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Abstract

Mung bean (Vigna radiate (L.) Wilczek) is an important traditional food legume crop, with

high economic and nutritional value. It is widely grown in China and other Asian countries.

Despite its importance, genomic information is currently unavailable for this crop plant spe-

cies or some of its close relatives in the Vigna genus. In this study, more than 103 million

high quality cDNA sequence reads were obtained from mung bean using Illumina paired-

end sequencing technology. The processed reads were assembled into 48,693 unigenes

with an average length of 874 bp. Of these unigenes, 25,820 (53.0%) and 23,235 (47.7%)

showed significant similarity to proteins in the NCBI non-redundant protein and nucleotide

sequence databases, respectively. Furthermore, 19,242 (39.5%) could be classified into

gene ontology categories, 18,316 (37.6%) into Swiss-Prot categories and 10,918 (22.4%)

into KOG database categories (E-value< 1.0E-5). A total of 6,585 (8.3%) were mapped

onto 244 pathways using the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway

database. Among the unigenes, 10,053 sequences contained a unique simple sequence

repeat (SSR), and 2,303 sequences contained more than one SSR together in the same ex-

pressed sequence tag (EST). A total of 13,134 EST-SSRs were identified as potential mo-

lecular markers, with mono-nucleotide A/T repeats being the most abundant motif class and

G/C repeats being rare. In this SSR analysis, we found five main repeat motifs: AG/CT

(30.8%), GAA/TTC (12.6%), AAAT/ATTT (6.8%), AAAAT/ATTTT (6.2%) and AAAAAT/

ATTTTT (1.9%). A total of 200 SSR loci were randomly selected for validation by PCR am-

plification as EST-SSR markers. Of these, 66 marker primer pairs produced reproducible

amplicons that were polymorphic among 31 mung bean accessions selected from diverse

geographical locations. The large number of SSR-containing sequences found in this study

will be valuable for the construction of a high-resolution genetic linkage maps, association

or comparative mapping and genetic analyses of various Vigna species.
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Introduction

Mung bean belongs to the Vigna genus within the Phaseoleae tribe and is a diploid crop

(2n = 2x = 22) with a genome size of approximately 560 Mb. It is widely grown in Asia as an

important nutritional dry grain, food legume pulse that is complementary to rice for the bal-

anced nutrition it provides to millions of people across China, Cambodia, Laos and Vietnam,

to name a few of the countries where the crop is grown. Mung bean is thought to have health

promoting and nutritional characteristics in the diet and can be used to improve soil fertility

given high rates of nitrogen fixation [1]. In addition, mung bean vegetable sprouts are popular

in Asian cuisine, and they are good sources of protein, fiber, vitamin C and minerals.

Studies in genetic diversity, map-based cloning and molecular breeding of mung bean have

lagged behind other legume crops due to the lack of genomic information for this pulse crop

species [2]. Previous efforts to develop molecular markers for mung bean have not generated

sufficient markers for linkage saturated map construction because they were either monomor-

phic or not fully informative for bi-parental mapping populations. This has been the case for

RFLP [3], RAPD [4], AFLP [5], CAPS [6] and SNP [7] markers. Therefore, microsatellites (also

known as SSRs based on their Simple Sequence Repeat core) are a logical choice for broadening

the scope of markers available to mung bean researchers.

A promising source of SSR markers for legumes is found in the EST sequences generated by

traditional or full transcriptome evaluation techniques. Sanger sequence ESTs in legumes as in

other crops have for the most part contained an abundance of SSR repeat types [8]. With up-

to-date technology, next generation sequencing of the transcriptome, a method often called

RNA-seq, provides deeper and broader coverage of the transcriptome than traditional Sanger

sequencing [9]. In addition, RNA-seq provides a lower background to signal ratio, better cover-

age of adenylation signals and a larger dynamic range of gene expression levels for mRNA eval-

uation than previous sequencing methods [10,11].

RNA-seq technology has been successfully and ubiquitously applied to both model and

non-model organisms [12–14]. In mung bean, transcriptome studies have been limited and to

date only 454 FLX rather than Illumina sequencing has been used with this species. Therefore,

the overall goal of this research was to conduct transcriptome analysis with RNA-seq and to

obtain usable EST-SSR markers from sequencing with Illumina technology. There are few re-

ports on the development of SSR markers in mung bean to date. Somta et al. (2011) designed

157 genic microsatellite markers in mung bean but these were of low polymorphism [15]. In

follow up studies, Moe et al. (2011) identified 1,630 SSR loci from mung bean mRNAs of the

genotype Jangan derived from 454 sequencing technology [16]; and Gupta et al (2014) de-

signed 1,742 SSR markers from EST sequences of the same variety [17]. However, far fewer

SSR markers are reported in mung bean than in common bean [8,18], chickpea [19–20], pi-

geon pea [21] and soybean [22].

The full objective of this study was to use RNA-seq technology and Illumina based tran-

scriptome evaluation of two mung bean cultivars to develop EST-based SSRs for the crop given

the low number of markers available for the species. We characterize the distribution of SSR

motifs in the sequences generated and validate a group of EST-SSR for further use in diversity

analysis. We discuss the utility of the microsatellite markers for comparative mapping.

Materials and Methods

Plant material

A total of 33 mung bean accessions were used in this study including the varieties, ZL1 and V6,

for RNA-seq and an additional 31 accessions for genetic diversity analysis (S1 Dataset). Of the
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31 accessions, 8 genotypes were used for initial screening and validation of marker polymor-

phism. These mung bean accessions were obtained from the National Center for Crop Germ-

plasm Resources Preservation located in Institute of Crop Science, Chinese Academy of

Agricultural Sciences, Beijing, China and were grown for DNA and RNA extractions in a re-

search field at the same location.

RNA extraction

Tissue samples of roots, stems and leaves were collected at 15 days after sowing and quickly

frozen in liquid nitrogen for storage at -80°C. RNA from each of the samples was isolated using

the Trizol Reagent with manufacturer’s instructions (Invitrogen, Life Technologies, Carlsbad,

USA). Total RNA was then treated with RNase-free DNase I (Takara, Kyoto, Japan) for 30 min

at 37°C to remove residual DNA. RNA quality was verified using a 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA) and was also checked by RNase free agarose gel electrophoresis.

The concentration of the total RNA was further quantified with a RNA NanoDrop (Thermo

Fisher Scientific Inc., Waltham, MA, USA).

cDNA library construction

Aliquots of 20 μg each of total RNA from the two different mung bean cultivars were separately

processed for cNDA library construction. In both cases, a concentration of� 400 ng/μl,

OD260/280 = 1.8~2.2, RNA 28S:18S� 1.0, and RNA Integrity Number (RIN)� 7.0 was used

for the preparation of a cDNA libraries. Poly-T oligonucleotide labeled magnetic beads (Illu-

mina Inc., San Diego USA) was used to isolate poly (A) mRNA from the total RNA. Subse-

quently, the isolated mRNA was purified and fragmented into smaller pieces (200–700 nt)

using divalent cations at 94°C for 5 min. First strand cDNA was synthesized with SuperScript

II reverse transcriptase and random primers using the small fragment RNAs as templates. Sec-

ond-strand cDNA synthesis was carried out using GEX second strand buffer, dNTPs, RNase H

and DNA polymerase I. The cDNA fragments were further processed with end repair and

phosphorylation using T4 DNA polymerase, Klenow DNA polymerase, and T4 polynucleotide

kinase. The repaired cDNA fragments were 3’ adenylated using Klenow enzyme (Exo-) before

end-ligating with Illumina paired-end adapters. The products from this ligation reaction were

electrophoresed on a 2% (w/v) TAE-agarose gel and purified to select templates of different

sizes for downstream enrichment. Only cDNA fragments of 200 bp (±25 bp) were excised

from the gel and subjected to PCR. Thermocycling enrichment consisted of 15 cycles of PCR

amplification performed using PCR primers PE1.0 and PE2.0 with Phusion DNA Polymerase.

Illumina Sequencing, data filtering and de novo assembly

The new cDNA libraries of the two mung bean cultivars were sequenced with Illumina paired-

end sequencing technology [23] and an Illumina Hiseq 2000 sequencer which automatically

collected the data and generated FASTQ files (.fq) containing raw data for all the reads. The

files for ZL1 and V6, based on cultivar, were submitted to the sequence read archive (SRA) da-

tabase at Genbank (www.ncbi.nlm.nih.gov), where they were combined and given the acces-

sion number SRP043316. The raw data was stringently filtered for preliminary assembly. All

reads with more than 10% of bases with a poor quality score (Q<20), or non-coding RNA

(such as rRNA, tRNA and miRNA), as well as ambiguous sequences containing an excess of

“N” nucleotide calls or adaptor contamination, were removed. We also discarded the reads that

did not pass the Illumina failed-chastity filter according to the relation “failed-chastity� 1”,

with a chastity threshold of 0.6 on the first 25 cycles. After this, de novo transcriptome assembly

was performed with the software Trinity [24] by uploading the high-quality reads onto a
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computer for further analysis to 1) reduce the graph complexity by resolving repetitive se-

quences shorter than the read length in the graph; 2) clip the short tips in the graphs with

lengths less than 2K (58 bp); 3) filter the low-coverage links that appeared only once along with

their related edges; 4) merge the detected bubbles into a single path if the sequences of the par-

allel paths had a difference of fewer than four base pairs with>90% identity. After all these

steps, the connections on the simplified graphs were broken at any repeat boundaries. These

bioinformatics processes resulted in sequences without redundancy that contained the least

amount of “N” nucleotide calls un-extended on either end. Only these stringently compiled se-

quences were defined as unigenes.

Unigene annotation and classification

The annotation of unigenes was performed using various bioinformatics procedures. The uni-

genes were aligned with BLASTX to four protein databases (NCBI non-redundant or Nr pro-

teins, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes or KEGG and euKaryotic

Ortholog Groups or KOG) and one nucleotide database (NCBI nucleotide or Nt sequences)

with an E-value threshold of 1.0E-5 for all except KOG with a threshold of 1.0E-3 [25,26]. The

proteins with highest sequence similarity were retrieved and annotated to each unigene. With

nucleotide based annotation, Blast2GO [27] software was used to obtain GO annotation cate-

gories defined by molecular function, cellular component and biological process ontologies.

The KOG database was used to predict possible functions while pathway assignments were de-

termined with KEGG.

EST-SSR search and primer design

The MIcroSAtellite (MISA) search engine (http://pgrc.ipk-gatersleben.de/misa) was employed

for SSR mining and identification. The minimum numbers of repeats used for selecting the

EST-SSRs were ten for mono-nucleotide based loci, six for di-nucleotide loci, five for tri-nucle-

otide loci and three for all larger repeat types (tetra- to hexa-nucleotide motifs). SSR marker

primer pairs were designed based on sequences flanking the selected microsatellite loci using

the software package Premier 5.0 (PREMIER Biosoft International, Palo Alto, CA) with tar-

geted sizes of PCR products in the range between 100 to 300 bp.

Marker validation and genomic DNA extraction

Validation of the EST-SSR markers was conducted with the 31 mung bean accessions men-

tioned previously. Genomic DNA was extracted from young leaves of these accessions using

the Hexadecyl trimethyl ammonium Bromide (CTAB) extraction method [28]. DNA quality

was evaluated on a 1.0% agarose gel electrophoresis. The working concentration of DNA was

adjusted to 50 ng/ml for use in marker evaluations. Amplification was performed in 20 μl vol-

ume reactions containing 0.5 U of Taq DNA polymerase, 1 × PCR Buffer II, 1.5 mMMgCl2,

25 μM of dNTP, 0.4 μM of each primer, and 50 ng of genomic DNA. Microsatellite loci were

amplified on a Heijingang Thermal Cycler (Eastwin, Beijing, China). PCR amplification was

carried out with the following cycling conditions: one cycle of 4 min at 94°C, 30–35 cycles at

94°C for 30 s, 55–60°C for 30 s and 72°C for 30 s. The final extension was performed at 72°C

for 10 min. The PCR products were analyzed by 8.0% non-denaturing PAGE (Polyacrylamide

gel electrophoresis) using silver staining. Fragment sizes were estimated based on the 1 Kb size

marker as a DNA ladder (Promega, Madison, WI, USA).

Development of EST-SSRMarkers in Mung Bean
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Genetic similarity analysis

A distance tree was built based on a genetic similarity matrix for the 31 mung bean accessions

and branch support was estimated with 10,000 bootstraps. The number of alleles (Na), ob-

served heterozygosities (Ho) and polymorphism information content (PIC) for each of the

EST-SSR markers were calculated using the software POPGEN 1.32 [29]. The cluster analysis

of genotypes was carried out based on Nei’s unbiased measures of genetic distance by using the

unweighted pair-group method with arithmetic average (UPGMA) and coefficients of genetic

similarity for the mung bean accessions calculated using the same program [29].

Results

Sequencing and de novo assembly of Illumina paired-end reads

A total of 52.7 and 51.7 million paired-end raw reads were generated in Illumina next genera-

tion sequencing runs for the ZL1 and V6 varieties, respectively. After removal of the low quality

reads, 51.9 and 50.9 million clean reads remained, with GC content of 43.1% and 44.8% in ZL1

and V6, respectively. In terms of sequence quality, ZL1 and V6 had 98.4% and 98.2% of Q20 or

above bases and 94.5% and 93.9% of Q30 or above bases, respectively.

The combined sequence length of the Illumina reads was 10.3 Gb and could be assembled

de novo into 48,693 unigenes and 83,542 individual transcripts. The average length of the as-

sembled transcripts was 1,194 bp (N50 = 1,936 bp), which was longer than the average length

of the assembled unigenes (874 bp, N50 = 1,563 bp). The range in length of the assembled uni-

genes was from 200 bp to 20,214 bp. A total of 25,590 unigenes (52.6%) were short, with

lengths no longer than 500 bp. The next two size classifications of unigenes were of similar fre-

quency with 9,141 unigenes (18.8%) having 501 to 1,000 bp in length, and 8,643 unigenes

(17.8%) with lengths ranging from 1,000 to 2,000 bp. Finally 5,319 unigenes (10.9%) were lon-

ger than 2,000 bp (Fig 1).

Sequence annotation

For validation and annotation of the sequence assembly contigs and unique singletons, all uni-

genes were searched against the five databases as described earlier. A total of 48,693 unigenes

provide a significant BLAST result, with 25,820 (53.0%) showing significant similarity to

known proteins in the Nr sequence database, with 18,316 from Swiss-Prot (37.6%) and 17,652

from PFAM (36.3%), only 4,064 unigenes were annotated in all databases but 28,613 could be

annotated in at least one while the rest (20,080 unigenes) were not annotated to the existing

databases.

Assembled unigenes were classified in various ways (Fig 2). Based on Nr annotation, 19,242

unigenes (39.5%) were assigned gene ontology (GO) terms (Fig 2A). The sequences that be-

longed to the biological process, cellular component, and molecular function clusters were cat-

egorized into 55 functional groups. Binding (11,440, 59.5%), cellular processes (11,392, 59.2%),

metabolic processes (11,049, 57.4%), catalytic activity (9,595, 49.9%) and cell part (6,524,

33.9%) were the dominant five groups respectively, however, only 1 unigene each was assigned

to metallo-chaperone activity and symplast localization.

After functional prediction and classification, 10,918 unigenes (22.4%) could be classified by

hits with the KOG database (Fig 2B). The KOG-annotated putative proteins were functionally

classified into 26 molecular families. General function only (2,001, 19.3%), post-translational

modification, protein turn over and chaperon activity (1,345, 13.0%), signal transduction (1,074,

10.4%), transcription (750, 7.2%) and intracellular trafficking (646, 6.2%) were the dominant five

groups, whereas only 4 unigenes each were assigned to cell motility and un-named protein
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groupings. To further analyze the transcriptome of mung bean, all the unigenes were analyzed in

the KEGG database (Fig 2C), where a total of 6,585 unigenes had significant matches and were

assigned to 5 main categories in 244 pathways. Among these positive KEGG hit unigenes, meta-

bolic pathways contained 3,068 unigenes, followed by genetic information processing (1,420,

21.6%), organismal systems (1,051, 16.0%), cellular processes (729, 11.1%) and environmental

information processing (560, 8.5%).

Frequency and distribution of different types of EST-SSRmarkers

Of the 48,693 unigenes found in the current study, 10,053 (20.6%) contained one or more SSR

sequences. Of these, 2,303 (4.9%) contained at least two separate SSR sequences and 978 (2.1%)

contained compound SSRs of different motifs. The proportion of EST-SSR was not evenly dis-

tributed among EST-SSR unit sizes or groups. Mono-nucleotide motifs were the most abun-

dant (4,751, 36.2%) with tetra- (2,813, 21.4%), tri- (1,915, 14.6%), di- (1,809, 13.8%), penta-

nucleotide (969, 7.4%) and hexa- (877, 6.7%) nucleotide motif repeats being the next most

common in consecutive order (Table 1).

Fig 1. Length distribution of assembled transcripts and unigenes. A. Size distribution of transcripts. B. Size distribution of Unigenes. C. Length
distribution of transcripts. D. Length distribution of Unigenes.

doi:10.1371/journal.pone.0120273.g001
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Fig 2. Classification of assembled unigenes. A. EuKaryotic Ortholog Groups (KOG) classification of assembled unigenes. B. Gene ontology (GO)
classification of assembled unigenes. C. Kyoto Encyclopedia of Genes and Genomes (KEGG) classification of assembled unigenes.

doi:10.1371/journal.pone.0120273.g002

Table 1. Summary of the number of repeat units in mung bean EST-SSR loci.

SSR motif length Repeat unit number

3 4 5 6 7 8 9 10 >10 Total %

Mono- - - - - - - - 1,978 2,773 4,751 36.2

Di- - - - 638 350 289 193 217 122 1,809 13.8

Tri- - - 1,048 510 330 24 1 0 2 1,915 14.6

Tetra- 2,443 283 72 14 0 1 0 0 0 2,813 21.4

Penta- 828 131 8 1 0 0 0 0 1 969 7.4

Hexa- 742 123 3 2 2 2 1 1 1 877 6.7

Total 4,013 537 1,131 1,165 682 316 195 2,196 2,899 13,134

% 30.6 4.1 8.6 8.9 5.2 2.4 1.5 16.7 22.1

doi:10.1371/journal.pone.0120273.t001
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The number of SSR repeats per locus ranged from 3 to 23, and SSRs with three repeats were

the most abundant, followed by those with ten, six and five random repeats. Motifs that showed

more than 16 repeats were rare, with a frequency of only 4.4%. Among mono-nucleotide re-

peats, the (A/T)n repeats were far more abundant (99.7%) compared to the (G/C)n repeats. The

six other main motif types were the (AG/CT)n di-nucleotide repeat (30.8%), the (GAA/TTC)n
tri-nucleotide repeat (12.6%), the (AAAT/ATTT)n tetra-nucleotide repeat (6.8%), the

(AAAAT/ATTTT)n penta-nucleotide repeat (6.2%), and then the (AAAAAT/ATTTTT)n
hexa-nucleotide repeat (1.9%), consecutively (S2 Dataset).

Development of polymorphic EST-SSRmarkers in mung bean

A total of 13,134 in silico EST-SSR markers could be developed form the 10,053 SSR containing

sequences using Primer3 (S3 Dataset). A subset of 200 markers was randomly chosen from

these loci to validate EST-SSR marker usefulness in monitoring polymorphisms for eight mung

bean accessions (S4 Dataset). Of the markers tested, 129 primer pairs (65.0%) produced clear

PCR amplicons of the expected sizes, 36 markers amplified non-specific products, and 35 did

not amplify any clear DNA bands. Of the successfully amplifying EST-SSR markers, 66 (or

51.2%) were polymorphic and consisted of 4 mono-, 2 di-, 33 tri-, 6 tetra-, 3 penta- and 18

hexa motif based marker (Table 2) while the other 97 markers were monomorphic. An average

of 3.0, 2.5, 2.2, 2.2, 2.0 and 2.6 alleles were generated for the mono-, di-, tri-, tetra-, penta- and

hexa motif markers, respectively.

Gene functions of the unigene sequences containing polymorphic
EST-SSRs

To determine the possible functions of the 66 validated EST-SSRs, they were subjected to

BLASTn analysis with a non-redundant database of legume sequences. The results showed that

most of the sequences were similar to known or hypothetical protein-encoding genes from

common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) with a lesser proportion

homologous to cowpea (Vigna unguiculata L. [Walp]) genes (S5 Dataset). Among the positive

hits were genes for auxin efflux carrier component, dof zinc finger, F-box, gibberellin receptor,

helicase, mitogen-activated and leucine-rich repeat extensin-like proteins as examples.

Table 2. The evaluation of microsatellite markers for different repeat classes.

Class Tested markers
(%)

Scorable markers
(%)

Polymorphic markers
(%)

Mean of alleles per locus ±

SD1
Marker PIC value ±

SD1

Mono- 7 (3.5) 5 4 (80.0) 3.0±0.50 0.290 ±0.066

Di- 8 (4.0) 7 2 (28.6) 2.5±0.71 0.363±0.016

Tri- 72 (36.0) 60 33 (53.3) 2.2±0.42 0.337±0.117

Tetra- 7 (3.5) 6 6 (100.0) 2.2±0.41 0.320±0.053

Penta- 4 (2.0) 4 3 (75.0) 2.0±0.00 0.359±0.024

Hexa- 102 (51.0) 81 18 (22.2) 2.6+0.86 0.372+0.091

Total
(average)

200 163 66 (2.3) (0.344)

1Standard Deviation.

doi:10.1371/journal.pone.0120273.t002
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Phylogenetic analysis of the cultivated mung bean accessions

The 66 polymorphic EST-SSR markers developed in this study were used to assess the genetic

diversity of 31 mung bean accessions from the complete geographic distribution of the crop for

which a total of 154 alleles were detected and scored. The number of alleles per marker ranged

from 2 to 5. Effective number of alleles per locus (Ne) varied from 1.074 (for marker MB64504)

to 3.014 (MB27164) averaging 1.810, expected heterozygosity (He) ranged from 0.070

(MB64504) to 0.675 (MB9309) averaging 0.429, observed heterozygosity (Ho) varied from 0

(MB21076) to 0.897 (MB27164) averaging 0.100. Shannon's Information index (I) values ran-

ged from 0.154 (MB64504) to 1.259 (MB27164) averaging 0.649 and PIC values ranged from

0.067 (MB17985) to 0.613 (MB25181) averaging 0.344 (Table 3).

Phylogenetic relationships between the accessions grouped the 31 accessions into two main

clusters in a dendogram (Fig 3). Cluster 1 was comprised of accessions from Southeast and

South Asian countries such as Thailand, Vietnam, Philippines, Indonesia, Myanmar, Nepal

and India. Cluster 2 was comprised of accessions from East Asian and Northeast Asian coun-

tries such as China, Japan, Korea and Russia. Results indicated that geographical distances be-

tween collection sites for the accessions were associated with Nei’s genetic distances between

accessions.

Discussion

Transcriptome sequencing and de novo assembly has proven to be an important tool for gene

discovery in many organisms and an effective method for molecular marker development

[30,31]. Our results also proved that the short reads from Illumina paired-end sequencing of

mung bean cDNAs can be easily assembled and used for transcriptome analysis, marker devel-

opment and gene identification even without a reference genome for the crop. The marker vali-

dation confirmed previous evaluations of SSRs in common bean [8,32] and other legume

crops, where EST-SSR markers detect moderate polymorphism.

Our work complements previous analysis with 454 sequencing of two mung bean cDNA li-

braries which resulted in the discovery of 1,630 and 1,334 EST-SSR primer pairs from the

leaves of Jangan and Sunhwa varieties, respectively [16]. Here we concentrated on the use of

Illumina sequencing to develop a larger total number of in silico EST-SSR markers to increase

the number of SSRs available for mung bean. We found that the EST-SSR marker validation

rate was similar to the success rate of SSR development in a previous study in mung bean [33]

but slightly lower than when using sequenced BAC end sequences or small-insert genomic li-

braries in common bean [34,35]. Comparing these legumes, the polymorphism ratio of

EST-SSR markers in mung bean was slightly higher than for EST-SSR in common bean [18].

In terms of the types of motifs found in SSR loci other than the mono- and large sized re-

peats, we found similar results as in previous work with plant microsatellites [33]. For example,

the proportions of di- and tri-nucleotide repeats were quite close (13.8% versus 14.6%) as was

found in previous results [30] The relative abundance of di- and tri-nucleotide repeats in ESTs

sequences has been observed in many other legumes including common bean [8], cowpea [36]

and chickpea [37]. The most common tri-nucleotide repeats found in the mung bean varieties

studied here were GAA/TTC followed by TCT/AGA and CTT/AAG, which are similar with

previous reports in mung bean [17] and common bean [8,18], possibly indicating a shared ori-

gin among the Phaseoleae tribe. As in common bean, AG/CT motif was the most abundant re-

peat motif (30.8%), followed by AT/TA (28.5%) contrasting slightly with other legumes outside

the Phaseoleae tribe [36–38] but similar to estimates in common bean [8].

A larger number of repeat units were generally correlated with greater allelic variability for

an SSR locus. Therefore, the shorter motif loci such as those with mono- and di-nucleotides
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Table 3. Informativeness of EST-SSR loci following amplification from 31 geographically diverse accessions of mung bean.

Locus Na1 Ne2 He3 Ho4 I5 PIC6

MB10859 3 1.705 0.420 0.161 0.687 0.351

MB24080 2 1.385 0.283 0.111 0.451 0.239

MB19587 2 1.788 0.448 0.035 0.633 0.340

MB19823 2 1.355 0.267 0.035 0.432 0.374

MB22860 2 1.998 0.508 0.138 0.693 0.282

MB10675 2 1.839 0.465 0.037 0.649 0.372

MB11384 2 1.897 0.481 0.033 0.666 0.565

MB29365 2 1.516 0.348 0.087 0.524 0.333

MB9044 3 1.615 0.389 0.080 0.659 0.587

MB9309 3 2.955 0.675 0.120 1.091 0.382

MB16266 2 1.174 0.151 0.161 0.280 0.137

MB23088 2 1.508 0.343 0.071 0.520 0.332

MB16558 2 1.857 0.475 0.167 0.654 0.280

MB14327 2 1.874 0.475 0.148 0.659 0.299

MB21076 2 1.981 0.503 0.000 0.689 0.355

MB17669 2 1.708 0.422 0.103 0.605 0.325

MB14798 3 1.515 0.346 0.069 0.603 0.375

MB15159 2 1.938 0.493 0.036 0.677 0.358

MB15469 2 1.934 0.492 0.074 0.676 0.373

MB31003 2 1.301 0.235 0.067 0.393 0.329

MB33094 2 1.454 0.317 0.065 0.491 0.346

MB21347 3 2.822 0.656 0.032 1.069 0.470

MB19157 2 1.903 0.482 0.065 0.667 0.332

MB29460 2 1.991 0.506 0.172 0.691 0.301

MB25181 2 1.753 0.439 0.208 0.621 0.613

MB55107 2 1.990 0.507 0.071 0.691 0.330

MB9543 2 1.800 0.452 0.000 0.637 0.366

MB52717 2 1.998 0.508 0.367 0.693 0.448

MB26622 2 1.251 0.204 0.097 0.353 0.352

MB26637 2 1.432 0.308 0.074 0.479 0.204

MB26838 2 1.690 0.416 0.071 0.598 0.263

MB22833 2 1.212 0.178 0.194 0.318 0.215

MB19617 2 1.949 0.495 0.194 0.680 0.352

MB64504 2 1.074 0.070 0.000 0.154 0.361

MB27164 5 3.014 0.680 0.897 1.259 0.383

MB15686 2 1.969 0.503 0.125 0.685 0.573

MB56315 2 1.800 0.452 0.067 0.637 0.362

MB22940 2 1.338 0.257 0.000 0.420 0.374

MB14180 3 2.839 0.658 0.065 1.070 0.223

MB2421 3 1.595 0.379 0.226 0.681 0.375

MB27639 2 1.578 0.373 0.069 0.553 0.351

MB16610 2 1.835 0.463 0.100 0.647 0.368

MB27721 3 1.484 0.332 0.033 0.558 0.337

MB11596 3 1.811 0.457 0.000 0.778 0.374

MB25166 2 1.415 0.299 0.000 0.469 0.283

MB37870 2 1.991 0.506 0.172 0.691 0.340

MB21522 2 1.976 0.503 0.148 0.687 0.344

(Continued)
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repeats usually had to possess more repeats to be of equivalent polymorphism to longer motif

repeats such as those with tri-nucleotide motifs. Previous studies in legumes have mainly fo-

cused on di-, tri-, and tetra-nucleotide SSRs [18], whereas mono-nucleotide SSRs perhaps have

not drawn enough attention for marker development. We found that mono-nucleotide SSRs

had higher polymorphism rates than previously thought, followed by tetra-nucleotide SSRs,

justifying their inclusion in future SSR evaluations.

To determine the level of polymorphism of our new EST-SSR markers, we validated 200

loci, of which 129 markers (65.0%) produced successful amplicons, which is in between previ-

ously reported success rates of 21.0% [15] and 78.0% [17] in mung bean. The failure of 35

primer pairs to generate amplicons may be due to long intervening introns which would not

allow successful genomic amplification of markers based on transcribed mRNA based se-

quences. Alternatively the location of primers across splice sites or regions of poor sequence

quality could explain non-amplification.

Despite these issues, about two thirds of the EST-SSR markers were successful, suggesting

that the transcriptome sequencing was accurate and the assembled unigenes were of high quali-

ty. In terms of allele detection, only half of the successfully amplified SSRs produced more than

one allele and most had no more than 4 alleles, which was in agreement with a previous study

[39] for mung bean. PIC values in this study were in line with previously reported values for

mung bean SSRs [17,40]. They were also similar to EST-SSRs from adzuki bean which can

Table 3. (Continued)

Locus Na1 Ne2 He3 Ho4 I5 PIC6

MB51985 2 1.724 0.427 0.000 0.611 0.228

MB13673 3 2.776 0.652 0.115 1.057 0.346

MB34120 3 1.770 0.442 0.033 0.751 0.374

MB15445 3 1.546 0.359 0.097 0.658 0.180

MB79303 2 1.800 0.452 0.133 0.637 0.256

MB24478 4 2.125 0.540 0.000 0.956 0.547

MB8236 2 1.724 0.427 0.133 0.611 0.325

MB22067 2 1.715 0.425 0.074 0.608 0.160

MB11659 3 2.096 0.532 0.167 0.866 0.397

MB29754 2 1.324 0.249 0.000 0.410 0.368

MB17985 2 1.897 0.481 0.033 0.666 0.067

MB25181 3 1.867 0.472 0.000 0.745 0.367

MB19286 2 1.342 0.259 0.033 0.423 0.368

MB24843 2 2.000 0.512 0.143 0.693 0.250

MB22568 2 1.830 0.464 0.087 0.646 0.346

MB25254 2 1.942 0.494 0.138 0.678 0.221

MB15212 2 1.766 0.444 0.182 0.626 0.574

MB25564 3 2.670 0.636 0.000 1.031 0.334

MB10515 2 1.734 0.433 0.000 0.615 0.361

1The number of observed alleles.
2The number of effective number of alleles.
3The number of expected heterozygosity.
4The number of observed heterozygosity.
5Shannon's Information index (Lewontin, 1972).
6Polymorphic information content.

doi:10.1371/journal.pone.0120273.t003
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amplify products in mung bean [41]. One advantage of EST-SSR markers, is that they may de-

tect valuable genetic diversity possibly associated with traits of interest for breeding because of

their location in genes.

Fig 3. UPGMA dendrogram of 31 genotypes of mung bean.

doi:10.1371/journal.pone.0120273.g003

Development of EST-SSRMarkers in Mung Bean

PLOSONE | DOI:10.1371/journal.pone.0120273 April 1, 2015 12 / 15



In summary, the accomplishments of our study were 1) the detection of a large number of

unigenes for mung bean and 2) the discovery of over 10,000 SSR containing sequences in the

transcriptome of the crop. We observed that the number and lengths of unigenes in mung

bean compared favorably to previous analyses with the generation here of approximately 25

million paired-end reads for the transcriptome which assembled into over 48 thousand uni-

genes with an average length of over 850 bp. Sanger sequencing of cDNAs do not efficiently

produce this number of unigenes or sufficient overall contig lengths because of a limitation in

the depth of sequencing, even when full-length cDNA libraries are used [31,42,43]. The use of

transcriptomic data for in silicomicrosatellite development was shown to be promising and we

were able to increase the number of possible EST-SSRs tenfold compared to previous studies

[33]. The newly developed SSR sequences and EST-SSR markers we made will be important re-

sources for basic research and together with SNP resources can significantly enhance the ability

to find closely linked markers for traits of interest in the molecular breeding of mung bean.
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