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Abstract

Background: Bivalves comprise 30,000 extant species, constituting the second largest group of mollusks. However, limited
genetic research has focused on this group of animals so far, which is, in part, due to the lack of genomic resources. The
advent of high-throughput sequencing technologies enables generation of genomic resources in a short time and at a
minimal cost, and therefore provides a turning point for bivalve research. In the present study, we performed de novo
transcriptome sequencing to first produce a comprehensive expressed sequence tag (EST) dataset for the Yesso scallop
(Patinopecten yessoensis).

Results: In a single 454 sequencing run, 805,330 reads were produced and then assembled into 32,590 contigs, with about
six-fold sequencing coverage. A total of 25,237 unique protein-coding genes were identified from a variety of
developmental stages and adult tissues based on sequence similarities with known proteins. As determined by GO
annotation and KEGG pathway mapping, functional annotation of the unigenes recovered diverse biological functions and
processes. Transcripts putatively involved in growth, reproduction and stress/immune-response were identified. More than
49,000 single nucleotide polymorphisms (SNPs) and 2,700 simple sequence repeats (SSRs) were also detected.

Conclusion: Our data provide the most comprehensive transcriptomic resource currently available for P. yessoensis.
Candidate genes potentially involved in growth, reproduction, and stress/immunity-response were identified, and are
worthy of further investigation. A large number of SNPs and SSRs were also identified and ready for marker development.
This resource should lay an important foundation for future genetic or genomic studies on this species.
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Introduction

Lophotrochozoa are a major group of protostome animals, and

Mollusca are the largest phylum of this clade. Bivalves may have

appeared as early as the Cambrian period [1]. They comprise

30,000 extant species, constituting the second largest group of

mollusks [2]. In spite of their species abundance and diverse

geographical distribution, limited research has been conducted on

this particular group of animals. To date, many of bivalve studies

have been limited to a few well-studied species. Genetic or

genomic studies on a broader range of bivalve species would

clearly enable a better understanding of the phylogeny, speciation

and diversification of bivalves. Fortunately, the recent advent of

high-throughput sequencing technologies, which can dramatically

speed up genetic and genomic studies on potentially any

organisms, provides a turning point for bivalve research.

The Yesso scallop, Patinopecten yessoensis (Jay, 1857), is a cold

water bivalve and naturally distributes along the coastline of

northern Japan, the Far East of Russian and the northern Korean

Peninsula. It is the main scallop species cultured in Japan and has

become one of the most important maricultural shellfish in the

north of China since it was introduced in 1982 [3]. Preliminary

genetic studies on P. yessoensis have recently been performed, which

focused on development of genetic markers [4,5], construction of

genetic maps [6,7], and characterization of functional genes [8,9].

As an economically important aquacultural species, understanding

of genetic mechanisms involved in the growth, reproduction and

immunity of P. yessoensis is currently active research areas.

However, these research areas have long suffered from one of

the challenges of systematic biology studies, namely, the lack of

genomic resources such as genome or transcriptome sequences.

The genome size of P. yessoensis is ,1.7 Gb [10]. Sequencing of

such large genome remains expensive even using next-generation

sequencing technologies. Expressed sequence tag (EST) sequenc-

ing represents an attractive alternative to whole-genome sequenc-

ing because EST sequencing only analyzes transcribed portions of

the genome, while avoiding non-coding and repetitive sequences

that can make up much of the genome. In addition, EST

sequencing is also an effective way to develop ‘functional’ genetic

markers that are very useful for genetic or genomic studies. There
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are ,7,600 EST sequences available for P. yessoensis in the

GenBank database, but a comprehensive description of its

transcriptome remains unavailable. The increased throughput of

next-generation sequencing technologies, such as the massively

parallel 454 pyrosequencing, allows increased sequencing depth

and coverage, while reducing the time, labor, and cost required

[11–13]. These technologies have shown great potential for

expanding sequence databases of not only model species [14–18]

but also non-model organisms [19–24].

In the present study, we performed de novo transcriptome

sequencing for P. yessoensis using the 454 GS FLX platform.

Approximately 25,000 different transcripts and a large number of

SSRs and SNPs were identified. Our EST database should

represent an invaluable resource for future genetic and genomic

studies on this species.

Results and Discussion

Sequence analysis and assembly
A mixed cDNA sample representing diverse developmental

stages and adult tissues of P. yessoensis was prepared and sequenced

using the 454 GS FLX platform for a single sequencing run. This

sequencing run produced 970,422 (,304 Mb) raw reads with an

average length of 313 bases. An overview of the sequencing and

assembly process is presented in Table 1. After removal of adaptor

sequences, 882,588 (,234 Mb) reads remained with an average

length of 265 bases. The removal of short reads (,60 bases)

reduced the total number of reads to 805,330 (,231 Mb); the

average read length was 287 bases. The cleaned reads produced in

this study have been deposited in the NCBI SRA database

(accession number: SRA027310). These results revealed that

83.0% of raw reads contained useful sequence data. The size

distribution for these trimmed, size-selected reads is shown in

Fig. 1A. Overall, 90.4% (728,265) of the clean reads were between

100 and 500 bp in length.

Assembly of the 805,330 clean reads produced 32,590 contigs,

ranging from 60 to 12,879 bp in size, with an average size of

618 bp. These contigs incorporated 87% of high-quality reads,

which resembled the assembly efficiency of 454 reads (80–92%)

reported in previous studies [21,22,25–27]. The size distribution of

these contigs is shown in Fig. 1B. Among these contigs, 16,569

(50.8%) were longer than 500 bp, of which 3,977 (12.2%) were

longer than 1,000 bp. These results demonstrated the effectiveness

of 454 pyrosequencing in rapidly capturing a large portion of the

P. yessoensis transcriptome. The sequencing depth was 5.8 X on

average. As expected for a randomly fragmented transcriptome,

there was a positive relationship between the length of a given

contig and the number of reads assembled into it (Fig. 1C). The

remaining 106,807 high-quality reads were retained as singletons.

About 7.7% of the reads produced in this study matched to

microbes, and over 83% of the microbial transcripts were turned

out to come from the embryo and larval library, of which samples

were collected directly from non-sterile seawater. It seems very

plausible that the majority of identified microbial sequences were

caused by microbial contamination from seawater. Therefore,

these microbial sequences have been removed from the procedures

of functional annotation, and SSR and SNP mining.

Sequence annotation
We utilized several complementary approaches to annotate the

assembled sequences. First, the assembled sequences were

compared against the public Nr and Swiss-Prot databases using

BlastX (E-value,1e-4). Of the 139,397 assembled sequences,

38,942 (14,638 contigs plus 24,304 singletons) had a significant

matches (Table S1) corresponding to 25,237 unique accession

numbers, of which 6,622 were matched by multiple queries

without overlap. These 6,622 subject sequences were matched by

20,327 different query sequences (3.1 matched queries per subject,

on average). Additionally, 24,304 singletons showed significant

matches to 17,204 unique accession numbers, of which 13,661

(79.4%) were not found among contigs, suggesting that most of

singletons contained useful gene information which could not be

obtained from contigs. It could be due to the fact that many genes

in the transcriptome are expressed at levels low enough to hinder

adequate sampling for 454 sequencing.

The percentage of sequences without annotation information in

this study was considerable (approximately 72.1%). The poor

annotation efficiency could be due to the insufficient sequences in

public databases for phylogenetically closely related species to date.

For example, 461 (1.2%) hits were matched to P. yessoensis; 228

(0.6%) to C. farreri (Zhikong scallop); 182 (0.5%) to C. gigas (Pacific

oyster); and 176 (0.5%) to A. irradians (Bay scallop). Only 4.1% of the

BLAST hits matched to Bivalvia class in total. On the other hand,

because the significance of the BLAST comparison depends in part

on the length of the query sequence, short reads obtained from

sequencing would rarely be matched to known genes [13]. In this

study, almost half of the assembled sequences were not very long

(48.3%,300 bp), which might be too short to allow for statistically

meaningful matches. For sequences longer than 300 bp, annotation

rate was 39.0%, while for sequences longer than 1 kb, the

proportion increased to 67.6% (Table 2). Additionally, sequences

without annotations may represent poorly conserved regions (e.g.,

un-translated regions (UTRs)) in P. yessoensis.

Secondly, Gene Ontology (GO) [28] analysis was carried out,

which provides a dynamic, controlled vocabulary and hierarchical

relationships for the representation of information on molecular

function, cellular component and biological process, allowing a

coherent annotation of gene products. Of 21,414 annotated

sequences in Swiss-Prot, 15,530 (72.5%) were assigned with one or

more GO terms. In total, 81,121 GO assignments were finally

obtained, with 37.1% for biological processes, 32.4% for molecular

functions, and 30.4% for cellular components. For biological

processes, genes involved in cellular process (GO: 0009987) and

metabolic process (GO: 0008152) were highly represented. For

molecular functions, binding (GO: 0005488) were the most

represented GO term, followed by catalytic activity (GO: 0003824).

Regarding cellular component, the most represented categories were

cells (GO: 0005623) and organelles (GO: 0043226) (Fig. 2).

Besides GO analysis, KEGG [29] pathway mapping based on

enzyme commission (EC) numbers for assignments was also carried

out for the assembled sequences, which is an alternative approach to

categorize genes functions with the emphasis on biochemical

pathways. EC numbers were assigned to 4,846 unique sequences,

Table 1. Summary of 454 transcriptome sequencing and
assembly for P. yessoensis.

Reads (n) Bases (Mb)
Average
length (bp)

Raw sequencing reads 970,422 303.8 313.1

Clean reads 805,330 230.7 286.5

Contigs 32,590 20.2 618.4

Singletons 106,807 28.1 262.9

Total 139,397 48.3 346.0

doi:10.1371/journal.pone.0021560.t001

Scallop Transcriptome Sequencing and Analysis
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which were involved in 244 different pathways. Summary of the

sequences involved in these pathways was included in Table S2. Of

these 4,846 sequences with KEGG annotation, 45.5% were

classified into the genetic information processing (GIP), with most

of them involved in replication and repair, folding, sorting and

degradation, transcription, and translation. Sequences classified into

the metabolism accounted for 42.8% of the KEGG annotated

sequences. The well-represented metabolic pathways were enzyme

families, carbohydrate metabolism, amino acid metabolism, and

energy metabolism. Cellular processes were represented by 18.3%

of the KEGG annotated sequences. The cell motility, cell growth

and death, immune system, and endocrine system were well

represented. Additionally, 15.2% of the sequences were classified

into environmental information processing (EIP) including signal

transduction, signaling and interaction molecules, and membrane

transport.

Functional genes involved in growth, reproduction,
stress and immunity

For many aquaculture animals like scallop, economic traits like

growth and reproduction are of particular interest to the

researchers. The sequence and annotation information from

BLAST, GO and KEGG annotations all provided valuable gene

sources for the study of molecular basis that underline these

Figure 1. Overview of the P. yessoensis transcriptome sequencing and assembly. (A) Size distribution of 454 sequencing reads after removal
of adaptor and short sequences (,60 bases). (B) Size distribution of contigs. (C) Log-log plot showing the dependence of contig lengths on the
number of reads assembled into each contig.
doi:10.1371/journal.pone.0021560.g001

Table 2. Functional annotation of the P. yessoensis
transcriptome.

ESTs (unique genes)

All sequences $300 bp $1000 bp

Total number of sequences 139,397 72,077 3,978

ESTs with BLAST matches
against Nr

38,536
(28,864)

27,971
(22,067)

2,783
(2,549)

ESTs with BLAST matches
against Swiss-Prot

29,195
(17,647)

21,932
(14,472)

2,455
(2,259)

ESTs assigned with GO
terms

15,530
(9,290)

17,027
(7,921)

1,873
(1,607)

ESTs assigned with EC
numbers

4,846
(3,209)

4,454
(3,078)

990
(894)

doi:10.1371/journal.pone.0021560.t002

Scallop Transcriptome Sequencing and Analysis
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economic traits of P. yessoensis. Transcripts putatively take part in

growth (GO: 0040007) and reproduction (GO: 0000003) were

found in our 454 database (Table S3). Among them, genes

encoding different groups of growth factors and their receptors

involved in cell growth were identified, such as epidermal growth

factor domains and receptors, transforming growth factors and

receptors, insulin-like growth factor receptors and fibroblast

growth factor and receptors. Interestingly, several transcripts

encoding for MAP kinase signal-integrating kinase 1 (Mnk1) were

also identified. This gene is a transcriptional and translational

regulator, and is an important modulator of cell growth and

proliferation [30].

Regarding reproduction, genes encoding DEAD-box family

members such as vasa , PL10 and eIF4A that function in germ cell

development and reproductive regulation, and Piwi-like proteins

that are responsible for maintaining the stability of cells division

rates in germ cells were identified. Several transcripts involved in

gonad development were also observed. For example, vitellogenin

(vtg), the precursor of egg yolk proteins that are sources of

nutrients during embryonic development [31], was highly

expressed in the female gonad. Interestingly, vtg expression was

also detected at a very low level in the other three tissues including

male gonad. In the male gonad, a transcript homologous to the

sperm-specific H1/protamine-like protein was highly expressed.

This protein is responsible for compacting sperm DNA into a

highly condensed, stable, inactive complex and is involved in

chromatin remodeling and/or transcriptional regulation during

spermiogenesis [32]. This transcript was also expressed at a very

low level in other tissues, but absent in female gonad.

The identification of a number of stress and immune-related

transcripts (Table S3) are also of interest to scallop researchers

because of increasing environmental pressures on scallop popula-

tions resulting from the increasing use of coastal zones and from

the devastating effects of diseases. Both KEGG and GO analysis

identified transcripts potentially involved in responses to environ-

mental pressure and stimulus. The GO annotation identifed 812

sequences that are potentially related to stimulus responses (GO:

0050896). The Hsp families playing an important role in thermal

tolerance [33] were the most abundant transcripts in this category.

They are necessary for protein folding, multimer dissociation and

association, translocation of proteins across membranes, and

regulation of the heat shock response [34,35]. Since the P. yessoensis

is a cold water species, high expression of Hsps could possibly

promote more efficient folding of proteins at low temperatures

[36,37]. The stress-associated endoplasmic reticulum protein

(SERP2) is also highly expressed and this gene may be linked to

antioxidant capacity, and stabilisation of membranes in response

to stress [24]. For KEGG analysis, 181 sequences were classified

into immune system, and they were involved in 14 immune-

response pathways.

Overall, functional analysis of our 454 database identified

candidate genes potentially involved in growth, reproduction,

stress and immunity. Further experiments are needed to validate

the functions and expression patterns of these candidate genes, and

investigate their potential roles in the gonad development and

reproduction.

SSR and SNP discovery
As an important aquacultural shellfish in China, the application

of marker-assisted selection (MAS) or genome-wide marker-

assisted selection (G-MAS) in the P. yessoensis breeding program

is expected to be a fertile research area. However, few genetic

markers are currently available for this species [4,5]. The

transcriptome data obtained by 454 sequencing provided an

excellent source for mining and development of gene-associated

markers. [13,32,38,39].

In total, 2,748 SSRs were identified from the assembled

sequences (Table 3). Of 2,494 SSR-containing sequences, 420

(16.8%), had been annotated, and can be considered as priority

candidates for maker development. The most frequent repeat

motifs were trinucleotides, which accounted for 39.4% of all SSRs,

followed by dinucleotides (21.1%), tetranucleotides (15.5%),

pentanucleotides (14.6%), and hexanucleotides (9.4%). Based on

the distribution of SSR motifs, AT motifs represented the most

Figure 2. Functional annotation of assembled sequences based on gene ontology (GO) categorization. GO analysis was performed at
the level 2 for three main categories (cellular component, molecular function and biological process).
doi:10.1371/journal.pone.0021560.g002
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abundant dinucleotide motifs. These motifs corresponded to

approximately 55.5% of the dinucleotide motifs. Among trinucle-

otide repeats, ATC (33.8%) was the most common motif, followed

by AAC (17.9%), AGG (14.0%) and AAT (11.4%). The most

abundant tetranucleotide motif was AAAC (22.8%), while

AAAAT (15.0%) and AGCAGG (14.8%) were the most abundant

repeat motifs for pentanucleotides and hexanucleotides, respec-

tively.

Potential SNPs were detected using the QualitySNP program.

We identified 34,841 high-quality SNPs and 14,358 indels from

10,107 contigs (Fig. 3). The predicted SNPs included 20,958

transitions, 12,804 transversions. The overall frequency of all types

of SNPs in the transcriptome, including indels, was one per

156 bp. Of the predicted SNPs, 40,063 (81.9%) were identified

from contigs covered by ten or more reads , suggesting majority of

SNPs identified in this study were covered at sufficient sequencing

depth and more likely represent ‘true’ SNPs. Among the SNPs,

31,696 (64.4%) were identified from contigs with annotation

information. These SNPs would also be priority candidates for

maker development and should be very useful for further genetic

or genomic studies on this species.

In conclusion, we first performed de novo transcriptome

sequencing for the Yesso scallop P. yessoensis using the 454 GS

FLX platform. A large number of candidate genes potentially

involved in growth, reproduction, and stress/immunity-response

were identified, and are worthy of further investigation. A large

number of SNPs and SSRs were also identified and ready for

marker development. This resource should lay an important

foundation for future genetic or genomic studies on this species.

Methods

Scallop materials and RNA extraction
Adult individuals of P. yessoensis were obtained from Dalian

Zhangzidao Fishery Group Corporation (Dalian Province, China)

in 2009. Tissues including adductor muscle, digestive gland, male

and female gonad, were dissected from adult scallops. To obtain

larval materials, fertilization and larval cultures were performed

according to [40]. Fertilized eggs were reared at 15uC. Larval

samples were collected at different developmental stages, including

blastula, gastrula, trochophore and D-shaped larva stages. All

samples were flash frozen in liquid nitrogen and stored at 280uC
until analysis. Total RNAs were extracted from these materials

using the method described in [41]. The quantity and quality of

total RNA was analyzed using an UltrospecTM 2100 pro UV/

Visible Spectrophotometer (Amersham Biosciences, Uppsala,

Sweden) and gel electrophoresis. Equal quantities of high-quality

RNA from each material were pooled for cDNA synthesis.

cDNA library construction and 454 sequencing
cDNA samples were prepared following the protocol described

in [21]. Briefly, first-strand cDNA was synthesized using

SuperScript II reverse transcriptase (Invitrogen, CA, USA) with

a modified oligo-dT primer (Cap-TRSA-CV) and a template-

switch primer: SMART IITM A Oligonucleotide (Clontech, CA,

USA). Then cDNA was amplified using PCR Advantage II

polymerase (Clontech, CA, USA) and the following profile: 94uC
for 5 minutes and 17 cycles of 94uC for 40 seconds, 65uC for 1

minute, and 72uC for 6 minutes. Multiple PCRs were performed

for each library. The cDNA samples were then pooled and

purified using the TIANquick Midi Purification kit (TIANGEN,

Beijing, China).

Larval library was normalized using the Trimmer Direct kit

(Evrogen, Moscow, Russia) to prevent over-representation of the

most common transcripts. In contrast, tissue libraries were not

normalized (for future comparison of transcript expression profiles

among tissues). cDNA samples were sheared by sonication using a

GA92-II D sonicator (Shangjia Biotechnology, Wuxi, China) to

produce fragments of approximately 300–1,000 bp, which is

appropriate fragment size range for 454 sequencing.

Oligonucleotide adaptors were ligated to the fragmented cDNA.

One adaptor contained a barcode sequence that was used to

discriminate samples from different libraries. Finally, all libraries

were combined into a single pool. Approximately 5 mg of the

mixed cDNA pool was used for high throughput sequencing using

a 454 GS FLX sequencer (Roche, Basel, Switzerland).

Sequence data analysis and assembly
The raw reads obtained were first pre-processed by removing

the PolyA tails and adaptors using custom Perl scripts. All

sequences smaller than 60 bases were eliminated based on the

assumption that small reads might represent sequencing artifacts

[21]. The trimmed and size-selected reads were then assembled

using the publicly available program CAP3 [42], which can utilize

quality scores to aid read assembly. The overlap settings used for

Table 3. Summary of simple sequence repeat (SSR) types in
the P. yessoensis transcriptome.

SSR Type
No. of SSR-
containing ESTs No. of SSRs % of total SSRs

Di-nucleotides 557 580 21.1%

Tri-nucleotides 936 1,084 39.4%

Tetra-nucleotides 404 426 15.5%

Penta-nucleotides 387 401 14.6%

Hexa-nucleotides 245 257 9.4%

Total 2,480 2,748 100%

doi:10.1371/journal.pone.0021560.t003

Figure 3. Classification of single nucleotide polymorphisms
(SNPs) identified in the P. yessoensis transcriptome. The overall
frequency of these SNP types in P. yessoensis transcriptome is one per
156 bp.
doi:10.1371/journal.pone.0021560.g003

Scallop Transcriptome Sequencing and Analysis

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e21560



this assembly were 40 bp and 80% similarity, with all other

parameters set to their default values.

Sequence annotation
The assembled sequences were compared against the NCBI

non-redundant (Nr) protein database and Swiss-Prot database

using BlastX with an E-value of 1e-4. Gene names were assigned

to each assembled sequence based on the best BLAST hit (highest

score). To increase computational speed, such search was limited

to the first 10 significant hits for each query.

To annotate the assembled sequences with GO terms describing

biological processes, molecular functions and cellular components,

the Swiss-Prot BLAST results were imported into Blast2GO [43–

45], a software package that retrieves GO terms, allowing gene

functions to be determined and compared. These GO terms are

assigned to query sequences, producing a broad overview of

groups of genes cataloged in the transcriptome for each of three

ontology vocabularies, biological processes, molecular functions

and cellular components. The obtained annotation was enriched

and refined using ANNEX [46], Validate Annotations and GO

Slim [47,48] integrated in the Blast2GO software. The data

presented herein represent a GO analysis at level 2, illustrating

general functional categories.

KEGG pathways were assigned to the assembled sequences

using the online KEGG Automatic Annotation Server (KAAS),

http://www.genome.jp/kegg/kaas/. The bi-directional best hit

(BBH) method was used to obtain KEGG Orthology (KO)

assignment [49]. The output of KEGG analysis includes KO

assignments and KEGG pathways that are populated with the KO

assignments.

SSR and SNP discovery
SciRoko program v3.3 [50] was used to identify and localize

microsatellite motifs. We searched for all types of SSRs from

dinucleotides to hexanucleotides using default settings. Potential

SNPs were detected using QualitySNP [51]. SNP identification

was accomplished using a separate procedure from the main

annotation pipeline. All the clean reads were first assembled using

the CAP3 program, for which the overlap settings were 100 bp

and a 95% similarity. SNP identification was limited to clusters

containing at least four reads.

Supporting Information

Table S1 Sequences with significant BLAST matches
against Nr and Swiss-Prot database.
(XLS)

Table S2 KEGG biochemical mappings for P. yessoensis.
(DOC)

Table S3 Candidate genes involved in growth, repro-
duction, stimulus response and immune defense.
(XLS)
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