeq 2000 37

ssol.cltw. NI.08 1.5 NI 57.6 M HiSeq 2000 37

ssol.cltw. NI.12 5.2 NI 29.5 M HiSeq 2000 37

ssol.cltw. NI.13 1.8 NI 69.6 M HiSeq 2000 37

ssol.cltw. NI.14 3.4 NI 59.8 M HiSeq 2000 37

ssol.cltw. NI.22 7.7 NI 49.1 M HiSeq 2000 37

ssol.cltw. NI.26 13.1 NI 53.7 M HiSeq 2000 37

ssol.cltw. NI.63 102 I 37.5 M HiSeq 2000 37

ssol.cltw. NI.67 90.1 I 42.3 M HiSeq 2000 37

ssol.cltw. I.98–1 101.2 I 36.8 M HiSeq 2000 37

ssol.cltw.I.98–2 108.1 I 56.3 M HiSeq 2000 37

ssol.cltw.A.01 164.5 A 38.8 M MiSeq 38

ssol.cltw.A.03 321 A 61.2 M HiSeq 2000 37

ssol.cltw.A.07 329.4 A 50.2 M HiSeq 2000 37

ssol.cltw.A.12 356 A 51.7 M HiSeq 2000 37
aNI non-infective, I infective, A adult
bWorms in bold were selected as the three representative samples to be used to perform the initial raw de novo assembly. All 14 HiSeq libraries were then used

to eliminate redundancy in the final dataset and increase assembly quality, while sample cltw.a-01 (in italic) was used to perform preliminary optimization tests on

assembly parameters
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between true transcript detection and false positives,

and iii) obtain the maximum diversity of transcripts span-

ning all three life stages, i.e. characterize a maximum

number of stage-specific genes [32–34]. In brief, reads

from these pre-defined “representative worms” were com-

bined for the initial assembly, then all 14 HiSeq libraries

were used to reduce the final assembly and reduce contig

redundancy as much as possible. The complete assembly

pipeline is summarized in Fig. 1 and is available for down-

load on Github [35].

Using Trimmomatic v0.33 [36], sequencing adaptors

were removed from raw reads, reads were quality trimmed

and then selected for minimum length (reads ≥ 60 bp were

retained). As the primary goal of this study was to perform

a de novo assembly, a less-stringent trimming threshold

was selected (Phred score = 2) as suggested for increased

de novo assembly quality [37]. Trimmed libraries for the

three representative samples were then concatenated and

used as the input for a de novo assembly through the

Trinity pipeline v.2.0.6 with default parameters and a

minimum contig length of 150 nucleotides [38]. Next,

trimmed sequencing reads for the 14 HiSeq libraries (de-

posited into the NCBI SRA under accession number

SRP066813, associated with BioProject PRJNA304161)

were aligned with Bowtie 2 v.2.1.0 [39] against the de novo

assembly, allowing multi-mapping for each read. Corset

v.1.04 [40] was then utilized to cluster transcripts into uni-

genes based on sequence similarity and read counts (total

of 14 sorted BAM files, i.e. one per individual library).

Open reading frames (ORFs) were predicted for all tran-

scripts with Transdecoder v.2.0.1 [38]. The raw transcrip-

tome was finally filtered to discard transcripts that were

Fig. 1 De novo assembly method used in the construction of a reference transcriptome for Schistocephalus solidus. Sequencing libraries from
three developmental stages of S. solidus, non-infective plerocercoid, infective plerocercoid and adult, were trimmed (PHRED > 2, read length > 60 nucl.),
concatenated and assembled de novo (1 library per stage). Next, the three libraries initially used to produce the de novo assembly, in addition to 11
libraries spanning the same three developmental stages (non-infective plerocercoid = 6 libraries, infective plerocercoid = 3 libraries, adult = 2 libraries)
were aligned back to the de novo assembly. CORSET was used on the resulting alignment to eliminate redundancy by creating clusters of similar
sequences, called ‘unigenes’. Transcripts were finally annotated through the Trinotate pipeline and transcripts poorly supported by protein-coding
evidence were discarded, along with transcripts showing a low average coverage, i.e. CPM < 10 in 50 % of the samples in one group. The final
transcriptome contains 24,765 transcripts accounting for 10,285 unigenes, of which 77 % could be annotated
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poorly supported by protein-coding evidence (ORF length

< 10 amino acids) and with low read counts (transcripts

with CPM > 15 in at least three samples in one of the

three developmental stages were kept). Considering the

increasing evidence for key biological functions performed

by non-coding RNAs [41], transcripts that did not contain

ORFs that met our criteria were considered as “potentially

non-coding” for further analysis and are provided as sup-

plementary resource associated with this publication [30].

Results of the assembly and filtering steps can be found in

Table 2.

Annotation

Annotation was performed on predicted protein amino

acid sequences using Trinotate v.2.0.2 [38] to assign a

protein name and GO terms to each transcript. Pre-

dicted proteins were analyzed by several methods for

functional annotation, starting with a sequence hom-

ology search on UniProtKB/Swissprot (downloaded 11

May 2015). Protein sequences were then mined for func-

tional domains through HMMER v3.1 [42] and Pfam

v.28.0 [43]. Signal peptides and transmembrane domains

were assigned to coding sequences according to hidden

Markov model-based prediction algorithms implemented

in SignalP v.4.1 [44] and tmHMM v.2.0 [45], respectively.

Transcripts were finally compared to curated annotation

databases including EMBL Uniprot [46], KEGG [47],

eggNOG v.3.0 [48] and GO pathways [49]. The steps

and scripts built to implement this annotation pipe-

line are available on Github [50]. Transvestigator [51]

was finally used to prepare the data for submission to

NCBI Transcriptome Shotgun Assembly (TSA), by

confirming that ORFs were on the positive strand and

that each transcript was associated with at least one

ORF. Annotation information based on the results ob-

tained with Trinotate was also included in the TSA sub-

mission (accessible through GigaDB accession publication

associated with this publication, see [30]).

Comparison with gene-prediction models

A predicted transcriptome for S. solidus is currently

available on WormBase v1.5.4 [6]. These gene predic-

tions were generated by the Parasite Genomics group at

the Wellcome Trust Sanger Institute from the genome

by a combination of programs such as MAKER [52] and

Augustus [53], as well as protein sequence homology

searches against the taxonomically nearest reference

helminth genome. Although gene prediction models can

generate informative data when working with genome

sequences, an essential task in characterizing gene fea-

tures in a newly sequenced genome is to confirm and

validate predicted coding sequences with empirical

mRNA data [54]. The de novo transcriptome generated

here was thus compared to the predicted version of the

transcriptome and the complete genome from WormBase

using two complementary approaches. First, a reciprocal

best-hit analysis was performed, and second, our mRNA

sequencing reads were aligned to the reference genome.

We expected that only a partial representation of the

predicted coding sequences on WormBase would be

observed in the data presented here. This prediction stems

from the fact that our de novo transcriptome was assem-

bled using mRNA sequences for parasite stages in the fish

and the bird hosts only. The developing embryo, free-

swimming larval and procercoid stages were not consid-

ered in this assembly.

Results of a standard BLAST approach showed that

7,399 (72 %) of de novo unigenes (i.e. unigenes with valid

ORF(s) and evidence of expression) give significant blast

results (e < 1e-10, minimum 50 % overlap) when com-

pared to the WormBase predicted transcriptome. Using

reciprocal best hit BLAST [55] reduces the number of

de novo unigenes with significant matches on the pre-

dicted transcriptome to 5,176 (50 %). Using the genome

as a target, 9,877 (96 %) of our de novo unigenes return

a significant blastn match (e-value < 1e-10, minimum

50 % overlap) on the WormBase genome with an aver-

age and a median sequence similarity of 92 % (range =

62–100 %, mode = 100 %, see Additional file 1). Recent

work on the landscape genetics of S. solidus in Alaska

(USA) revealed significant genetic differences among

populations from several lakes along a gradient of isola-

tion by distance [56]. The strong population structure

and low admixture levels found in these lakes are indica-

tive of low migration rates among populations. This

Table 2 De novo assembly and annotations metrics for the
transcriptome of the cestode Schistocephalus solidus

De novo assembly

Assembled bases 195 089 904

Assembled transcripts 293 731

Unigenes – Unfiltered 115 318

Unigenes – Expression filter 12 291

Unigenes – Expression & ORF filters
(transcripts)

10 285 (24 765)

Average transcripts per filtered unigene 2.41

Sum of filtered transcripts (Mbp) 367.83

Average length (bp) – Filtered transcripts
(min - max : median)

2 684 (174–25 376 : 2168)

Annotation

Unigenes with protein name 7 920 (77 %)

Unigenes with Gene Ontology
(% of unigenes)

7 323 (71 %)

Proteins with complete ORF
(% of unigenes)

20 335 (82 %)

Unigenes/transcripts with KEGG ID
(% of unigenes)

4 270/7 798 (35 %)
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could help explain why we obtain a median similarity of

92 % and not higher when comparing populations from

the UK (de novo transcriptome generated in this study)

with populations from Germany (WormBase genome).

As a complement to the BLAST approach, reads used

to construct the de novo assembly were also aligned on

the genome and predicted transcriptome using the

BWA-MEM algorithm [57] with default parameters.

Mapping results indicate that 84 % of the reads success-

fully align on the genome (MAPQ ≥ 15), and 51 % of the

reads successfully align on the predicted transcriptome.

In total, 15,840 (78 %) predicted transcripts show some

evidence of expression. The partial correspondence be-

tween the de novo assembly and the predicted transcrip-

tome, as shown by the two complementary approaches,

confirms our initial prediction that only a subset of all

the possible genes in S. solidus would be represented in

the stages assessed in this de novo transcriptome. On the

other hand, 21 % of the de novo assembled transcripts

exhibiting a valid ORF and evidence of expression across

several individual worms were not represented in the

predicted transcriptome. These transcripts were however

detected in the genome, highlighting the importance of

using RNA-seq data to further improve genome assem-

blies and annotations based on gene prediction models

[58]. As only 84 % of the reads from the de novo tran-

scriptome align on the genome (and not 100 %) may in-

dicate i) regions missing from the current reference

genome, ii) reads not mapping properly due to low com-

plexity sequences, or iii) that polymorphisms between

the individuals prevents mapping. Globally, these results

call for a collaborative strategy taking advantage of

multiple sources of information of a genomic and tran-

scriptomic nature, towards an integrated and complete

characterization of the genome structure of S. solidus.

An un-gapped blastn analysis of our raw transcrip-

tome (unfiltered transcripts) against the WormBase pre-

dicted transcriptome revealed that it covers 92 % (18,608

transcripts) of the predicted transcripts, suggesting that

some of the transcripts discarded in our pipeline based

on protein-coding evidence and expression levels might

in fact be true transcripts encoded in the genome. We

consider these transcripts as ‘putative ncRNAs’. They are

available in the public repository associated with this

publication [30].

Novel resource for phylogenomic analyses

Establishing the evolutionary relationships among

parasitic species represents a fundamental step towards

understanding how parasitism evolved and how complex

life cycles were acquired by certain taxa [59–62]. To

date, very few genomes from parasitic worm species

belonging to the Pseudophyllidea order (Phylum: Platy-

helminthes, Class: Cestoda) have been fully sequenced

[63] and currently there are no empirical transcriptomic

resources available for any species belonging to the

Schistocephalidae family, apart from the work on Schis-

tocephalus solidus presented here. This new resource

gives us an opportunity to fill this knowledge gap about

evolutionary relationships. We assessed sequence hom-

ology between our de novo transcriptome and transcrip-

tomes from seven other parasitic worm species by using

OrthoMCL v.2.0.9 [64] according to the protocol devel-

oped by Fischer et al. [65]. Specifically, we included coding

sequences from Wormbase ParaSite [66] for Hymenolepis

microstoma (cestode, Hymenolepiditae family), Taenia

solium, Echinococcus granulosus, Echinococcus multi-

locularis (cestodes, Taenidae family, described in [67]),

Spirometra erinaceieuropaei (cestode, Diphyllobothriidae

family, described in [63]) in addition to Schistosoma man-

sonii (trematode, Schistosomatidae family) and Clonorchis

sinensis (tremadote, Opisthorchiidae) as outgroups in our

analysis. Phylogenetic relationships among these eight

species were built using a set of 565 groups of ortho-

logous genes identified with OrthoMCL, each contain-

ing one single-copy gene per worm species (“single-

copy orthologs”). Per species, single-copy orthologs

were concatenated and aligned against one another

using MAFFT v.7.245 [68]. Well-aligned regions were

extracted using Gblocks 0.91b [69], which resulted in

80,865 aligned amino acid positions in 1,607 selected

blocks. This final alignment was used to construct a

phylogenetic tree with RAxML v.8.2.0 [70], following

a gamma model rate of heterogeneity, combined with

a WAG substitution matrix and a maximum likelihood

search of 100 bootstraps. The resulting tree presented in

Fig. 2 was visualized with Dendroscope v.3.4.4 [71].

Orthologous amino acid sequences for each species are

provided in the GigaDB accession associated with this

publication, as well as a full list of all potential orthologs

between the species. In total, 8,329 unigenes (80 %) were

identified as putative orthologs by OrthoMCL, meaning

they show a sufficiently high sequence similarity to be

aligned with at least one of the worm species included in

the analysis. The results also suggest that 1,637 of the

filtered unigenes (16 %) could potentially be specific to S.

solidus since OrthoMCL identified them as singletons (no

orthologous hit to any species included in the analysis).

These specific unigenes may hold important species-

specific information about this species and will be import-

ant to explore further. Of this subset, 43 were annotated

with putative protein names, and 57 % remained as

unknowns.

In conclusion, despite its position as a historical model

system for the development of laboratory techniques

now widely used in parasitology [72], S. solidus still re-

mains an understudied species in terms of genomics.

With novel resources such as the de novo transcriptome
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described here, S. solidus may additionally be a model

for the study of conserved functions among parasitic

worms, as well as offering species-specific genomic

traits, among which may provide insight on key com-

ponents of the complex life cycle of this model

parasite.
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Fig. 2 Phylogenetic relationships between Schistocephalus solidus (Schistocephalidae) and seven other parasitic worm species. These other
species include five cestodes from the Cyclophyllidea and Pseudophyllidea orders and two trematodes (outgroups). More specifically, species
from the cestode phylum include Hymenolepis microstoma (rodent tapeworm), Taenia solium (pork tapeworm), Echinococcus multilocularis

(fox tapeworm), Echinococcus granulosus (dog tapeworm) and Spirometra erinaceieuropaei (responsible for the sparganosis infection), while
the trematode outgroups are represented by Schistosoma mansoni (responsible for diseases such as schistosomiatis) and Clonorchis sinensis

(Chinese liver fluke). Bootstrap values were all 100. Total number of single-copy orthologs used to produce the phylogenetic tree = 4 520
(distributed in 565 core orthologous groups). The number of orthologs shared with S. solidus is defined as the number of amino acid sequences
in a given species that are part of an orthologous group identified by orthoMCL that also contains sequences from S. solidus
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