
RESEARCH ARTICLE

Transcriptome Sequencing (RNAseq) Enables

Utilization of Formalin-Fixed, Paraffin-

Embedded Biopsies with Clear Cell Renal Cell

Carcinoma for Exploration of Disease Biology

and Biomarker Development

Oystein Eikrem1, Christian Beisland2, Karin Hjelle2, Arnar Flatberg3, Andreas Scherer4,

Lea Landolt1, Trude Skogstrand1, Sabine Leh1,5, Vidar Beisvag3, Hans-Peter Marti1,6*

1 Department of Clinical Medicine, Nephrology, University of Bergen, Bergen, Norway, 2 Department of

Clinical Medicine, Urology, University of Bergen, Bergen, Norway, 3 Department of Cancer Research and
Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway, 4 Spheromics,
Kontiolahti, Finland, 5 Department of Pathology, Haukeland University Hospital, Bergen, Norway,

6 Department of Medicine, Nephrology, Haukeland University Hospital, Bergen, Norway

* hans-peter.marti@uib.no

Abstract

Formalin-fixed, paraffin-embedded (FFPE) tissues are an underused resource for molecular

analyses. This proof of concept study aimed to compare RNAseq results from FFPE biop-

sies with the corresponding RNAlater1 (Qiagen, Germany) stored samples from clear cell

renal cell carcinoma (ccRCC) patients to investigate feasibility of RNAseq in archival tissue.

From each of 16 patients undergoing partial or full nephrectomy, four core biopsies, such as

two specimens with ccRCC and two specimens of adjacent normal tissue, were obtained

with a 16g needle. One normal and one ccRCC tissue specimen per patient was stored

either in FFPE or RNAlater1. RNA sequencing libraries were generated applying the new

Illumina TruSeq1 Access library preparation protocol. Comparative analysis was done

using voom/Limma R-package. The analysis of the FFPE and RNAlater1 datasets yielded

similar numbers of detected genes, differentially expressed transcripts and affected path-

ways. The FFPE and RNAlater datasets shared 80% (n = 1106) differentially expressed

genes. The average expression and the log2 fold changes of these transcripts correlated

with R2 = 0.97, and R2 = 0.96, respectively. Among transcripts with the highest fold changes

in both datasets were carbonic anhydrase 9 (CA9), neuronal pentraxin-2 (NPTX2) and uro-

modulin (UMOD) that were confirmed by immunohistochemistry. IPA revealed the presence

of gene signatures of cancer and nephrotoxicity, renal damage and immune response. To

simulate the feasibility of clinical biomarker studies with FFPE samples, a classifier model

was developed for the FFPE dataset: expression data for CA9 alone had an accuracy,

specificity and sensitivity of 94%, respectively, and achieved similar performance in the

RNAlater dataset. Transforming growth factor-ß1 (TGFB1)-regulated genes, epithelial to

mesenchymal transition (EMT) and NOTCH signaling cascade may support novel
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therapeutic strategies. In conclusion, in this proof of concept study, RNAseq data obtained

from FFPE kidney biopsies are comparable to data obtained from fresh stored material,

thereby expanding the utility of archival tissue specimens.

Introduction

Clear cell renal cell carcinoma (ccRCC) makes up the majority of primary renal neoplasms

with increasing incidence and considerable morbidity and mortality. Metastasis reflects a

major cause of patient death [1, 2]. Renal cell cancer ranks among the ten most frequent can-

cers in women and men accounting for up to 2–3% of all adult cancers or malignancies [2–6].

The ccRCC is only curable by early surgical tumor removal. Thus, efforts to unravel molecu-

lar mechanisms of this disease for the search of prognostic markers and novel drug targets are

important, e.g. by applying gene expression detection technologies to develop molecular signa-

tures of disease progression.

In this study, we applied RNA sequencing (RNAseq), a method for measuring mRNA abun-

dance based on next generation sequencing (NGS) technology. NGS can identify transcripts

even at a low expression level and provides an increased dynamic range for gene expression

measurements compared to microarrays [7, 8].

Current technologies for whole genome gene expression analyses are largely dependent on

“high quality” RNA with low level of degradation. We wanted to test whether lower quality,

partially degraded RNA obtained from archival formalin-fixed and paraffin-embedded (FFPE)

renal tissues could serve as appropriate source of information.

The quality of RNA extracted from FFPE samples can vary widely among different speci-

mens, or within different samples from the same specimen. RNA undergoes substantial chemi-

cal modification during formalin fixation, nucleic acids are cross-linked to proteins and RNA

transcripts are degraded to smaller fragments [9]. Differences in formalin fixation methods

and age of archival tissue samples add further variation to RNA quality. The Illumina TruSeq

RNA Access Kit1 holds promise to overcome these challenges for RNA sequencing applica-

tions by isolating mRNA through a sequence-specific capture protocol resulting in reduced

ribosomal RNA and enriched exonic RNA sequences. The TruSeq RNA Access library prepa-

ration kit was designed to ensure high quality RNA sequencing data from degraded FFPE sam-

ples and to allow comparison across samples that vary in quality.

Transcriptome sequencing of RNA from concurrently harvested FFPE and fresh stored kid-

ney biopsies with subsequent analysis of transcripts and pathways underlying ccRCC in our

patient group served as indication of the comparability of the two sources of RNA. The compar-

ison to published data helped to estimate the biological and clinical plausibility of our results.

Results

Study design

This study includes 16 adult patients from Haukeland University Hospital with ccRCC under-

going partial (n = 10) or full (n = 6) nephrectomy between November 2013 and August 2014

(Table 1). Each patient donated four core biopsies, including two with ccRCC and two from

adjacent non-affected tissue (“normal”). One pair of ccRCC and normal tissue per patient was

then stored in FFPE, the other pair in RNAlater1. This paired design allows comparison of

mRNA abundance level differences between ccRCC and normal in FFPE and in RNAlater1,

and to evaluate the impact of storage condition on expression profiles using RNAseq.
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Quality of Extracted RNA

To assess the quality of the 64 samples of extracted RNA we determined the Agilent RNA

integrity number (RIN). Currently, the RIN is the most commonly used measure to determine

RNA quality for gene expression analysis [10]. However, RIN values from FFPE samples are

not a sensitive measure of RNA quality nor are they a reliable predictor of successful library

preparation. Accordingly, previous investigators have used mean RNA fragment size as a deter-

minant of RNA quality for the RNA sequencing library preparation (Illumina TruSeq RNA

Access Kit1) when working with RNA obtained from FFPE tissues [11–13].

We have therefore also used the DV200 metric, the percentage of RNA fragments>200

nucleotides to evaluate the RNA quality according to the recommendation of the manufacturer

and as described [11–13]. Using DV200 to accurately assess FFPE RNA quality, and by adjust-

ing RNA input amounts, high-quality libraries can be prepared from poor-quality FFPE sam-

ples. In this respect, a sufficient DV200 value of as low as 30% was reported [13].

The mean Agilent RNA integrity number (RIN) and mean DV200 values (95% CI) were 5.7

(5.10–6.30) and 61% (58–64) for RNAlater1 samples and 2.53 (2.33–2.73) and 75% (72–79)

for FFPE samples, respectively.

Gene Expression (mRNA Abundance)

The number of detected genes, which passed an expression filter of more than 15 cpm in at

least 8 samples per dataset, for FFPE was n = 9164 and for RNAlater1 n = 9205. Notably,

about 94% of the genes in each dataset (n = 8893) were common to both FFPE and RNAlater1

datasets; correlation of the logarithmic fold change was R2 = 0.93, and correlation of the aver-

age expression R2 = 0.97, as shown in S1 Fig.

To find sources of similarity in the dataset consisting of all 64 samples and the expression

values of expression-filtered 8893 genes, we applied multidimensional scaling (MDS). Samples

segregate into two large groups along the leading log-fold change in the dimension 1 of the

MDS plot. The leading log-fold change is the average (root-mean-square) of the largest

Table 1. Characteristic patient features at the time of surgery. eGFR was calculated with the MDRD formula. The staging was performed based on the
EAU Guidelines on renal cell carcinoma: 2014 update [43].

Patient number Age, yr Gender BMI Nephrectomy type eGFR (ml/min/1.73m2) TNM-stage Size (mm) Fuhrmann grade Stage

9 70 Male 24 Partial >60 pT1AcN0cM0 18 2 I

10 69 Male 34 Partial >60 pT3AcN0cM0 15 2 III

11 37 Male 27 Partial >60 pT1AcN0cM0 19 2 I

13 63 Male 24 Full 40 pT3AcN0cM0 69 4 III

15 68 Male 28 Partial >60 pT1AcN0cM0 21 2 I

16 53 Male 33 Full 56 pT3bN0M1 100 2 IV

18 78 Male 27 Full 47 T3AcN0cM0 60 2 III

19 71 Female 22 Full >60 pT2aN0cM0 90 1 II

21 53 Female 25 Full 55 pT1BcN0cM0 65 2 I

22 49 Male 25 Partial >60 pT1BcN0cM0 50 2 I

24 69 Male 27 Partial >60 pT1AcN0cM0 25 2 I

27 46 Male 31 Full >60 pT2BcN0cM0 117 3 II

29 54 Female 29 Partial >60 pT1AcN0cM0 15 2 I

31 67 Male 25 Partial >60 pT1AcN0cM0 18 1 I

32 36 Male 23 Partial >60 pT1AcN0cM0 18 3 I

33 48 Male 28 Partial >60 pT1AcN0cM0 38 1 I

doi:10.1371/journal.pone.0149743.t001
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absolute log-fold change between each pair of samples. As deducible from sample annotation

in Fig 1A, the major known factor explaining the similarity of biopsy samples was attributed to

“Diagnosis” (i.e. tumor and normal). Storage condition (FFPE or RNAlater1) did not appear

to cause sample segregation (Fig 1B).

In a next step, we identified for each dataset the genes with differential expression changes

between ccRCC and normal, and compared the two sets. The FFPE dataset demonstrated 1367

differentially regulated genes and the RNAlater1 dataset 1418 genes (Benjamini-Hochberg

adjusted p value�0.05, and abs FC�2); comparison of the non-tumorous, normal FFPE tis-

sues versus the corresponding normal tissues from the RNAlater1 group revealed a very high

concordance with only 37 differentially expressed genes (data not shown).

In the MDS analysis, plotting values for differentially expressed genes indicates less within-

group variance compared to the analysis of all detected genes, and the shrinkage of log-fold

Fig 1. Multidimensional scaling (MDS) analysis of gene expression data.MDS analysis based on all commonly detected genes shows that samples
segregate by diagnosis (A) and not by storage condition (B). Distances correspond to leading log-fold-changes between each pair of samples. MDS based
on differentially expressed genes demonstrates less within-group variance compared to MDS with all detected genes in the RNAlater1 (C) and FFPE (D)
datasets.NF: Normal, FFPE; NR: Normal, RNAlater1; TF: Tumor, FFPE; TR: Tumor, RNAlater1. NO = Normal; TU = Tumor.

doi:10.1371/journal.pone.0149743.g001
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changes indicates that some non-differentially expressed genes can have quite large fold

changes (Fig 1C and 1D).

Each of these two datasets shared 1106 (about 80%) of differentially expressed genes with

each other. The correlation of the average expression of these 1106 genes was R2 = 0.97 (Fig

2A). The log2 fold changes of these differentially expressed genes correlated by R2 = 0.96 (Fig

2B). All those genes in both datasets had the same direction of change. Table 2 shows the 20

most significantly affected genes with largest absolute fold changes in the FFPE dataset and the

corresponding values of the RNAlater1 dataset; 17 of these 20 genes were differentially

expressed in both datasets, 3 did not pass the expression filter in the RNAlater1 dataset.

Amongst the 17 genes, 14 were among the top 20 ranking differentially expressed genes in the

RNAlater1 dataset. Vice versa, all top 20 differentially expressed genes of the RNAlater1 data-

set were differentially expressed in the FFPE dataset, 14 of which ranking among the top 20 in

both datasets (not shown).

Immunohistochemistry

Immunohistochemistry of the three most regulated genes according to Table 2 confirmed

strong overrepresentation of neuronal pentraxin-2 (NPTX2) and carbonic anhydrase 9 (CA9)

as well as the underrepresentation of uromodulin (UMOD) in ccRCC [14–16]. The results are

depicted in Fig 3, which also presents respective mRNA abundance plots.

Pathway Analyses

To test whether disease-relevant pathways have been captured in our experiment, we per-

formed Ingenuity Pathway Analyses (IPA) of differentially expressed genes. 91 canonical path-

ways in the FFPE dataset and 109 pathways in the RNAlater1 dataset were affected (adjusted

p-value�0.05) with an overlap of 75%. The most affected pathways to a good extent reflect

humoral and adaptive immune responses (Table 3). Sorting the pathways by smallest adjusted

Fig 2. Correlation of gene expression data. The correlation of commonly differentially expressed genes is given with respect to (A) average expression
and (B) log2 fold changes.

doi:10.1371/journal.pone.0149743.g002
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Table 2. Gene expression analyses. The 20 most up- or down-regulated genes in the FFPE data set with corresponding RNAlater1 values (upper panel),
and the 20 most up- or down regulated genes in the RNAlater1 dataset with corresponding FFPE values (lower panel), filtered by adjusted p-value�0.05.
Rank indicates the rank of the gene within the list of differentially genes sorted by largest to smallest absolute fold change. 14 genes are shared between the
two lists. TU: tumour, NO: normal, FC: fold change, ND: not detected, did not pass the expression filter.

FFPE TU vs NO

FFPE RNAlater1 rank

Ensembl Gene ID HGNC symbol FC (TU vs NO) adj. p-val. FC (TU vs NO) adj. p-val. FFPE RNAlater1

ENSG00000169344 UMOD -183,2 2,40E-07 -158,7 8,06E-08 1 3

ENSG00000106236 NPTX2 140,9 6,67E-07 220,1 2,29E-08 2 2

ENSG00000107159 CA9 121,2 5,50E-06 304,4 3,65E-09 3 1

ENSG00000074803 SLC12A1 -91,9 1,59E-07 -78,5 1,15E-07 4 7

ENSG00000169550 MUC15 -82,1 3,20E-07 -66,6 1,27E-06 5 8

ENSG00000142319 SLC6A3 76,6 2,17E-06 101,7 6,53E-07 6 4

ENSG00000169347 GP2 -57,2 1,13E-06 -52,7 4,52E-07 7 10

ENSG00000107165 TYRP1 -56,1 5,91E-06 ND ND 8 ND

ENSG00000088836 SLC4A11 -54,2 1,14E-07 -62,7 2,16E-05 9 9

ENSG00000130822 PNCK 53,3 1,42E-06 92,0 1,89E-07 10 5

ENSG00000198691 ABCA4 -52,4 3,12E-07 ND ND 11 30

ENSG00000165973 NELL1 -51,4 2,72E-07 -35,8 8,78E-07 12 16

ENSG00000186510 CLCNKA -50,3 1,61E-08 -39,7 9,73E-08 13 13

ENSG00000215644 GCGR -49,7 1,52E-07 -33,9 2,68E-06 14 18

ENSG00000164893 SLC7A13 -49,3 3,87E-04 -43,6 9,14E-06 15 11

ENSG00000138798 EGF -47,9 1,43E-07 -37,3 2,26E-07 16 15

ENSG00000150201 FXYD4 -47,8 1,89E-05 -8,1 1,51E-02 17 134

ENSG00000184956 MUC6 -47,1 1,14E-05 ND ND 18 ND

ENSG00000100362 PVALB -45,7 5,83E-07 ND ND 19 ND

ENSG00000130829 DUSP9 -45,0 7,90E-07 -24,4 1,56E-06 20 36

RNAlater1 TU vs NO

RNAlater1 FFPE rank

Ensembl Gene ID HGNC symbol FC (TU vs NO) adj. p-val. FC (TU vs NO) adj. p-val. RNAlater1 FFPE

ENSG00000107159 CA9 304,4 3,65E-09 121,2 5,50E-06 1 3

ENSG00000106236 NPTX2 220,1 2,29E-08 140,9 6,67E-07 2 2

ENSG00000169344 UMOD -158,7 8,06E-08 -183,2 2,40E-07 3 1

ENSG00000142319 SLC6A3 101,7 6,53E-07 76,6 2,17E-06 4 6

ENSG00000130822 PNCK 92,0 1,89E-07 53,3 1,42E-06 5 10

ENSG00000185633 NDUFA4L2 87,6 6,30E-10 20,9 5,88E-06 6 50

ENSG00000074803 SLC12A1 -78,5 1,15E-07 -91,9 1,59E-07 7 4

ENSG00000169550 MUC15 -66,6 1,27E-06 -82,1 3,20E-07 8 5

ENSG00000088836 SLC4A11 -62,7 2,16E-05 -54,2 1,14E-07 9 9

ENSG00000169347 GP2 -52,7 4,52E-07 -57,2 1,13E-06 10 7

ENSG00000164893 SLC7A13 -43,6 9,14E-06 -49,3 3,87E-04 11 15

ENSG00000130208 APOC1 40,0 7,15E-09 9,1 6,01E-05 12 136

ENSG00000186510 CLCNKA -39,7 9,73E-08 -50,3 1,61E-08 13 13

ENSG00000123610 TNFAIP6 37,8 2,98E-08 33,6 1,68E-07 14 26

ENSG00000138798 EGF -37,3 2,26E-07 -47,9 1,43E-07 15 16

ENSG00000165973 NELL1 -35,8 8,78E-07 -51,4 2,72E-07 16 12

ENSG00000113889 KNG1 -34,9 7,04E-07 -35,6 5,31E-07 17 25

ENSG00000215644 GCGR -33,9 2,68E-06 -49,7 1,52E-07 18 14

ENSG00000008196 TFAP2B -32,5 4,04E-06 -29,9 7,56E-06 19 31

ENSG00000184661 CDCA2 32,4 1,77E-07 28,9 1,13E-06 20 33

doi:10.1371/journal.pone.0149743.t002
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p-values, 12 of the top 20 in the FFPE dataset rank among the top 20 pathways in the RNAla-

ter1 dataset.

Comparison with Published Data

We compared our ccRCC gene expression changes with findings described in a recently pub-

lished meta-analysis of ccRCC datasets [17]. All 10 most up-regulated genes and 7 of the 10

most down-regulated genes from Zaravinos et al. [17] were found in the present study and are

differentially expressed in FFPE and RNAlater1 datasets (Table 4). The remaining genes did

not pass our expression filter. The direction of fold changes was identical for all listed genes.

We further compared the findings from the FFPE and the RNAlater1 datasets in relation to

the known involvement of vascular endothelial growth factor (VEGF) in ccRCC [18, 19]. As

demonstrated in Fig 4, many genes of the VEGF and NOTCH signaling cascades were retrieved

in the FFPE and the RNAlater1 datasets with very similar fold changes and agreement in

direction of changes. We can also confirm a link to epithelial to mesenchymal transition

(EMT) by the overrepresentation of mesenchymal markers, e.g. vimentin (VIM), endothelin 1

(EDN1), fibronectin 1 (FN1), or transforming growth factor-β (TGFB1), and

Fig 3. Immunohistochemistry andmRNA plots. (A) Immunohistochemistry of UMOD, NTPX2 and CA9.Magnification x20, scale bar 50 μm. (B)
Respective mRNA abundance plots in the FFPE and in the RNAlater1 datasets.

doi:10.1371/journal.pone.0149743.g003
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Table 3. Pathway analysis. The 20 most affected canonical pathways in each NGS dataset with the corresponding values and ranks. Rank indicates the
place of the pathway within the list of pathways sorted by largest to smallest –log(adjusted p-value). 12 of 20 pathways are shared between both datasets.
TU: tumour, NO: normal, FC: fold change, ND: not detected, did not pass the expression filter.

FFPE -log(adj. p-value) rank

FFPE RNAlater1 FFPE RNAlater1

Antigen Presentation Pathway 13,90 9,13 1 3

Hepatic Fibrosis / Hepatic Stellate Cell Activation 13,90 14,60 2 2

LXR/RXR Activation 7,53 6,67 3 4

Leukocyte Extravasation Signaling 7,13 4,55 4 9

Coagulation System 6,78 6,59 5 5

Communication between Innate and Adaptive Immune Cells 6,60 3,58 6 17

Caveolar-mediated Endocytosis Signaling 6,54 3,69 7 12

Atherosclerosis Signaling 6,50 6,04 8 6

Dendritic Cell Maturation 6,50 4,18 9 10

Crosstalk between Dendritic Cells and Natural Killer Cells 6,31 3,62 10 14

Graft-versus-Host Disease Signaling 5,80 3,02 11 35

Complement System 5,78 4,55 12 8

Autoimmune Thyroid Disease Signaling 5,78 3,49 13 23

Virus Entry via Endocytic Pathways 5,78 2,92 14 38

OX40 Signaling Pathway 5,78 3,34 15 28

Intrinsic Prothrombin Activation Pathway 5,44 4,15 16 11

Allograft Rejection Signaling 5,44 3,49 17 25

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes 4,85 3,52 18 22

Granulocyte Adhesion and Diapedesis 4,36 2,74 19 47

iCOS-iCOSL Signaling in T Helper Cells 4,35 2,86 20 41

RNAlater1 -log(adj. p-value) rank

RNAlater1 FFPE RNAlater1 FFPE

EIF2 Signaling 14,60 ND 1 ND

Hepatic Fibrosis / Hepatic Stellate Cell Activation 14,60 13,90 2 2

Antigen Presentation Pathway 9,13 13,90 3 1

LXR/RXR Activation 6,67 7,53 4 3

Coagulation System 6,59 6,78 5 5

Atherosclerosis Signaling 6,04 6,50 6 8

LPS/IL-1 Mediated Inhibition of RXR Function 5,23 3,87 7 27

Complement System 4,55 5,78 8 12

Leukocyte Extravasation Signaling 4,55 7,13 9 4

Dendritic Cell Maturation 4,18 6,50 10 9

Intrinsic Prothrombin Activation Pathway 4,15 5,44 11 16

Caveolar-mediated Endocytosis Signaling 3,69 6,54 12 7

Ethanol Degradation II 3,62 1,49 13 77

Crosstalk between Dendritic Cells and Natural Killer Cells 3,62 6,31 14 10

Histamine Degradation 3,58 0,41 15 267

B Cell Development 3,58 3,15 16 32

Communication between Innate and Adaptive I Immune Cells 3,58 6,60 17 6

eNOS Signaling 3,58 2,78 18 41

Valine Degradation I 3,57 1,48 19 78

mTOR Signaling 3,57 ND 20 ND

doi:10.1371/journal.pone.0149743.t003
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underrepresentation of epithelial markers such as epithelial cell adhesion molecule (EPCAM)

or E-cadherin (CDH1). The transcription factor grainyhead-like 2 (GRHL2), which inhibits

EMT, is about 10 fold underrepresented [20].

IPA revealed TGFB1 as one the most important regulator of gene expression in our ccRCC

datasets, as shown in Fig 5. Of the 1367 differentially expressed genes in the FFPE dataset, the

expression levels of 237 genes (17%) are influenced by TGFB1 in the FFPE dataset (Fig 5A),

and 253 of the 1418 (18%) differentially affected genes in the RNAlater dataset (Fig 5B).

TGFB1 itself was overrepresented 2.3 fold and 2.8 fold in the FFPE and the RNAlater dataset,

respectively (Fig 4).

Classifier Analysis

We further wanted to test whether the RNAseq data from the FFPE dataset could be used to

develop a molecular classifier for ccRCC. Hence, in a proof of concept approach, we first

selected 100 genes with the largest absolute fold change and smallest adjusted p-value among

the group of differentially expressed genes in the FFPE dataset. To avoid overfitting, we initially

tested the performance of classifier models with 15 or fewer genes, where we preferred those

Table 4. Comparison of our gene expression data with data from literature [17]. Twenty genes with smallest p-values and largest absolute fold changes
in a meta-analysis of five microarray studies are compared to the corresponding genes and their fold changes and p-values of the NGS datasets. The median
fold changes and standard deviations for the meta-analysis are presented. All shown genes were differentially expressed in only 2 or 3 microarray datasets.
Large standard deviations indicate a large spread of values in the individual microarray studies. 17 of the 20 genes were found differentially expressed in both
NGS datasets, 13 of these with fold changes within the fold change range of the microarray meta-analysis. ND: not detected, did not pass initial expression

filter.

Zaravinos et al. [17] Eikrem et al. (present study)

Ten most significantly up-regulated genes FFPE RNAlater1

HGNC
symbol

Median fold change ± SD
(TU vs NO)

p-
value

Fold change (TU
vs NO)

p-value Fold change (TU
vs NO)

p-value Fold change within
range of [17]

NDUFA4L2 53,94±58,53 <0.01 20,9 4,09E-07 87,6 6.85E-14 yes

PLIN2 27,86±27,89 <0.01 4,6 2,82E-05 4,7 1,03E-04 yes

NNMT 20,86±9,84 <0.01 9,0 2,25E-07 15,8 5,47E-10 yes

ENO2 19,97±9,82 <0.01 6,3 7,10E-08 7,3 1,39E-10 no

AHNAK2 16,62±2,23 <0.01 12,2 8,66E-09 16,0 1,96E-08 yes

NETO2 15,8±13,8 <0.01 10,6 5,10E-10 11,7 5,06E-13 yes

CA9 14,48±4,40 <0.01 121,2 3,72E-07 304,4 3,17E-12 no

VWF 13,06±2,61 <0.01 4,9 3,84E-08 13,7 1,06E-09 yes

COL23A1 12,75±5,10 <0.01 22,1 6,99E-09 20,9 5,05E-09 no

EHD2 12,70±13,94 <0.01 3,9 2,26E-10 4,0 2,96E-08 yes

Ten most significantly down-regulated genes FFPE RNAlater1

HGNC
symbol

Median fold change ± SD
(TU vs NO)

p-
value

Fold change (TU
vs NO)

p-value Fold change (TU
vs NO)

p-value Fold change within
range of [17]

ATP6V0A4 -19,70±32,54 <0.01 -10,4 5,39E-08 -7,4 2,28E-05 yes

CA10 -21,45±8,80 <0.01 ND ND

SLC12A3 -23,67±31,69 <0.01 -10,5 6,59E-05 -18,9 1,39E-06 yes

CLDN8 -27,11±95,38 <0.01 ND ND

SERPINA5 -35,45±32,90 <0.01 -13,7 3,34E-05 -16,4 9,39E-07 yes

KNG1 -38,45±51,67 <0.01 -35,6 1,15E-08 -34,9 9,64E-09 yes

KCNJ1 -50,79±59,09 <0.01 -2,4 1,48E-09 -2,1 1,48E-04 yes

RALYL -53,58±11,02 <0.01 ND ND

CALB1 -103,68±156,0 <0.01 -12,00 1,45E-03 -8,4 7,88E-05 yes

NPHS2 -159,10±155,4 <0.01 -3,8 4,63E-03 -4,4 1,76E-03 no

doi:10.1371/journal.pone.0149743.t004

RNA Sequencing of Clear Cell Renal Cell Carcinoma

PLOSONE | DOI:10.1371/journal.pone.0149743 February 22, 2016 9 / 19



with few genes, as they would allow simpler testing in a clinical setting. CA9 alone correctly

classified 30 of 32 samples in the FFPE according to our annotation with an accuracy of 93.8%

and area under the ROC curve (ROC AUC) of 0.96. Results of CA9 from our patients are

shown in Fig 6A–6C. One misclassified sample was a normal sample classified as tumor. How-

ever, importantly, this specimen contained some admixture of tumor tissue detected at a sec-

ond look. The other misclassified sample from a different patient was a tumor sample with

some adjacent tissue that was judged to be normal.

In the RNAlater1 dataset, the single gene classifier model assigned one sample with the his-

tological classification “normal” to the group of tumor samples, yielding an accuracy

ACC = 96.8%, AUC = 1.0, and a specificity of 93.8% and a sensitivity of 100%.

Fig 4. Pathway signature of VEGF and NOTCHmediated EMT in ccRCC. Comparison of gene expression data from the FFPE and from the RNAlater1

dataset with published results [20] and between themselves. F = FFPE samples, R = RNAlater1 samples, Numbers = fold change of up-regulation (red) or

down-regulation (blue).

doi:10.1371/journal.pone.0149743.g004
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We then tested the single gene classifier model in an external dataset on a different technol-

ogy platform. The publically available Gene Expression Omnibus (www.ncbi.nlm.gov/geo/)

dataset GSE53757 contains Affymetrix HG-U133 microarray gene expression data from 72

human renal biopsies with four stages of ccRCC, and 72 matched normal samples [14]. The

CA9-model correctly classified 139 of 144 samples independent of cancer stage (ACC = 96.5%,

ROC AUC = 0.98). Results of this CA9 validation are shown in Fig 6D and 6E.

Serum Analyses of CA9 Levels

Optimally, biomarkers such as the gene panel classifiers are further developed into clinically

applicable tests. In our simulation study, we wanted to examine, whether CA9-assisted detec-

tion of ccRCC could be translated into a less-invasive clinical application going beyond the

information obtainable from tissue samples. To that end, we measured CA9 protein in the

serum of our patients with early T1a tumor stage and compared the results of these subjects

with patient groups suffering from a more advanced disease, because a strong association

between serum levels of CA9 with tumor stage has recently been reported [15].

Accordingly, ELISA analyses of serum samples from patients from our institution showed

the following values: Increased CA9 levels (95% CI) of 237 (31–443) pg/ml in metastatic

patients (n = 9), and of 112 (74–151) pg/ml in non-metastatic patients with high tumor load

(tumors larger than 9 cm; n = 15), as compared to a concentration of 54 (26–83) pg/ml in sub-

jects with T1a stage tumors (n = 14); p = 0.0069.

The between group analyses showed significant differences between patients with T1a

tumor stage and either with high tumor load (p = 0.0031) or with metastases (p = 0.0158). The

comparison between the latter two groups showed no significant difference.

Additional potential novel classifiers have been found, but await further examination and

validation. For example, expression values of the highly up-regulated TNFAIP6 (tumor necro-

sis factor, alpha-induced protein 6; Fig 4) showed similar performance as CA9 in the FFPE,

RNAlater1, and the microarray dataset (ACC = 96.9%, 96.7%, 94.4%, respectively). We are

presently collecting more material and data to expand and confirm these findings.

Fig 5. Gene network. The most differentially affected network with the central role of TGFB1 in (A) FFPE samples and B) RNAlater data sets. Proteins with

cancer involvement are marked with purple outline. Red fill indicates overrepresentation of the gene in ccRCC, green indicates under-representation. Color
intensity reflects range of fold change.

doi:10.1371/journal.pone.0149743.g005
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Discussion

Our proof of concept study compares transcriptome sequencing of RNA extracted from

human renal biopsies of ccRCC and matched adjacent non-tumorous tissue; samples were pre-

served in two different storage conditions (FFPE and RNAlater1). High similarity of the two

datasets indicates that archival FFPE-samples can be utilized in respective studies.

Fig 6. Development of a candidate marker for ccRCC. (A) Expression values of CA9 correctly classified 30 of 32 samples in our FFPE dataset. (B)
Whisker plot of expression value distribution in our FFPE dataset for CA9. (C) Scatterplot for the expression values of CA9 in our FFPE and in our RNAlater
dataset. (D) CA9 expression values correctly classify 139 out of 144 samples in a microarray dataset of ccRCC (GSE53757). (E) Distribution of CA9
expression values for normal (NO) and ccRCC tumor samples (TU) in the GSE53757 dataset. (F) Stratification of the expression values of overexpressed
CA9 into all four stages of ccRCC [14].

doi:10.1371/journal.pone.0149743.g006
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We chose RNAlater1 storage as the comparator. RNAlater1 is considered to be an excellent

RNA stabiliser [21] and many studies show that RNA yields and gene RNA abundance with

RNAlater1 are comparable to those obtained using frozen tissues [22]. Furthermore, the utili-

zation of RNAlater1 is more practical allowing also decentralized tissue harvesting without

special equipment [22, 23].

To the best of our knowledge, there has been no in depth report yet comparing matched

RNAlater1 and FFPE storage conditions for parallel RNA sequencing and we are among the

first to demonstrate the usability of the new Access kit (Illumina) also allowing low FFPE RNA

amounts to generate RNA sequencing libraries. A related study has also demonstrated good

concordance of RNA sequencing between the two storage conditions but has used different

technology for only two renal cancers [24]. Obviously, the TruSeq Access kit is focused on

studying mature mRNA levels in biological samples. A recent study has shown that other

approaches, such as DSN (Duplex-specific nuclease)-seq and Ribo-zero-Seq can be used to

investigate intergenic and intronic RNA species, reportedly giving information on slightly

more mRNA species than polyA-enrichment methods, but at the expense of requiring more

sequencing effort [25]. Where it is sufficient to study the human transcriptome coding regions,

the TruSeq Access kit provides a cost-effective, highly reliable method, as our study shows.

Recent publications have studied the effect of storage time (up to 10 years) in FFPE on RNA

quality and quantity, and the usability in mRNA expression experiments, both microarrays

and RNAseq [26–28]. In concordance with our own unpublished data where we measured

RNA quality and quantity from up to 30 year-old FFPE samples indicating their suitability for

RNA sequencing, the publications agree that, RNA is still usable for RNAseq transcriptome

studies although the RNA quality suffers with increasing time of FFPE-preservation.

Our approach is further supported by a recent publication showing that a newly developed

exon capture RNAseq library preparation protocol for highly degraded RNA provided accurate

estimates of RNA abundance, uniform transcript coverage and broad dynamic range investi-

gating FFPE and flash frozen cancer tissues [29].

However, for the genome-wide detection of novel transcripts, whole exome enrichment of

RNA might be a necessary additional step [30].

We detected a high degree of similarity between the gene expression results for the two data-

sets: 94% of the transcripts passing the initial expression filter were shared between the FFPE

and RNAlater1 sample groups, 80% of differentially expressed genes were in common, and

75% of the differentially affected pathways were found in both datasets. The differences in gene

expression can probably be mostly explained by the cell-composition variation of the respective

biopsies. This well described intra-tumor heterogeneity precluded the detection of an even

higher number of common, differentially regulated genes and pathways [31]. Also, the capture

process during library preparation could be different depending on the RNA quality. However,

the very high concordance between FFPE non-tumor, normal tissue vs. normal tissue stored in

RNAlater1 further emphasizes the high similarity of the two data sets.

Despite some limitations, we have shown a striking similarity between the FFPE and the

RNAlater1 datasets, maintaining biologically relevant information at large. Immunohis-

tochemistry confirmed the three most regulated genes of both data sets. CA9 is essentially not

expressed in the normal nephron but specifically in ccRCC [5]. Thus, CA9 is an extensively

investigated biomarker of ccRCC and also a predictor of outcome following anti-VEGF therapy

[19, 32]. In a microarray study with nine patients, UMOD was the gene with the strongest

under-representation in RCC [16]. The over-representation of NPTX2 is in accordance with

the literature [14].

We also show good concordance with microarray gene expression profiling studies of

ccRCC (Table 4). Directions of gene expression changes between ccRCC and normal samples
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were identical for a set of differentially expressed genes in the microarray studies (14) and in

the NGS studies. 17 of the 20 genes with largest absolute fold changes in the microarray meta-

analysis were also differentially expressed in the NGS datasets (Table 4), and most fold changes

were within the same range across the studies.

However, limitations and uncertainties in this comparison come from the large discrepancy

in the fold changes detected in the microarray studies, and from the fact that all genes in the

Table 4 were differentially expressed in only 2 or 3 of five microarray studies used in the meta-

analysis. Different amplitudes in fold changes between the microarray dataset and the NGS

dataset have been reported before [33]. The authors believe, one reason is that microarray

probes might hit some, but not all, isoforms of a gene, and as a result the reported fold change

of the probe set does not necessarily represent the expression change of the entire gene [33].

Furthermore, NGS is more sensitive in measurement of abundance differences of lowly or

highly expressed genes. Microarrays reach a saturation level in the case of highly expressed

genes, but NGS technology with its wider dynamic range of detection is more likely to detect

fold changes. This may explain some of the fold change differences observed in the comparison

of microarray and NGS data. Nevertheless, our dataset confirmed the trend of expression

changes observed in microarray studies.

Our data also support and in part confirm novel therapeutic avenues, such as targeted at acti-

vated VEGF /NOTCH /DLL4 signaling cascades [18, 34–37]. The up-regulated NOTCH ligand

Delta 4 (DLL4) is stimulated by VEGF and plays a role in tumor progression also predicting bad

outcome [36, 38, 39]. EMT is augmented in our cancer data and is known to be a relevant feature

in ccRCC [40]. Up-regulated TGFB1 was the most significantly affected gene regulator in our

study. Accordingly, TGFB1 inhibition was shown to attenuate the invasive capacity of ccRCC

cells [34]. However, potential cancer therapy targeted at TGFB1 remains to be developed.

Classifier models consisting of features such as gene expression data in combination with a

decision algorithm are powerful tools to support diagnostic and prognostic evaluation of

patient data. Gene expression data for CA9—supplemented by CA9 serum protein data—

showed an excellent performance both in our datasets and in an independent ccRCC microar-

ray dataset. Thus, our data expand previous reports, which promote CA9 as a diagnostic tool in

ccRCC [5, 19, 41, 42].

Taken together, we show that in our hands RNAseq FFPE data are comparable to matched

RNAlater1 data. We used the proof of concept data to explore and to confirm published bio-

logical findings, and findings which may be worth following up in larger cohorts, leading to

possible novel therapeutic strategies, e.g. based on TGFB1-regulated genes, the NOTCH signal-

ing cascade, and EMT. Also of note, FFPE tissues have the distinctive advantage that material

designated for RNA sequencing can be concurrently investigated by light microscopy.

Conclusions:Our study opens the door to transcriptome analyses of the archival, FFPE

stored tissues from patients with ccRCC and supports CA9 as a potential marker for ccRCC.

Materials and Methods

Patients

Adult patients (n = 16) from Haukeland University Hospital with ccRCC undergoing partial

(n = 10) or full (n = 6) nephrectomy and with the possibility to undergo biopsies for this project

were included consecutively from November 2013 until August 2014. Patients had a mean age

of 58.2±6.8 years (3 females and 13 males). Patients had pT tumor stages T1a (n = 10), T2a or

b (n = 2) and T3a or b (n = 4) [43]; additional patient characteristics can be found in Table 1.

The regional ethics committee of Western Norway has approved our studies (RECWest no.

78/05). All participants provided written consent as requested by our ethics committee.
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Kidney Biopsies

Core biopsies have been obtained by O.E., L.L. and T.S. with a 16g needle from 16 patients

undergoing (partial) nephrectomy in the operating room itself exactly at the time of surgery.

Four paired biopsies from each patient with histologically-confirmed clear cell renal cell carci-

noma (ccRCC) and adjacent non-tumorous (“normal”) tissue were either stored as FFPE tissue

or in an RNA-stabilizing agent (RNAlater1, Qiagen, Germany). Total RNA was extracted with

miRNeasy FFPE kit or miRNeasy micro kit (Qiagen), respectively.

RNA Library Preparation and Sequencing

RNA sequencing libraries were prepared using TruSeq RNA Access library kit (Illumina, Inc.,

San Diego, CA, USA) according to the manufacturer`s protocol.

Initially total RNA concentration was measured using Qubit1 RNA HS Assay Kit on a

Qubit1 2.0 Fluorometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Integrity was

assessed using Agilent RNA 6000 Nano Kit on a 2100 Bioanalyzer instrument (Agilent Tech-

nologies, Santa Clara, CA, USA) and the percentages of fragments larger than 200 nucleotides

were calculated.

Thereafter, RNA samples (100 ng total RNA) were fragmented at 94°C for 8 minutes on a

thermal cycler. First strand cDNA syntheses were performed at 25°C for 10 minutes, 42°C for

15 minutes and 70°C for 15 minutes, using random hexameres and SuperScript II Reverse

Transcriptase (Thermo Fisher Scientific Inc., Waltham, MA, USA). In a second strand cDNA

synthesis the RNA templates were removed and a second replacement strand was generated by

incorporation dUTP (in place of dTTP, to keep strand information) to generate ds cDNA.

AMPure XP beads (Beckman Coulter, Inc., Indianapolis, IN, USA) were used to clean up the

blunt-ended cDNA from the second strand reaction mix. The 3`ends of the cDNA were then

adenylated to facilitate adaptor ligation in the next step. After ligation of indexing adaptors,

AMPure XP beads were used to clean up the libraries. In a first PCR amplification step, PCR

(15 cycles of 98°C for 10 seconds, 60°C for 30 seconds and 72°C for 30 seconds) were used to

selectively enrich those DNA fragments that have adapter molecules on both ends and to

amplify the amount of DNA in the library. After validation of the libraries, using Agilent DNA

1000 kit on a 2100 Bioanalyzer instrument, the first hybridization step were performed using

exome capture probes. Before hybridization a 4-plex pool of libraries were made, by combining

200 ng of each DNA library. The hybridization was performed by 18 cycles of 1 minute incuba-

tion, starting at 94°C, and then decreasing 2°C per cycle. Then streptavidin coated magnetic

beads were used to capture probes hybridized to the target regions. The enriched libraries were

then eluted from the beads and prepared for a second round of hybridization. This second

hybridization (18 cycles of 1 minute incubation, starting at 94°C, and then decreasing 2°C per

cycle) were required to ensure high specificity of the capture regions. A second capture with

streptavidin coated beads were performed, followed by two heated wash procedures to remove

non-specific binding form the beads. The enriched libraries where then eluted from the beads

and cleaned up by AMPure XP beads prior to a second PCR amplification. The amplification

step were performed by 10 cycles (98°C for 10 seconds, 60°C for 30 seconds and 72°C for 30

seconds) followed by a second PCR clean up using AMPure XP beads. Finally, the libraries

were quantitated by qPCR using KAPA Library Quantification Kit—Illumina/ABI Prism1

(Kapa Biosystems, Inc., Wilmington, MA, USA) and validated using Agilent High Sensitivity

DNA Kit on a Bioanalyzer. The size range of the DNA fragments were measured to be in the

range of 200–650 bp and peaked around 270 bp.

Libraries were normalized to 22 pM and subjected to cluster and single read sequencing was

performed for 50 cycles on a HiSeq2500 instrument (Illumina, Inc. San Diego, CA, USA),
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according to the manufacturer's instructions. Base calling were done on the HiSeq instrument

by RTA 1.17.21.3. FASTQ files were generated using CASAVA 1.8.2 (Illumina, Inc. San Diego,

CA, USA). Data are available in the repository Gene Expression Omnibus, http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE76207.

Statistics and NGS Data Processing

We have a sample size of 64 samples, which is equivalent to 32 paired samples (tumor samples

vs. normal samples). Within both the FFPE and in the RNAlater dataset, we have 16 sample

pairs (tumors vs. normals). This sample size is sufficient to achieve a power of 0.85, where we

apply a standard deviation of 0.7 of the expressed genes, an effect size of 2, and an alpha of 0.05

(R package RNASeqPower in https://www.bioconductor.org).

Assembly of reads and alignment of the contigs to the Human genome assembly GRCh38

was guided by Tophat and Bowtie. An empirical expression filter was applied, which left genes

with more than 15 counts per million (cpm) in more than 8 samples per dataset. Comparative

analysis was done using voom/Limma R-package. Differential gene expression was defined as

Benjamini-Hochberg adjusted p-value�0.05, and an absolute fold change of�2. Pathway

analysis was performed with Ingenuity Pathway Analysis (Qiagen, USA; version 24718999).

The Ingenuity Knowledge Base information was used as reference set. Canonical pathways

were sorted by smallest Benjamini-Hochberg-adjusted p-value.

Classifier analysis was performed with the KNNX Validation package in GenePattern

(http://www.broadinstitute.org/cancer/software/genepattern). Leave-one-out method was used

as internal cross validation method. Euclidean distance was used as distance measure, where

three neighbors were considered. Data visualization was performed with JMP Pro 11 (www.sas.

com), and Graphpad (www.graphpad.com).

Histology and Immunohistochemistry

Immunohistochemistry was performed on 4 μm thick FFPE sections from the tumor and adja-

cent non-tumorous tissue. The following primary antibodies were used: Carbonic anhydrase

IX (CA9, polyclonal, rabbit, NB100-417, Novus Biologicals), neuronal pentraxin 2 (NPTX2,

polyclonal, rabbit, NBP1-50275, Novus Biologicals) and uromodulin (UMOD, polyclonal, rab-

bit, sc-20631, Santa Cruz Biotechnology). For positive controls, tissues with known positive

reactivity were used, for negative controls the primary antibody was omitted. Slides were

scanned with ScanScope1 XT (Aperio) at ×40 and viewed in ImageScope 12.

ELISA for CA9 Serum Levels

CA9 serum concentrations of 38 patients was measured using the Quantikine Human Car-

bonic Anhydrase IX Immunoassay (R&D Systems, Minneapolis, USA, catalogue number

DCA900) according to instructions of the manufacturer, but with an overnight incubation at

4°C after having added the serum. Results were assessed with the Kruskal-Wallis and Dunn’s

test [44].

Supporting Information

S1 Fig. Correlation of the average expression of the commonly expressed genes in both

FFPE and RNAlater datasets. Genes with an average expression of counts per million (cpm)

>8 in at least 15 samples per dataset were considered.

(TIF)
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