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Background: Genome-wide association studies (GWASs) have identified thousands of genetic variants that are
associated with many complex traits. However, their biological mechanisms remain largely unknown. Transcriptome-
wide association studies (TWAS) have been recently proposed as an invaluable tool for investigating the potential gene
regulatory mechanisms underlying variant-trait associations. Specifically, TWAS integrate GWAS with expression
mapping studies based on a common set of variants and aim to identify genes whose GReX is associated with the
phenotype. Various methods have been developed for performing TWAS and/or similar integrative analysis. Each
such method has a different modeling assumption and many were initially developed to answer different biological
questions. Consequently, it is not straightforward to understand their modeling property from a theoretical
perspective.
Results: We present a technical review on thirteen TWAS methods. Importantly, we show that these methods can all
be viewed as two-sample Mendelian randomization (MR) analysis, which has been widely applied in GWASs for
examining the causal effects of exposure on outcome. Viewing different TWAS methods from an MR perspective
provides us a unique angle for understanding their benefits and pitfalls. We systematically introduce the MR analysis
framework, explain how features of the GWAS and expression data influence the adaptation of MR for TWAS, and
re-interpret the modeling assumptions made in different TWAS methods from an MR angle. We finally describe
future directions for TWAS methodology development.
Conclusions: We hope that this review would serve as a useful reference for both methodologists who develop TWAS
methods and practitioners who perform TWAS analysis.
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Author summary: Transcriptome wide association studies (TWAS) integrate expression mapping studies and GWAS
studies and aim to identify candidate genes whose genetically regulated expression is associated with trait of interest. We
present a comprehensive review on a broad category of recently developed and commonly used TWAS methods. Our review
covers different modeling assumptions, different inference procedures, modeling of horizontal pleiotropic effects, and
extensions of TWAS towards multivariate MR analysis and summary statistics. Our review also aims to provide a unified
view of various TWAS methods from the perspective of Mendelian randomization (MR).

INTRODUCTION

Genome-wide association studies (GWASs) have identi-
fied thousands of genetic variants that are associated with
many common diseases and disease related complex
traits. However, most of these identified genetic variants

reside outside protein-coding regions, making it challen-
ging to understand the biological mechanism underlying
these identified associations. One possible mechanism
that a genetic variant may influence the associated trait is
through regulating the gene expression level of its
neighborhood gene [1]. To investigate such potential
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mechanism, many gene expression mapping studies are
performed to in parallel to GWASs to characterize the
transcriptome landscape and investigate the genetic
architecture underlying gene expression variation. These
gene expression mapping studies collect both gene
expression data and genotype data on the same set of
individuals and aim to identify genetic variants associated
with gene expression levels. Exemplary expression
mapping studies include the Genotype-Tissue Expression
(GTEx) project [2], the Genetic European Variation in
Disease (GEUVADIS) project [3] and many others [4–13]
(a summary of recently large-scale transcriptome datasets
is shown in Table 1). With the availability of both GWASs
and expression mapping studies, there is a strong recent
interest in developing methods to integrate these two data
types together. Integrating GWASs and expression
mapping studies is commonly referred to as the
transcriptome-wide association study (TWAS), which
can facilitate our understanding of the molecular and
causal mechanisms underlying variant-trait associations.
Several statistical methods have been recently proposed

to perform TWAS. For example, PrediXcan [14] performs
a weighted SNP-set-based test in GWAS using SNP
weights inferred from the expression mapping study
based on elastic net [15]. TWAS [1] infers the association
between an outcome phenotype and the predicted gene
expression level, where the predicted gene expression
levels is built upon the Bayesian sparse linear mixed
model (BSLMM) [16]. Zeng and Zhou [17] proposed a
non-parametric latent Dirichlet process regression (DPR)
model that can flexibly model the underlying complex
genetic architecture of expression data for TWAS. TIGAR
(Transcriptome-Integrated Genetic Association Resource)
further implements DPR in a user friendly software for

convenient TWAS analysis [18]. SMR (summary data–
based Mendelian randomization) [19] and GSMR (gen-
eralized SMR) [20] directly tests the causal relationship
between gene expression and disease trait under a
Mendelian randomization (MR) framework through
selecting a single instrumental variable (IV) or multiple
independent IVs. The probabilistic Mendelian randomi-
zation (PMR) further uses likelihood-based inference
framework to both model all cis-SNPs jointly that are in
high linkage disequilibrium (LD) with each other and
account for horizontal pleiotropic effects, thus substan-
tially enhancing the power of MR analysis in TWAS
settings [21]. While these integrative methods were
originally proposed to solve different problems, as we
will show below, all of them can be viewed as a two-
sample MR method with different modeling assumptions
and different inference algorithms (more details below).
MR is a causal inference method that uses genetic variants
as instrumental variables (IVs) to estimate causal effect of
an exposure variable (e.g., gene expression) on an
outcome of interest in observational studies. Because of
their relationship to MR, these methods effectively
attempt to identify causal genes associated with diseases
or disease related complex traits in the context of TWAS.
Besides the aforementioned methods that perform
univariate MR analyses where the exposure variables
are examined one at a time, several recent methodological
extensions have enabled multivariate MR analysis that
models many exposure variables jointly [22–27]. For
TWAS applications in particular, multivariate MR
attempts to either model the same gene across multiple
tissues [28–32] or model multiple genes in the same
locus [33].
It has been five years since the first TWAS method,

Table 1 A summary of commonly used gene expression database with sample size over 50
Data sets RNAseq Sample size URLs Ref.

ABRP Blood (Baboons) 63 https://amboselibaboons.nd.edu/ [7]

GSE19480 Lymphoblastoid cell lines 69 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =

GSE19480

[8]

Braineac Ten brain regions 134 http://www.braineac.org/ [5]

NABEC Four brain regions 150 https://www.omicsdi.org/dataset/dbgap/phs000249 [6]

CommonMind Dorsolateral prefrontal cortex 452 http://CommonMind.org [11]

GEUVADIS Lymphoblastoid cell lines 465 https://www.ebi.ac.uk/Tools/geuvadis-das/ [3]

TCGA Prostate adenocarcinoma 483 https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga

[10]

METSIM Adipose 563 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id = phs000743.v1.p1

[9]

GTEx (v8) 54 tissues 838 https://www.gtexportal.org/home/ [2]

DGN Whole blood 922 https://www.nimhgenetics.org/download-tool/DP [4]

NTR Blood 1247 https://tweelingenregister.vu.nl/ [12]

YFS Blood 1264 http://youngfinnsstudy.utu.fi/ [13]
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PrediXcan [14], was proposed. Since then, many TWAS
analysis methods and software have been developed for
uncovering gene-trait associations. However, there has
been a lack of systematic review from a technical
perspective summarizing the advantages and shortcom-
ings of these existing methods. Most existing reviews on
TWAS often covers a limited number of methods and
often aims for experimental biologists. For example,
Wainberg et al. [34] published a work to point out the
opportunities and challenges of TWAS. They affirmed the
accomplishments of TWAS in prioritizing candidate
genes while also expressed their concerns about the
causality of these identified genes. However, Wainberg et
al. only focused on conducting analysis to evaluate the
performance of TWAS [1] and S-PrediXcan [35] and also
briefly mentioned UTMOST [29] and MultiXcan [28] in
one sentence. To complement these existing review
works, here, we present a technical review on thirteen
recently developed statistical methods for TWAS. We
organize the present review from the perspective of MR
framework and gear the presentation towards computa-
tional biologists and applied statisticians. In particular,
our review is organized as follows. In Section “Mendelian
randomization analysis” we describe the MR analysis
framework, how it is adapted for TWAS, and the
modeling assumptions necessarily for causality interpre-
tation. In Section “Different modeling assumptions
on the SNP-gene effect sizes β” we describe different
TWAS methods along with their detailed modeling
specifications and show how they are interconnected
with each other under the MR framework. In Sections
“Extensions of TWAS towards multivariate MR analysis”
and “Use of summary statistics” we describe several
current extensions of TWAS methods towards using
multiple tissues, multiple genes and summary statistics,
and explain how such extensions can also be included into
the MR framework. In the last Discussion section, we
provide our view of future development for TWAS
methods. We hope that our review can serve as a useful
reference for statistical geneticists and computational
biologists.

MENDELIAN RANDOMIZATION
ANALYSIS

Both MR and TWAS have become popular in the past
decade with increased popularity and availability of
GWASs (Fig. 1A, B). These two approaches are
mathematically interconnected with each other. In this
section, we provide a technical review of MR and
illustrate how different TWAS methods can be viewed in
the MR framework. MR is a causal inference method that
uses genetic variants as IVs to infer the presence or
absence of a causal effect of an exposure variable (e.g.,

gene expression) on an outcome of interest in observa-
tional studies. MR methods have been widely applied to
estimate and test the causal relationship among various
complex traits [36–39], and, through a two-sample
design, can be easily adapted to settings where the
exposure variable and outcome are measured on two
independent samples of individuals [40,41].
Two-sample MR considers two separate studies in the

setting of TWAS: the gene expression study that measures
both the expression data and the genotype data on n1
individuals; and the GWAS that measures both the
outcome variable of interest and the genotype data on
n2 individuals. The two studies are often separate from
each other with no individual overlap. MR analysis
examines one gene at a time and aims to infer the causal
effect of gene expression on the outcome trait. For the
given gene, we denote z as an n1-vector of the gene
expression measurements in the first sample (i.e., the gene
expression study). We denote X as an n1 � p genotype
matrix for the p cis-SNPs that are selected for the gene in
the first sample. Note that, while standard MR methods
select one or multiple independent IVs, TWAS methods
often take advantage of all SNPs that reside in the cis-
region of the gene. These cis-SNPs are often in LD with
each other and using all cis-SNPs for TWAS can ensure
optimal power (more details in the next section below).
We denote y as the n2 vector of the outcome variable (i.e.,
trait) in the second sample (i.e., the GWAS study). For
simplicity, we only consider y to be a quantitative trait,
although extensions to a binary trait is straightforward,
requiring replacing certain linear regression models with
logistic regression models. We also denote eX as an n2 � p
genotype matrix for the same p cis-SNPs in the second
sample. We assume z, y and each column of X and eX
have all been standardized to have a mean of zero and a
standard deviation of one. MR analysis incorporates three
linear models to link the two studies jointly:

z=Xβ þ εz, (1)

ez=eXβ þ ε~z, (2)

y=aez þ εy, (3)

where Eq. (1) is for the first sample and Eqs. (2) and (3)
are for the second sample. Here, ez is the unobserved gene
expression measurements for the n2 individuals in the
second sample; β=ðβ1,:::,βj,:::,βpÞT is the p -length effect
sizes of the cis-SNPs on the exposure; εz, ε~z, and εy are
error terms in the three models, and follow multivariate
normal distributions Nn1ð0,�2z In1Þ, Nn2ð0,�2

z In2Þ, and
Nn2ð0,�2yIn2Þ, respectively. Note that these three models
are joined together with the common variable β and the
unobserved gene expression ez. The goal of MR methods
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Figure 1. Importance of TWAS and MR methods. (A) The number of publications on PubMed on MR and TWAS over recent
years. The generated URL is https://www.ncbi.nlm.nih.gov/pubmed/?term =Mendelian + randomization + or + transcriptome-wide +
association + studies. (B) The number of hits on MR based on Google Trends (https://trends.google.com/trends/?geo = US). The

search on “transcriptome-wide association studies” was not large enough to generate statistics. (C) Timeline of various TWAS
landmark methods throughout the years.
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is to make inference on the causal effect a. The causal
interpretation of a requires each of the selected IVs to
satisfy three main assumptions (Fig. 2A): (i) it must be
associated with the exposure, (ii) it must not be associated
with confounders, and (iii) it is associated with the
outcome only through the exposure.

DIFFERENT MODELING ASSUMPTIONS
ON THE SNP-GENE EFFECT SIZES β

Almost all TWAS methods can be viewed in the above
MR framework and different TWAS methods often differ
in their modeling assumptions on β.

Assumptions in traditional MR methods

Perhaps the easiest assumption on β is that made in the
traditional MR methods, such as SMR [19], GSMR [20],
MR-Egger [42], and median-based regression [43]. Both
SMR [19] and GSMR [20] have been applied to perform
integrative analysis of gene expression study and GWAS
in the setting of TWAS. Specifically, SMR [19] selects
one SNP in the cis-region of the gene to serve as the IV.
To do so, SMR first performs a marginal association
analysis for each SNP in turn and selects the one that has
the smallest p-value association evidence with the gene
expression level. Afterwards, SMR estimates the SNP
effect on the outcome trait, the SNP effect on the gene
expression, and uses the standard MR ratio method [44] to
express the causal effect a as the ratio of the previous two
effect estimates. Because the MR ratio method computes
p-value based on asymptotic normality, which is often
unsatisfied in TWAS settings, the p-values from SMR are
often conservative under the null [21,35]. Different from
SMR that uses only one IV, GSMR [20] selects multiple
independent SNPs in the cis-region to serve as IVs. In
particular, GSMR uses the pruning strategy implemented
in PLINK to select IVs, estimates the causal effect of each
IV in turn using the standard MR ratio method, and
eventually combines these causal effect estimates together
using the standard inverse-variance weighting (IVW)
approach. Importantly, both SMR and GSMR often select
a small set of SNPs into Eq. (1). Modeling only a small set
of independent SNPs can be restrictive in the setting of
TWAS, since this approach neglects the fact that most
exposure variables/molecular traits are polygenic/omni-
genic and are influenced by numerous SNPs that are in
potential LD with each other. Consequently, incorporating
multiple correlated SNPs can help explain a larger
proportion of variance in the exposure variable than
using independent SNPs only, thus helping boost
statistical power and improve estimation accuracy of
MR analysis [45–48]. Indeed, almost all other TWAS
methods include all cis-SNPs of a gene into modeling

gene expression in Eq. (1). Note that the number of
individuals in the gene expression study is often in the
scale of a few hundred while the number of cis-SNPs for a
gene is often in the range of a few hundreds to a few
thousands, with the detailed number depending on the cis-
region size and SNP density in the expression data
(Table 1). Consequently, TWAS methods that accommo-
date all cis-SNPs will often need to make certain
modeling assumptions on the SNP effect sizes β to ensure
model identifiability. Various modeling assumptions on β
have been proposed.

Elastic net

The first modeling assumption on β is the elastic net
modeling assumption made in PrediXcan [14]. The elastic
net modeling assumption assumes that each element of β
a priori follows a linear combination of LASSO [49] (L1
penalty) and ridge regression [50] (L2 penalty) on the cis-
SNP effect sizes. In particular, it assumes that

β / expðl1kβk1 þ l2kβk2Þ, (4)

where k$k1 and k$k2 denote the L1 and L2 norms,
respectively. The elastic net assumption is equivalent to a
mixture of normal and Laplace prior. With the above
modeling assumption on β, PrediXcan obtains the
estimates of β in Eq. (1), plugs in the β estimates in
Eq. (2) to obtain the genetically predicted gene expression
(a.k.a. genetically regulated expression, or GReX), and
finally perform analysis in Eq. (3) to obtain the causal
effect estimates. Note that the elastic net modeling
assumption made in PrediXcan itself is polygenic in
nature, as it assumes that all elements of β are non-zero a
priori. However, PrediXcan relies on an optimization
algorithm to obtain the maximum a posterior (MAP)
estimates for β and the MAP estimates is sparse.
Therefore, PrediXcan effectively relies on elastic net
that combines L1 and L2 penalty as a variable selection
method to select a sparse set of cis-SNPs with non-zero
effects on the gene expression. Similar strategy, pairing a
polygenic modeling assumption and a sparse MAP
estimation solution, is also used in several other TWAS
methods, in particular those applied to multiple-tissue
TWAS analysis, for example, UTMOST [29] (more
details in the multivariate TWAS section).

Bayesian sparse linear mixed model

The second modeling assumption on β is the Bayesian
sparse linear mixed model [16] used in the method TWAS
[1]. The BSLMM represents a hybrid modeling assump-
tion between a sparse modeling assumption such as the
Bayesian variable sparse regression (BVSR, more details
below) [51] and the standard polygenic modeling
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assumption. Consequently, BSLMM is able to take
advantages of LMM and sparse regression models and
can adaptively infer the genetic architecture underlying
the gene expression variation from the data. Technically,
BSLMM assumes that the effect size of each cis-SNP on
the gene expression follows a mixture of two normal
distributions

βj � πNð0, �2a þ �2bÞ þ ð1 – πÞNð0, �2bÞ: (5)

In particular, with probability 1 – π, βj tends to be small
and follows a normal distribution with a small back-
ground variance of �2

b. With probability π (which is often
small), βj tends to be large and follows a normal
distribution with a large variance that equals the
summation of the background variance and an additional
variance. The BSLMMmodeling assumption represents a
direct attempt for modeling the omnigenic hypothesis that
was proposed recently [52]. Specifically, the BSLMM
assumption categorizes SNPs into two groups: a small
group of SNPs with large effect sizes and a large group of
SNPs with small effect sizes. Such SNP categorization is
equivalent to assuming that all SNPs have non-zero
effects, while a small proportion of them have additional
effects. The assumption that all SNPs have non-zero
effects attempts to model the omnigenic hypothesis that
all genes/SNPs have non-zero effects. The assumption
that a small subset of SNPs has additional effects also
attempts to model the omnigenic hypothesis that a small
subset of genes, termed as core genes, have additional
effects. The set of core genes was hypothesized in the
omnigenic model to directly underlie disease etiology and
contribute disproportionally to disease and disease related
complex traits. With the BSLMM modeling assumption
on β, TWAS [1] obtains the estimates of β in Eq. (1),
plugs in the β estimates in Eq. (2) to obtain the genetically
predicted gene expression, and finally perform analysis in
Eq. (3) to obtain the causal effect estimates. Because of
the relatively robust and flexible assumption made in
BSLMM, the TWAS method often performs well across a
range of TWAS applications.

Dirichlet process regression

The third modeling assumption on β is the latent Dirichlet
process regression (DPR) [17] implemented in the TWAS
methods DPR [17] and TIGAR [18]. DPR relies on a
Bayesian non-parametric modeling assumption on the
genetic effects on the gene expression. In particular, it
assumes that each element of β follows a normal
distribution, with a further unknown distributionG placed
upon the variance parameter. DPR actively infers such
unknown distribution G by placing a non-parametric
Dirichlet process (DP) prior on the distribution itself:

βj � Nð0, �2
j Þ, �2

j � G, G � DPðIGða, bÞ, lÞ, (6)

where the inverse gamma (IG) distribution is the base
distribution while the concentration parameter l deter-
mines how the distribution of G differs from the base
distribution. By inferring the distribution G based on the
data at hand, DPR becomes flexible and is adaptive to a
wide range of genetic architectures, leading to accurate
gene expression prediction and subsequent power
increase for TWAS. Note that the above modeling
assumption is also equivalent to assuming each element
of β follows a mixture of infinitely many normal
distributions a priori,

βj �
Xþ1

φ=1

πφNð0, �2
φÞ, πφ=vφ ∏

φ – 1

l=1
ð1 – vlÞ, vφ�Betað1, lÞ:

(7)

Here, πφ is the weight corresponding to the φ-th normal
distribution; it is generated from a stick breaking process
and determined by vl that each follows a Beta prior. With
the DPR modeling assumption on β, one can obtain the
estimates of β in Eq. (1) via two algorithms: either the
Monte Carlo Markov Chain or variational Bayesian
algorithm. Both these two algorithms are implemented in
the DPR software [17] while the second algorithm is also
conveniently implemented in the TIGAR software [18].
With the estimated β from Eq. (1), one can use Eq. (2) to
obtain the genetically predicted gene expression and
finally perform analysis in Eq. (3) to obtain the causal
effect estimates. Because of the relatively robust and
flexible assumption made in DPR, DPR and TIGAR often
performs well in TWAS applications.

Linear mixed model

The fourth modeling assumption is the normality
assumption on the effect sizes that is used in CoMM
[53] and PMR [21]. The normality assumption assumes
that each element of β follows a normal distribution

βj � Nð0, �2
βÞ: (8)

The above model effectively assumes that all SNPs have
non-zero effects on gene expression and their effect sizes
follow a normal distribution. The normality modeling
assumption is often referred to as the ridge regression
assumption or L2 assumption in statistics literature and is
also often referred to as the polygenic modeling
assumption or the linear mixed model (LMM) assumption
in various GWAS applications. For TWAS applications,
CoMM [53] and some of its extensions [32,54], as well as
PMR [21], all use this modeling assumption. The
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normality modeling assumption is known to be less
flexible than the BSLMM and DPRmodeling assumption.
However, it is also a simple modeling assumption that
allows model inference based on a likelihood framework
that is known to be more powerful than the two stage
inference procedures used in common TWAS methods.
Consequently, CoMM and PMR often enjoy substantial
power gain over existing TWAS approaches including
PrediXcan and TWAS.

Bayesian variable selection regression

Finally, the Bayesian variable selection regression
modeling assumption (BVSR) [51] is also recently
adapted by the Factored QTL (fQTL) [31] into TWAS
settings. In contrast to the above polygenic modeling
assumptions (e.g., elastic net, BSLMM, DPR and LMM),
BVSR places a sparse modeling assumption on the
genetic effects on the gene expression. In particular,
BVSR assumes that each element of β follows a point-
normal distribution

βj � πð0,�2
βÞ þ ð1 – πÞδ0, (9)

where with a small proportion π, βj is non-zero and
follows a normal distribution; and with proportion 1 – π,
βj is zero with δ0 indicating a point mass at zero. The point
normal is also commonly referred to as a spike and slab
prior. More details about fQTL are given in the
multivariate TWAS section.
Overall, different TWAS methods make different

modeling assumptions on β. While the sparse modeling
assumptions used in SMR [19], GSMR [20], and fQTL
[31] are the easiest to understand, they often do not
perform well for TWAS applications as compared to the
polygenic modeling assumptions made in most existing
TWAS methods such as PrediXcan [14], TWAS [1], DPR
[17], TIGAR [18], CoMM [53] and PMR [21]. Indeed,
polygenic models (e.g., LMM, BSLMM, DPR) often
outperform sparse models (elastic net, LASSO, etc.) in
predicting gene expression and TWAS applications
[1,18,21]. The superior performance of polygenic model-
ing assumptions in TWAS is consistent with gene
expression heritability studies that reveal a polygenic
architecture underlying gene expression level [7]. In
terms of models with polygenic assumptions, both
BSLMM and DPR are flexible and include some other
polygenic models as special cases. Due to the flexible
modeling assumption in BSLMM and DPR, TWAS
methods using these assumptions often perform well
across genes with varying genetic architectures, which is
often unknown a priori. However, these flexible model-
ing assumptions also have the shortcomings of being
computationally difficulty to fit. Consequently, TWAS

methods using these flexible polygenic modeling assump-
tions often have to rely on a two-step estimation
procedure, by constructing the predicted genetic compo-
nent of gene expression and subsequently estimate its
association with the outcome trait. In contrast, simple
polygenic modeling assumptions such as the normality
assumption allows MR analysis to be carried out in a
likelihood framework, thus leading to substantial power
gain (more details below).

INFERENCE PRECEDURES AND
MODELING OF HORIZONTAL
PLEIOTROPIC EFFECTS

In terms of the inference procedure, as briefly explained in
the above section, while most TWAS methods perform
causal inference in a two-stage regression-based frame-
work (Fig. 2C), several recently developed TWAS
methods attempt to perform inference in a maximum
likelihood-based framework (Fig. 2D). Specifically, the
two-stage regression-based inference algorithm attempts
to construct a predictor of gene expression data using the
IVs and then perform an association between the
predicted gene expression levels and the outcome
phenotype. The majority of existing TWAS methods,
such as PrediXcan, TWAS, DPR, and TIGAR, rely on a
two-stage MR inference procedure: they estimate SNP
effect sizes in the reference transcriptome data and pass
these estimates to the GWAS study for causal effect
inference. In other words, these methods perform gene
expression “imputation” and subsequent “association”
between imputed expression and outcome phenotype as
two separate steps. In contrast, the maximum likelihood-
based inference procedure, as used in CoMM and PMR,
jointly model all the three equations together and perform
inference through maximizing the likelihood function.
The two-stage inference procedure in MR has the benefits
of simplicity and yields approximately unbiased causal
effect size estimates. However, the two-stage inference
procedure may also fail to account for the uncertainty in
parameter estimates in the transcriptome study and thus
resulting in power loss, especially in the presence of weak
IVs [45,47]. Indeed, similar to what have been observed
in the MR framework, recent TWAS studies also suggest
that likelihood-based inference can substantially improve
power for TWAS [53].
Beside the difference in inference procedure, different

TWAS methods also differ in their ways of modeling
horizontal pleiotropic effects. In particular, while most
TWAS methods do not account for horizontal pleiotropy,
some recently developed TWAS attempt to directly model
horizontal pleiotropy. In the TWAS setting, horizontal
pleiotropy occurs when an IVaffects the outcome through
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pathways other than the middle exposure variable [55]. It
has been recently observed that pervasive horizontal
pleiotropy occurs for both complex traits analysis [56]
and for TWAS applications [21]. The horizontal pleio-
tropy is widely distributed across the genome and is
important for our understanding of the genetic architec-
ture of human diseases and disease related complex traits
(Fig. 2A). Failing to account for horizontal pleiotropic
effects in MR or TWAS analysis can be overly restrictive
and can lead to a substantial inflation of test statistics and
subsequently false discoveries [21]. Because of the
importance and wide presence of horizontal pleiotropy,
several MR methods have been developed to test and
account for horizontal pleiotropic effects [20,43,56–63] in
GWAS and for TWAS applications [21]. For example,
MR-PRESSO [56] is proposed to test for horizontal
pleiotropic effects without directly controlling for them.
CaMMEL [57] controls for horizontal pleiotropic effects
without directly testing them. Egger regression [43,58],
GLIDE [59], GSMR [20], MR-median method [43],
MRMix [60] and Bayesian MR [61,62] test and control
for horizontal pleiotropic effects with independent
instruments. LDAMR-Egger [63] is developed for testing
and controlling for pleiotropic effects in the presence of
correlated instruments. More recently, PMR [21] builds
upon these previous studies and relies on a jointly
integrative TWAS analysis to accommodate the presence
of both correlated instruments and horizontal pleiotropy.
Specifically, PMR replaces Eq. (3) with the following
extended version

y=αez þ eXγþ εy, (10)

where γ is a p-length vector representing the horizontal
pleiotropic effects. PMR [21] explored two different
modeling assumptions on the horizontal pleiotropic
effects γ. The first modeling assumption is the normality
modeling assumption gj � Nð0, �2

gÞ, which assumes that
all elements of γ is non-zero and they all follow a normal
distribution a priori. The second modeling assumption is
the Egger modeling assumption g1=:::=gp=g, which
assumes that all elements of γ equal to each other and all
equal to a common scalar value of g. The first modeling
assumption is analogous to the SKAT [64] modeling
assumption commonly used in the rare variant test setting
while the second modeling assumption is analogous to the
burden [65–67] modeling assumption also used in rare
variant test setting. PMR when paired with the first
modeling assumption is often referred to as PMR-VC
while PMR paired with the second modeling assumption
is often referred to as PMR-Egger. Both versions of PMR
test the causal effect H0 :α=0 while properly controlling
for horizontal pleiotropic effects, resulting in a substantial
reduction of false positives. Importantly, while PMR no
longer requires the third assumption of standard MR

model (i.e., instruments are associated with the outcome
only through the exposure), it still requires the InSIDE
assumption that the instrument-exposure effects and
instrument-outcome effects are independent of each
other, which is sometimes refered to as the weak
exclusion restriction condition [42]. Besides testing for
causal effects, both PMR-VC and PMR-Egger can also
directly test for horizontal pleiotropic effects by testing
the corresponding null hypothesis: H0 :�

2
g=0 in PMR-

VC and H0 :g=0 in PMR-Egger. By testing for
horizontal pleiotropic effects, widespread horizontal
pleiotropy has been revealed across the transcriptome.

EXTENSIONS OF TWAS TOWARDS
MULTIVARIATE MR ANALYSIS

Traditional TWAS methods are univariate in nature and
focus on analyzing one exposure and one gene at a time.
However, many recently developed TWAS methods are
gradually extending from the univariate TWAS analysis
to multivariate TWAS by using either multiple exposures
or multiple genes (Fig. 2B). For example, TisCoMM [32]
is an extension of CoMM [53] and can leverage the co-
regulation of cis-SNPs on multiple tissues via a like-
lihood-based inference. Specifically, TisCoMM regresses
expression data across multiple tissues on genotype by the
following multiple regression model:

Zn1�m=Xn1�pBp�m þ εz,n1�m (11)

where m ðk=1,:::,mÞ denotes the number of tissues, Z is
the expression matrix with each column representing a
tissue measured from n1 samples, B is the genetic effect
matrix with dimension p� m, and εz is the error term with
dimension n1 � m. TisCoMM assumes that the genetic
effect matrix B=diagðbÞW , where b=ðb1,:::,bpÞ �
Npð0,�2bIpÞ is the SNP-dependent component and W p�m

=ðwjkÞ is the tissue-dependent component, where wjk is
estimated using the marginal regression of gene expres-
sion on the j-th SNP in the k-th tissue. The GWAS model
is an extension of Eqs. (2) and (3):

y=eXn2�pBp�mαm�1 þ εy,n2�1, (12)

where αm�1=ðα1,:::,αk ,:::,αmÞ is a vector of causal effects
with each element indicating the effect of gene expression
in each tissue on the phenotype. TisCoMM uses the PX-
EM algorithm to estimate parameters and likelihood ratio
tests to make inference on αm�1 [53].
Similarly, UTMOST [29] uses the same expression

model as in Eq. (11). Different from TisCoMM that
requires a complete expression matrix Z in order to
complete the likelihood-based analysis, UTMOST allows
incomplete Z meaning only a subset of tissues is collected
from each sample. Denote Zk as an Nk -length vector of
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expression data in the k-th tissue, which is a subset of the
k-th column of matrix Z that contain non-missing
expression data; X k is an Nk � p genotype matrix for
the same Nk samples; B$k is the k-th column of matrix B
and represents the genetic effect sizes of p SNPs in the
k-th tissue; and Bj$ is the j-th row of B and represents the
genetic effect sizes of the j-th SNP across all m tissues.
UTMOST estimates B by minimizing the squared loss
function with a LASSO penalty on the columns (within-
tissue) and a ridge penalty on the rows (cross-tissue):

B / exp l1

Xm
k=1

1

Nk
kB$kk1 þ l2

Xp
j=1

kBj$k2
 !

: (13)

A third method, MultiXcan [28], leverages the
substantial sharing of eQTLs across multiple tissues
using multivariate regression. Specifically, MultiXcan
regresses the phenotype of interest on the predicted
expression from multiple tissues:

y=
Xm
k=1

ẑkαk þ εy, (14)

where ẑk is a vector of the standardized version (zero
mean and unit standard deviation) of the predicted
expressions in tissue k, i.e.,

P
jBjkX j, where Bjk is

estimated based on elastic net regression; and αk is the
causal effect of gene expression in the k-th tissue on
phenotype y. MultiXcan then uses an F-test to jointly infer
the significance of gene effects across multiple tissues.
A fourth multivariate TWAS approach is fQTL [31],

which decomposes the SNP effect of the j-th SNP in the
k-th tissue, Bjk , into a SNP-dependent component and a
tissue-dependent component. That is, fQTL assumes

Bjk=
Pt

r=1b
snp
jr ðbtisÞTrk , where t£m. fQTL assumes the

BVSR [51] prior on each column of bsnp (SNP-dependent
genetic effect component) and btis (tissue-dependent
genetic effect component) and estimates the posterior
distribution of bsnp and btis based on stochastic variational
inference (SVI), which finds the best mean-field approx-
imating distribution to the posterior by optimizing the
variational objective function. Afterwards, the posterior
distributions of bsnp and btis can be obtained respectively,
together with the mean and variance of Bjk . Finally, fQTL
characterizes the distribution of the tissue-specific gene
expression from a Gaussian distribution where the mean
and variance are related to the mean and variance of Bjk .
A fifth method, multi-tissue TWAS [30] identifies

susceptibility genes by using gene expression panels
measured in various tissues from multiple expression
consortiums. Specifically, multi-tissue TWAS conducts
the univariate TWAS [1] for each tissue using the
FUSION software and is able to quantify the tissue-trait

relevance by the mean TWAS association statistics from
all genes.
Finally, in addition to extending TWAS from single

tissue to multiple tissues, a recently developed method
FOCUS [33] (Fine-mapping Of CaUsal gene Sets) also
attempts to extend TWAS from modeling one gene at a
time towards modeling multiple genes simultaneously.
FOCUS takes as input GWAS summary data, expression
prediction weights, and LD among all SNPs, and
estimates the probability of any given set of genes
containing the causal genes.

USE OF SUMMARY STATISTICS

Because of consent and privacy concerns, as well as
logistic limitations (e.g., large-scale data transfer and
storage often require high-end computing infrastructure),
it is now becoming increasingly difficult to access
complete individual-level data from large-scale associa-
tion studies. Indeed, using summary statistics across
multiple studies and then releasing results in terms of
summary statistics has become a standard practice in most
studies and it has several advantages over using
individual phenotype and genotype data. Using summary
statistics in TWAS settings has several important benefits.
First, GWAS summary statistics are often stored in the
datasets with open access, and it becomes incredibly easy
to obtain summary statistics than individual-level data
which requires a lengthy process for data approval.
Second, many GWAS summary statistics are often
obtained through meta-analysis of multiple sub-studies
where hundreds of thousands of individuals in total are
collected. Since sample size is the most important factor
in determining statistical power, using summary statistics
can lead to substantial benefits for TWAS. Third,
summary statistics-based analysis often offers advantages
in computational cost and computing memory storage as
compared to individual data-based approaches. Conse-
quently, many existing individual-level TWAS methods
can either directly accommodate summary statistics or
have corresponding extensions that can accommodate
them. For example, the summary statistics version of
PrediXcan (S-PrediXcan) [35] and CoMM (CoMM-S2)
[53] are presented as follow-up extensions of the original
individual-level data based version. Other methods are
proposed to directly use summary statistics without an
initial individual-level data model; such examples include
UTMOST [29], fQTL [31], and FOCUS [33]. Yet some
other methods are presented to work on both individual-
level data and summary statistics and such examples
include PMR [21], TIGAR [18], TWAS (STWAS) [1],
MultiXcan (S-MultiXcan) [28], and TisCoMM (Tis-
CoMM-S2) [32]. Regardless how the summary statistics
version of different TWAS methods were proposed, these
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methods often require two important input information
from the GWAS study: the marginal association statistics
in terms of marginal z-scores obtained in the GWAS, and
the SNP correlation/LD matrix obtained from either a
sub-sample of the original GWAS or from a reference
panel. Certainly, the sample sizes used in these two input
data are often orders of magnitude different from each
other: while the marginal z-scores are calculated based on
often hundreds of thousands of individuals, the SNP
correlation matrix is often calculated based on a few
thousands of individuals. Even though the SNP correla-
tion matrix is often calculated based on a much smaller set
of individuals, the overall parameter estimation accuracy
remains high, especially when a polygenic modeling
assumption on SNP effect sizes are made [68]. Certainly,
besides the two input information from GWAS, the
summary statistics version of TWAS methods also
requires the input information from the gene expression
data. Because the current gene expression studies often
contain samples only in the scale of tenths to hundredths
(Table 1), many researchers can still use individual-level
genotype-expression data, although summary statistics
version of some TWAS methods can also make use of
summary level data from the gene expression study as
input.
We summarized the thirteen TWAS approaches exam-

ined above in Table 2 from the following aspects: model
designs (two-stage or likelihood-based), number of

tissues from the expression mapping study (single or
multiple), data types a method is applicable for
(individual-level, summary statistics, or both), whether
controlling for horizontal pleiotropic effects (yes or no),
modelling assumptions on genetic effects (LMM,
BSLMM, DPR, etc.), and the URL link of implemented
software for each method.

DISCUSSION

Transcriptome-wide association studies have been pro-
posed for five years and have been widely applied for
prioritizing candidate genes whose genetically regulated
expression is associated with common diseases and
disease related complex traits. As we have presented
here, almost all TWAS methods can be viewed as a two-
sample Mendelian randomization analysis with different
modeling assumptions. We have comprehensively review
the existing TWAS methods from the perspective of MR.
Most TWAS methods and applications have been

focused on using common cis-SNPs that have a reason-
ably high minor allele frequency (MAF) and that reside in
a small cis-region of a gene (e.g., 1 Mb surrounding the
transcription factor starting site). In recent years, many
GWAS studies have shown that rare genetic variants can
play a crucial role in explaining missing heritability and
some of them are identified to be associated with many
diseases and traits [64,69,70]. Therefore, including rare

Table 2 A summary of thirteen TWAS approaches examined in the present review
Methods Design Tissue Data type Pleiotropy Model assumptions URLs

PrediXcan Two-stage Single Individual No Elastic net https://github.com/hakyimlab/PrediXcan

S-PrediXcan Two-stage Single Summary No Elastic net https://github.com/hakyimlab/MetaXcan

TWAS Two-stage Single Individual

/Summary

No BSLMM https://bogdan.dgsom.ucla.edu/pages/

twas/

DPR Two-stage Single Individual No DPR http://www.xzlab.org/software.html

TIGAR Two-stage Single Individual

/Summary

No DPR https://github.com/yanglab-emory/

TIGAR

CoMM Likelihood-

based

Single Individual No LMM https://github.com/gordonliu810822/

CoMM

CoMM-S2 Likelihood-

based

Single Summary No LMM https://github.com/gordonliu810822/

CoMM

PMR Likelihood-

based

Single Individual

/Summary

Yes LMM https://github.com/yuanzhongshang/PMR

UTMOST Two-stage Multiple Summary No LASSO & Ridge https://github.com/Joker-Jerome/

UTMOST

MultiXcan Two-stage Multiple Individual

/Summary

No Elastic net https://github.com/hakyimlab/MetaXcan

TisCoMM Likelihood-

based

Multiple Individual

/Summary

No LMM https://github.com/XingjieShi/TisCoMM

fQTL Two-stage Multiple Summary No BVSR https://github.com/ypark/fqtl

FOCUS Gene-mapping Multiple

genes

Summary No https://github.com/bogdanlab/focus
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variants into TWAS applications model may have added
benefits. In addition, while cis-SNPs explain a substantial
fraction of gene expression heritability, the explained
expression heritability is nevertheless small. For example,
it is estimated that 70%–90% of gene expression
heritability is determined by trans-acting factors [7,71].
Therefore, incorporating trans-SNPs into TWAS applica-
tions may help improve association power. Finally, while
several multivariate TWAS methods have been developed
to accommodate multiple tissues, important statistical and
computational challenges remain in multivariate TWAS
modeling. For example, current multivariate TWAS
methods are either combining single-tissue association
results together in a relatively simple fashion (e.g.,
UTMOST) or are only capable to using a small subset
of tissues with overlapping samples (e.g., TisCoMM).
Modeling more tissues (e.g., 54 tissues in GTEx)
simultaneously may help us better understand the
transcriptomic mechanism underlying disease etiology.
Besides the extensions towards multiple tissues and
genes, multivariate TWAS analysis can also be extended
towards multiple phenotypes. Multiple phenotypes ana-
lyses are widely employed in GWASs and have been
proven to be more powerful than testing each phenotype
at a time by considering the correlation across pheno-
types. Incorporating multiple correlated phenotypes into
TWASmay become a potential way to discover genes that
are associated with multiple phenotypes. However, this
practice needs more investigations due to the complexity
of phenotypic structures.
Finally, we caution that, while we have followed the

previous MR literature and use “causal effect” through the
text, the effect is causal only when certain MR modeling
assumptions hold. These MR assumptions are often not
straightforward to prove. For example, without measuring
all potential confounders, it is not straightforward to argue
that the SNP instruments are not associated with any other
confounders that may be associated with both exposure
and outcome. Therefore, we caution against the over-
interpretation of causal inference in observation studies
such as TWAS applications. However, we do believe MR
is an important step that allows us to move beyond
standard linear regressions and is an important analysis
that can provide potentially more trustworthy evidence
with regard to causality compared to simpler approaches.
In summary, we hope that our review could serve as a
useful reference for understanding TWAS from the MR
perspective and provide researchers useful information
for the future development of TWAS methods.
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