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Abstract

Integrating genome-wide association (GWAS) and expression quantitative trait locus (eQTL) data 

into transcriptome-wide association studies (TWAS) based on predicted expression can boost 

power to detect novel disease loci or pinpoint the susceptibility gene at a known disease locus. 

However, it is often the case that multiple eQTL genes colocalize at disease loci, making the 

identification of the true susceptibility gene challenging, due to confounding through linkage 

disequilibrium (LD). To distinguish between true susceptibility genes (where the genetic effect on 

phenotype is mediated through expression) and colocalization due to LD, we examine an 

extension of the Mendelian Randomization Egger regression method that allows for LD while only 

requiring summary association data for both GWAS and eQTL. We derive the standard TWAS 

approach in the context of Mendelian Randomization and show in simulations that the standard 

TWAS does not control Type I error for causal gene identification when eQTLs have pleiotropic or 

LD-confounded effects on disease. In contrast, LD Aware MR-Egger regression can control Type I 

error in this case while attaining similar power as other methods in situations where these provide 

Corresponding Author: Peter Kraft (617-432-4271). 655 Huntington Avenue, Building II Room 249A, Boston, Massachusetts 02115. 

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2019 July 01.

Published in final edited form as:
Genet Epidemiol. 2018 July ; 42(5): 418–433. doi:10.1002/gepi.22131.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



valid tests. However, when the direct effects of genetic variants on traits are correlated with the 

eQTL associations, all of the methods we examined including LD Aware MR-Egger regression 

can have inflated Type I error. We illustrate these methods by integrating gene expression within a 

recent large-scale breast cancer GWAS to provide guidance on susceptibility gene identification.

Keywords

Genome-wide association study; Gene Expression; Mendelian Randomization; transciptome-wide 
association study

Introduction

Integrating data from genome-wide association studies (GWAS) of disease and expression 

quantitative trait loci (eQTL) studies can help detect novel disease loci and pinpoint genes of 

interest. Traditional studies have either matched the eQTL and GWAS association signals 

using ad-hoc overlap statistics or estimated the probability that the association signals are 

due to the same genetic variants (i.e., colocalization) [Giambartolomei, et al. 2014; 

Hormozdiari, et al. 2016; Wallace 2013]. More recent methods have proposed to test the 

association between transcript expression levels and disease risk by first using eQTL 

reference data to build multi-marker predictors of expression, and then testing the 

association between the genetically predicted expression and disease risk in a large GWAS 

[Gamazon, et al. 2015; Gusev, et al. 2016]. The latter methods, which we jointly refer to as 

Transcriptome-Wide Association Studies (TWAS), have been extended to the case when 

only summary statistics are available from the disease GWAS, the eQTL study, or both 

[Barbeira, et al. 2016; Gusev, et al. 2016; Zhu, et al. 2016].

Although TWAS has been successful in identifying many genes whose genetically regulated 

expression is associated to traits, a major limitation of TWAS is that it cannot distinguish 

between a causal effect of expression on disease and a tagging association within the same 

region due to correlations among SNPs (i.e. linkage disequilibrium, LD) [Mancuso, et al. 

2017a; Wainberg, et al. 2017]. A SNP used in expression prediction of gene A may be in 

linkage disequilibrium (LD) with nearby SNPs used in the prediction of gene B that is not 

involved in disease etiology. This LD will induce association between the genetically 

regulated expression of gene B and disease, causing the TWAS test statistic to reject the null 

of no association between predicted expression and disease at gene B even though 

expression levels are not causally related to disease; this effect is similar to standard LD-

tagging in GWAS where LD induces significant association statistics at non-causal SNPs 

[Mancuso, et al. 2017a]. As TWAS methods were originally proposed as tests for association 

between local genetically regulated component of expression and disease with no causality 

guarantees [Gamazon, et al. 2015; Gusev, et al. 2016; Mancuso, et al. 2017a; Mancuso, et al. 

2017b; Zhu, et al. 2016], it remains unclear whether and when TWAS can be interpreted as 

valid tests of causality. In contrast to TWAS, colocalization analyses, including COLOC, 

eCAVIAR, focus on estimating the probability of the SNPs causals for eQTL to be the same 

as for GWAS, irrespective of direction of genetic effect on expression or disease, and are not 
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designed to test for an effect of gene expression on disease risk [Giambartolomei, et al. 

2014; Hormozdiari, et al. 2016; Wallace 2013].

In this work, we explore the use of TWAS methods in the context of causal gene 

identification. As opposed to the standard TWAS that mainly focused on association testing 

to identify new genomic regions harboring disease genes, in this work we investigate the 

utility of TWAS methods in the context of causal gene localization (which utilizes a much 

more stringent definition of true/false positive). We re-derive TWAS methods in a Mendelian 

Randomization (MR) framework and show that the standard TWAS statistic is a special case 

of MR that use eQTLs as genetic instruments to test the causal association between 

expression and disease. We leverage the growing literature on methods for MR that use 

summary statistics for both the associations between single nucleotide polymorphisms 

(SNPs) and the intermediate trait and between SNPs and disease; that use multi-SNP genetic 

instruments [Burgess, et al. 2016]; and that remain valid when some of the assumptions 

underlying standard MR are violated [Bowden, et al. 2015]. In particular, the MR Egger 

regression approach relaxes the assumption that the association between genetic instruments 

and disease is only mediated through the intermediate trait—which would not be the case if 

the SNPs in the genetic instrument had pleiotropic effects, for example [Bowden, et al. 

2015]. We investigate the use of a variant of MR Egger regression that accounts for LD 

among the variants used in the genetic predictor for gene expression (LD aware MR Egger 

regression) in the context of TWAS. This method was first proposed independently of this 

group in the discussion section of Burgess and Thompson 2017 with derivations provided in 

their appendix [Burgess and Thompson 2017]. We use extensive simulations to compare the 

performance of LD aware MR Egger to other TWAS and MR statistics and show that it 

remains valid under specific violations of the assumptions underlying MR, while retaining 

comparable power to the other approaches when the assumptions do hold.

The structure of this paper is as follows. First, we introduce the conceptual model relating 

the outcome and gene expression to the SNPs. Second, we discuss four existing approaches 

for testing the association between the outcome and gene expression. We show that the 

traditional TWAS test statistic of Gusev et al. [Gusev, et al. 2016] is equivalent to an LD 

aware version of standard MR using summary statistics and compare this approach to LD 

aware MR-Egger regression (LDA MR-Egger) [Burgess and Thompson 2017]. Third, we 

examine the statistical properties of these estimates and their performance via simulation in 

the presence or absence of a direct effect of SNPs on disease. To the best of our knowledge, 

this is the first time the empirical performance of LDA MR-Egger regression has been 

examined in this context. We apply the various approaches to summary statistics from a 

GWAS on Breast Cancer [Michailidou, et al. 2017] with eQTL data from a breast tissue 

panel in GTEx [Consortium 2013]. We conclude by providing guidance on the 

interpretability of standard TWAS and MR tests can be interpreted as valid tests in the 

context of eQTL and GWAS integration.
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Methods

Main Models

Let Y denote the outcome (nx1), M the mediator (nx1), and G the SNP matrix (nxJ) of 

interest. We assume that the columns of G have been standardized to have mean zero and 

variance one. In the TWAS setting, M is gene expression. We denote the LD structure of the 

SNPs G as Σ, a JxJ symmetric positive definite matrix. (In practice, this matrix may be a 

modified version of the empirical LD matrix, adding a small ridge regularization to ensure 

the matrix is symmetric positive definite and invertible [Pasaniuc and Price 2017]). Here we 

let Σ represent the correlation, with Σk,j representing the Pearson correlation between SNP k 
and SNP j. To motivate our approach, we assume that (for a link function g):

g E Y M, G = γ0 + Mγ + Gθ (i.a.)

And

M = β0 + GβE + ϵM; ϵM N 0, Inσ2 . (i.b.)

We are interested in the solution to the regression of Y on G, marginal over M:

g E Y G = γ0* + GβG (i.c.)

In the above models, θ is a J-column vector of G effects on Y conditional on M, γ is the 

effect of M on Y conditional on G, βE is the J-column vector of SNP effects on the mediator, 

and βG is the J-vector of the G effects marginal over M. ϵM and In represent the residual 

variance in M and the n × n identity matrix respectively. We are interested in the situation 

where we cannot directly estimate the parameters in model (i.a), as we do not have complete 

data on Y, M and G from (sufficiently many) individuals. We want to place inference on γ, 

because if γ ≠ 0, gene expression M affects the trait. To relate the parameters in the marginal 

model (1.c) to the models (1.a.) and (1.b.), we assume one of the following for the remainder 

of the paper:

1. g is either the log or identity link function.

2. Y is a sufficiently rare binary trait and g is the logit link.

If either of the two conditions above hold, we will have:

βG ≈ βEγ + θ . (ii)

If g is the log or linear link, the approximation will be exact. Equation (ii) suggests that the 

effects of G marginal over M are a function of the eQTL parameters (βE), the effect of the 

gene expression on the outcome conditional on G (γ), and the effect of G on the outcome 
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conditional on M (θ). We will call θ the direct effect and βEγ the mediated effect, but we 

note that θ will be non-zero not only when G has has a direct causal effect on Y (i.e. not 

mediated through M), but also when the relationship between G and Y is confounded—as 

would be the case when there is colocalization and the SNP(s) with an effect on the outcome 

are not included in G. We will explore what happens in the later scenario empirically.

In practice, we do not have an overlap of data on M, Y, and G, and hence cannot estimate γ 
directly. Instead, we have a sample of size N that the GWAS is run on to estimate βG and an 

independent sample of size NE that was used to estimate βE. Moreover, we typically only 

have estimates of individual SNP effects marginal over the other SNPs, βE* and βG* . For our 

purposes, βG, j*  and βE, j*  were estimated with the same reference allele for SNP j. If they 

were not, the sign of the effect can be changed so as to refer to the same reference allele. We 

note here that while in this paper we refer to βG as the GWAS effects, these parameters can 

be estimated from any association study.

The formulas given above relating the mean of Y and M to G were given on the conditional 

level. We therefore transform our marginal estimates (βE* and βG* ) to the conditional scale. 

Given an estimate of the LD matrix (Σ) we estimate the conditional eQTL and GWAS effects 

as βE = Σ−1βE* and βG = Σ−1βG*  [Shi, et al. 2016]. If the marginal effect estimates were not 

calculated on the standardized genotypes they can be transformed by multiplying by the 

square root of 2pj(1-pj), where pj is the MAF of SNP j. We assume that βE and βG are 

unbiased for βE and βG respectively.

We do not know the form of θ; it could be a constant or vary by SNP. All we know is that it 

is a vector of length J. Our estimated GWAS effects, (given our assumptions above) are a 

function of θ, βE, γ and the sampling error:

βG ≈ θ + βEγ + ϵG; ϵG N 0, ΣG .

If the SNPs are not in LD, then the marginal and the conditional will be equal (βG ≈ βG* ).

We next derive the covariance of βG (ΣG). Let σG*  denote a Jx1 vector of the marginal 

standard errors of βG* . Let “.” denote element wise multiplication between two matrices. As 

G has been standardized, cov βG* = Σ ⋅ σG* σG
* T. This gives the covariance of our conditional 

GWAS estimates:

ΣG = cov βG = cov Σ−1βG* = Σ−1 Σ · σG* σ*G
T Σ−1 .

If σG* = v1J, 1J is a column vector of ones, then ΣG = Σ‒1υ2. The main goal is to derive a 

valid test of the null hypothesis γ =0 and potentially estimate γ in the presence of direct 
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effects of the SNPs onto the outcome. We next go over some common methods for testing 

for an association between gene expression and outcome.

Transcriptome Wide Association Studies (TWAS)

The standard TWAS statistic uses summary statistics to test for an association between 

genetically predicted gene expression and a phenotype of interest [Gusev, et al. 2016]. The 

TWAS does not necessarily estimate the γ above but does provide a valid test for the 

association between the gene of interest and the outcome. The TWAS test statistic is:

ZTW AS =
βE

* TΣ−1ZG*

βE
* TΣ−1βE*

,

where ZG* = βG* /σG* , is a column vector of the marginal test statistics. The test statistic is then 

compared to a standard normal to assess significance. The TWAS can use either the marginal 

or conditional eQTL estimates as weights. If using the conditional, the equation above 

becomes:

ZTW AS =
β E

TZG*

βE
TΣβ E

.

The Summary Mendelian Randomization Estimator

The summary MR estimator [Johnson 2011] is:

γ MR =
βE

* TV−1βG*

βE
* TV−1βE*

,

where V is a diagonal matrix with v j j = σG, j
2 * = var βG, j* . If there are no direct effects, i.e. θ 

= 0, and the SNPs are not in LD with each other (Σ = IJ), then this will be an unbiased 

estimate of γ. The MR estimate is best suited for analysis where the mediator is another 

phenotype and the SNPs are taken from across the genome. This estimate (which we term as 

the MR estimate) can be rewritten as:

γ MR =
∑ j = 1

J βE, j* βG, j* σG, j
−2 *

∑ j = 1
J βE, j

2 * σG, j
−2 * .

We estimate its variance as:

var γ MR =
σMR

2

∑ j = 1
J βE, j

2 * σG, j
−2 *,
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σMR
2 = 1

J − 1 ∑
j = 1

J
σG, j

−2 * βG, j* − βE, j* γ MR
2 .

The MR test statistic is then:

ZMR =
γ MR

var γ MR
=

∑ j = 1
J βE, j* βG, j* σG, j

−2 *

σMR ∑ j = 1
J βE, j

2 * σG, j
−2 *   .

For testing, we compare ZMR to the quantiles of a t-distribution with J-1 degrees of freedom. 

If the SNPs are in LD or if there are direct effects, γ MR can lead to incorrect inference. The 

MR estimate is a weighted linear regression without an intercept of the marginal GWAS 

estimates on the marginal eQTL estimates with weights equal to σG, j
−2 *.

We note here that Zhu et al. refer to their single SNP MR test as a summary Mendelian 

Randomization, that approach is not the same as what is presented here [Zhu, et al. 2016]. 

The approach above takes into account all SNPs at once as opposed to doing one SNP at a 

time. The Zhu et al approach provides an estimate for pleiotropy (HEIDI) based on the 

summary statistics and conditioning on the lead SNP.

MR-Egger Estimate

If the MR estimate is a weighted linear regression without an intercept, the MR-Egger 

extends the MR by including an intercept (α) to the weighted linear regression. It assumes 

that E βG* | βE* = α1J + βE*γ. The estimates are (same V as the MR estimate):

α
γ MRE

=
1J
TV−11J 1J

TV−1βE*

βE
* TV−11J βE

* TV−1βE*

−1 1J
TV−1

βE
* TV−1 βG* ,

The estimate of γ is then:

γ MRE =
∑ j = 1

J σG, j
−2 * ∑ j = 1

J βE, j* βG, j* σG, j
−2 * − ∑ j = 1

J βE, jσG, j
−2 * ∑ j = 1

J βG, j* σG, j
−2 *

∑ j = 1
J σG, j

−2 * ∑ j = 1
J βE, j

* 2 σG, j
−2 * − ∑ j = 1

J βE, j* σG, j
−2 * 2 .

The variance of the estimate is:

var γ MRE = σMRE
2 ∑ j = 1

J σG, j
−2 *

∑ j = 1
J σG, j

−2 * ∑ j = 1
J βE, j

* 2 σG, j
−2 * − ∑ j = 1

J βE, j* σG, j
−2 * 2,
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σMRE
2 = 1

J − 2 ∑
j = 1

J
σG, j

−2 * βG, j* − α − βE, j* γ MRE
2 .

The MR-Egger test statistic is then:

ZMRE =
∑ j = 1

J σG, j
−2 * ∑ j = 1

J βE, j* βG, j* σG, j
−2 * − ∑ j = 1

J βE, jσG, j
−2 * ∑ j = 1

J βG, j* σG, j
−2 *

σMRE ∑ j = 1
J σG, j

−2 * ∑ j = 1
J σG, j

−2 * ∑ j = 1
J βE, j

* 2 σG, j
−2 * − ∑ j = 1

J βE, j* σG, j
−2 * 2 .

To test, we compare to the quantiles of a t-distribution with J-2 degrees of freedom. If the 

SNPs are in LD, the test for γ MRE may lead to incorrect inference due to the variance of 

γ MRE being misspecified.

LD-Aware MR (LDA MR) Estimate

The LDA MR estimator of γ extends the MR estimator by relaxing the assumption of the 

SNPs being independent. It however, still requires that there are no direct effects. Recall that 

ΣG = cov βG . The LDA MR estimator is then:

γLDMR =
βE

TΣG
−1βG

βE
TΣG

−1βE
,

And we estimate the variance as:

var γLDMR =
σLDMR

2

βE
TΣG

−1βE
,

σLDMR
2 = 1

J − 1 βG − βEγLDMR
TΣG

−1 βG − βEγLDMR .

The test statistic is then:

ZLDMR =
γLDA − MR
var γLDMR

=
βE

TΣG
−1βG

σLDMR βE
TΣG

−1βE

  .

Similar to the MR, we compare to a t distribution with J-1 df. If there are direct effects, 

γ LDMR can lead to incorrect inference. Just as the MR estimate is a weighted linear 

regression without an intercept, the LDA MR estimate is a weighted linear regression 

without an intercept using the weight matrix ΣG
−1. If σG, j* = v for all SNPs, the LDA MR and 
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the TWAS test-statistic run on the marginal eQTL will be proportional to each other by 

σLDMR
−1  (Appendix A).

LDA MR-Egger Estimate

LDA MR-Egger regression extends the MR-Egger approach to incorporate the LD structure 

of the SNPs. We include an intercept, in the aims of accounting for the direct effect of the 

SNPs. The estimates of the intercept and γ are:

αLD
γLDMRE

=
1J
TΣG

−11J 1J
TΣG

−1βE

βE
TΣG

−11J βE
TΣG

−1βE

−1 1J
TΣG

−1

βE
TΣG

−1 βG,

with γ more succinctly being written as:

γLDMRE =
1JΣG

−11J βE
TΣG

−1βG − 1J
TΣG

−1βE 1J
TΣG

−1βG

1J
TΣG

−11J βE
TΣG

−1βE − 1J
TΣG

−1βE
2 .

The variance is estimated as:

var γLDMRE = σLDMRE
2 1JΣG

−11J

1J
TΣG

−11J βE
TΣG

−1βE − 1J
TΣG

−1βE
2   ,

σLDMRE
2 = 1

J − 2 βG − αLD1J − βEγLDMRE
TΣG

−1 βG − αLD1J − βEγLDMRE .

The test statistic is then:

ZLDMRE =
γLDMRE

var γLDMRE
=

1JΣG
−11J βE

TΣG
−1βG − 1J

TΣG
−1βE 1J

TΣG
−1βG

σLDMRE 1JΣG
−11J 1J

TΣG
−11J βE

TΣG
−1βE − 1J

TΣG
−1βE

2   .

For testing, we compare to a t-distribution with J-2 degrees of freedom. This estimate is a 

combination of the approaches from LDA MR and the MR-Egger. The LDA MR-Egger will 

provide valid inference in the same scenarios as the MR-Egger, but in addition when the 

SNPs are in LD. Details of all tests are provided in Table I.

Biases of Estimates

We first focus on the estimates that do not incorporate an intercept, the MR and the LDA 

MR. We now examine the bias of the MR estimate:
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γ MR =
βE

* TV−1βG*

βE
* TV−1βE*

,

Note that βG* = ΣβG and βE* = ΣβE. Thus E βG* = E ΣβG = ΣβEγ + Σθ. We assume that βE

and βG were estimated from different samples and thus are independent, E βG | βE = E βG . 

Using this gives us that:

E γ MR βE* = γ
βE

* TV−1ΣβE

βE
* TV−1βE*

+
βE

* TV−1Σθ

βE
* TV−1βE*

.

Then use that βE* = ΣβE:

E γ MR βE* = γ
βE

TΣV−1ΣβE

βE
TΣV−1ΣβE

+
βE

TΣV−1Σθ

βE
TΣV−1ΣβE

The term βE was estimated from a sample size of NE. As NE →∞, we again have that 

βE βE and the first term goes to γ. Assuming NE is sufficiently large:

E γ MR βE* ≈ γ +
βE

TΣV−1Σθ

βE
TΣV−1ΣβE

.

Now unless θ =0 or the transformation βE
TΣV−1Σ is orthogonal to θ, the MR will be biased. 

For the LDA MR:

γLDMR =
βE

TΣG
−1βG

βE
TΣG

−1βE
,

E γLDMR βE = γ
βE

TΣG
−1βE

βE
TΣG

−1βE
+

βE
TΣG

−1θ

βE
TΣG

−1βE
.

As NE →∞, βE βE and the first term will go to γ. Assuming that NE is sufficiently large 

enough for this to occur, we have:
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γLDMR βE ≈ γ +
βE

TΣG
−1θ

βE
TΣG

−1βE
.

Again, if θ ≠ 0 or if the transformation βE
TΣG

−1 is not orthogonal to θ, then the estimate will 

be biased. As J increases, the NE needed for βE βE will also increase.

We next assessed methods that include an intercept. For the MR-Egger estimate, using the 

fact that βG* = ΣβG and βE* = βE, we have:

γ MRE =
1J
TV−11J βE

T *V−1βG* − 1J
TV−1βE* 1J

TV−1βG*

1J
TV−11J βE

T *V−1βE* − 1J
TV−1βE*

2

=
1J
TV−11J βE

TΣV−1ΣβG − 1J
TV−1ΣβE 1J

TV−1ΣβG

1J
TV−11J βE

TΣV−1ΣβE − 1J
TV−1ΣβE

2 .

E γ MRE βE* = γ
1J
TV−11J βE

TΣV−1ΣβE − 1J
TV−1ΣβE 1J

TV−1ΣβE

1J
TV−11J βE

TΣV−1ΣβE − 1J
TV−1ΣβE

2

+
1J
TV−11J βE

TΣV−1Σθ − 1J
TV−1ΣβE 1J

TV−1Σθ

1J
TV−11J βE

TΣV−1ΣβE − 1J
TV−1ΣβE

2

As we have done previously, we assume NE is sufficiently large so that βE* ≈ βE, making the 

first term γ.

E γ MRE βE* ≈ γ +
1J
TV−11J βE

TΣV−1Σθ − 1J
TV−1ΣβE 1J

TV−1Σθ

1J
TV−11J βE

TΣV−1ΣβE − 1J
TV−1ΣβE

2

Thus, the MR-Egger estimate will be unbiased if there is no direct effect (θ = 0), or if θ is a 

constant, or if the numerator in the second term is equal to 0. Note that if Σ=I and V ∝ 1
N I, as 

is the case in the setting where the MR-Egger estimate was originally proposed, then the 

numerator is equal to the empirical covariance between βE and θ. This condition is referred 

to as the Instrument Strength Independent of Direct Effect (InSIDE) condition [Bowden, et 

al. 2015]. If the number of SNPs in the instrument for the mediator (J) is large, and there is 

no systematic relationship between βE and θ, then this empirical covariance will be small. 

However, if J is small, as may be the case when gene expression is the mediator and the 

genetic instrument is limited to cis SNPs, then the numerator in the second term may be non-

zero even when there is no systematic relationship between βE and θ. Even if the INSIDE 
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condition holds but Σ ≠ I, the MR-Egger estimate will lead to improper inference, as it does 

not account for linkage disequilibrium.

We now consider the LDA MR-Egger estimate:

γLDMRE =
1J
TΣG

−11J βE
TΣG

−1βG − 1J
TΣG

−1βE 1J
TΣG

−1βG

1J
TΣG

−11J βE
TΣG

−1βE − 1J
TΣG

−1βE
2 ,

Again, using that βE and βG were estimated from different studies, we have that

E γLDMRE βE = γ
1J
TΣG

−11J βE
TΣG

−1βE − 1J
TΣG

−1βE 1J
TΣG

−1βE

1J
TΣG

−11J βE
TΣG

−1βE − 1J
TΣG

−1βE
2

+
1J
TΣG

−11J βE
TΣG

−1θ − 1J
TΣG

−1βE 1J
TΣG

−1θ

1J
TΣG

−11J βE
TΣG

−1βE − 1J
TΣG

−1βE
2 .

As with the other estimates: NE →∞, βE βE. If we assume that NE is sufficiently large:

E γLDMRE βE ≈ γ +
1J
TΣG

−11J βE
TΣG

−1θ − 1J
TΣG

−1βE 1J
TΣG

−1θ

1J
TΣG

−11J βE
TΣG

−1βE − 1J
TΣG

−1βE
2 .

The numerator of the second term is a function of the sample univariate covariance between 

βE and θ weighted by ΣG
−1. The LDA MR-Egger estimate will be unbiased in the same 

situations as the MR-Egger estimate, but it does not require the SNPs be independent.

Simulation Study

We examine the empirical performance of four methods: the MR, MR-Egger, LDA MR, and 

the LDA MR-Egger. We note here that the MR and LDA MR approaches’ empirical 

performance in the presence of LD has been examined in detail previously [Burgess, et al. 

2016], but for the sake of comparison we include them in our analysis. Under our simulation 

scenario, the TWAS and the LDA MR test statistics are approximately the same (σG, j*  is a 

constant), so we only present results on LDA MR. We generated the data such that all SNPs 

have a small causal effect. For each simulation, we generated summary eQTL and outcome 

SNP statistics from a multivariate normal distribution as opposed to individual level data 

[Han, et al. 2009]. We fixed the sample of the eQTL study to 1000 (NE) and the sample size 

of the GWAS to 5000 (N). We varied the number of SNPs at the locus (J); the proportion of 

variation in Y explained by G hG Y
2  and M hE Y

2 ; the proportion of variation in M 

explained by G he
2 ; the magnitude of any shared direct effect (τ); and the LD matrix (Σ, 

AR(J) structure, Σi,j = ρ|i−j|). For all simulations, the expression effects βE and direct effects 

θ were sampled independently. More details along with values taken are given in Table 2. 
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For a variable direct effect, τ was set to 0. For a near-constant, shared direct effect, τ =10. 

When τ =10 the direct effects of SNPs on disease are all in the same direction (θi > 0 for 

every SNP i) and the variability in θ in this case is about 1% of the variability when τ = 0. τ 
can be thought of as a shrinkage parameter, with a larger τ decreasing the variability in the 

direct effects (θ) and shrinking towards a common effect. We refer to this situation as 

“directional pleiotropy.” The process and order for the generation of the simulation data is 

provided in Table 3. We performed 50K simulation for each combination of parameters (486 

different combinations). In each simulation, we generated a new true βE and θ, which are 

functions of he
2, hG Y

2 ,   J and τ. Generating this new “true” parameter value better 

represents the different eQTL and GWAS patterns across different genes, and therefore more 

resembles a standard TWAS. The procedure detailed in Table 3 is thus repeated 50K times 

for all combinations of the parameters in Table 2. Type I error (T1E) and power were 

evaluated at 0.05.

We in addition performed two more sets of simulations to solely assess the T1E. The first 

scenario, we calculated the empirical T1E under a non-infinitesimal model for both disease 

and expression (i.e. when only a subset of SNPs were associated with either trait). Under 

this scenario, SNPs were randomly assigned to be either an eQTL SNP, a disease SNP, or 

neither. We generated under the scenario where 10% (or 50%) of the SNPs were eQTL 

SNPs, and 10% (or 50%) of the SNPs were disease SNPs. The LD between these two sets 

would naturally vary as the SNPs were randomly assigned to their classification. We 

evaluated the T1E under the same scenarios as above, performing 50K simulations and 

evaluating at 0.05. This scenario represents the situation when there is colocalization of 

eQTL and disease SNPs within the same locus, but all SNPs are included in the analysis. We 

next simulated when the InSIDE condition was violated. To do so, we varied the correlation 

between θj and βE,j to be 0.125, 0.5, or 0.9. This correlation between direct and expression 

effects could result when there are disease SNPs nearby that are in LD with the SNPs 

included in the model (colocalization).

As βE and θ were drawn independently, the bias for the LDA MR-Egger estimates across 

many independent simulations of βE and θ should be 0. (This will also be true for the MR-

Egger estimates in the absence of LD.) This is analogous to saying the bias across all the 

genes in the genome will be zero. However, in practice, we will usually be interested in the 

test statistic applied to a particular gene. For particular gene with modest J, the bias for the 

LDA MR-Egger need not be 0. To account for this, we next performed a set of 10K 

simulations with a fixed truth to examine potential bias. We generate one true βE and θ for 

each value of J that is then held constant for all simulations while we vary the other 

parameters in Table 2. Therefore, Steps 1 and 5 of Table 3 are only performed once for J=50 

or 300. We also compared our estimate of γ to when a regularization factor of 0.1 is added 

to the diagonal of the LD matrix as mentioned in the beginning of the methods [Pasaniuc 

and Price 2017].

Application to Breast Cancer GWAS Summary Data

We next applied TWAS, LDA MR, and LDA-MR Egger analyses applied to a breast cancer 

GWAS. We previously conducted a separate breast cancer TWAS using a different approach 
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to build expression weights and including both validation of predicted expression and 

functional follow up of significant genes [Wu, et al. 2017]. Here our focus is to compare 

different analysis approaches where each analysis uses the same set of simple expression 

weights and the same GWAS summary statistics. These expression weights are different 

from that of the Wu et al paper [Wu, et al. 2017]. The marginal GWAS summary statistics 

were from a recent GWAS on breast cancer within women of European descent 

[Michailidou, et al. 2017]. SNP data was meta-analyzed across 13 GWAS; more details can 

be found in Michailidou et al. [Michailidou, et al. 2017]. After QC, the study consisted of 

11.8 million SNPs, with 105,974 controls and 122,977 cases. The GWAS estimates were 

calculated on the non-standardized minor allele counts, and therefore were transformed 

using the minor allele frequency.

Expression weights were calculated from GTEx along with LD information in breast tissue 

in an overall sample of 183 individuals [Consortium 2013]. We restricted our analysis to the 

set of transcripts that were deemed heritable using GCTA [Yang, et al. 2011] and examined 

SNPs within 500kb of the gene boundary. The expression weights were calculated on 

standardize minor allele counts of SNPs (mean zero, variance one) and were conditionally 

estimated using the BSLMM approach [Zhou, et al. 2013]. A gene was deemed heritable if 

the GCTA p-value for each tissue from GTEx was less than the Bonferroni threshold of 0.05 

(after adjusting for 27,945 tests). We were left with 683 transcripts to analyze.

We analyze the Breast Cancer data for these genes using the TWAS, LDA MR, and LDA 

MR-Egger. We did not examine the MR and MR-Egger as we were testing for cis-signals as 

opposed to genome wide and therefore the SNPs were in LD. We took the overlap of the βG

SNPs from the GWAS with the available SNP correlations from GTEx. If the effects were 

estimated with respect to a different reference allele, we reversed the sign for that eQTL 

effect estimate. In total, the 683 genes corresponded to 191,583 unique SNPs.

Results

Simulation Study

First, we examined the type I error rate in simulations and observed that when there is little 

LD and no direct effect of the SNPs, all of the approaches have the correct type I error 

(Figure 1, Sup Figure 1). When there is little LD and the direct effect is variable, the MR and 

MR-Egger approaches have modestly inflated Type I Error rates. When there is low LD and 

there is directional pleiotropy, only the LDA MR-Egger has correct type I error. If the SNPs 

are in high LD (bottom row of Figure 1) and there is no direct effect, the MR and the MR-

Egger have inflated type I error due to misspecification of the variance. When there is a 

variable direct effect, all four approaches have inflated type I error. Finally, when there is 

strong linkage and directional pleiotropy, only the LDA MR-Egger has the correct type I 

error.

We next examined the power when there is little to no LD between the SNPs and no direct 

effect (Figure 2). Under this situation, all four approaches had correct type I error (Figure 1 

top left plot, Sup Figure 1 top left plot) and are valid tests. Regardless of the magnitude of 

the effect of M on Y, we see similar power for all four methods. There is slightly smaller 
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power for the LDA MR-Egger compared to the LDA MR or MR when the SNPs only 

explain 20% of the variation in the gene expression, but once the SNPs explain 50% of the 

variation in M, all approaches have approximately equal power. In each individual plot, we 

see that as the SNPs explain more of the variation (and are thus better instruments), we have 

an increase in power. It has been previously reported that the MR Egger regression can have 

notably lower power than MR [Bowden, et al. 2015]. We did not observe large differences in 

power, but we consider situations with more SNPs in the genetic instrument for the 

intermediate factor and large GWAS sample sizes. (For example, simulations in Bowden et 

al. (2015) consider 25 SNPs up to 1,000 subjects in the GWAS.) We performed additional 

simulations assuming only 5 SNPs were included in the genetic instrument; in this case, we 

also observed lower power for the LDA MR Egger method relative to the LDA MR method.

The decrease in power from J=50 to J=300 is due to an increase in the noise to signal ratio 

when predicting expression levels using SNPs. For J=50, a larger proportion of the variation 

explained by SNPs is shared by each individual SNP leading to more precise estimates. 

When J=300, a smaller proportion of that same amount of variation is explained by each 

SNP in a larger set of SNPs. Assuming the sample size in the reference panel used to 

estimate βE is the same, the sampling error in the SNP-specific estimates βE, j is the same 

for J=50 and J=300. We have held the proportion of variance explained by the SNPs 

constant, while increasing the noise due to sampling error (as we are using estimated 

expression effects from 300 SNPs rather than 50).

When there is low LD and directional pleiotropy (Table 4), then the MR-Egger approach has 

slightly higher power than the LDA MR-Egger test to detect an association when J=50. If 

J=300, there is a decrease in power compared to when J=50 for both of these methods 

regardless of the presence of a direct effect. At J=300, the LDA MR-Egger has slightly lower 

power than the MR-Egger. When the SNPs explain 50% of the variation in M, both methods 

have power greater than 80% regardless of the effect of M on Y (Table 4). We did not report 

the power of the MR or LDA MR, as they did not have proper type I error when there is 

directional pleiotropy (Figure 1 and Supplement Figure 1).

Finally, we examine the power when there is strong LD amongst the SNPs. We do not assess 

the MR or MR-Egger for this scenario as they do not have correct type I error for correlated 

SNPs. When J=50, and there is no direct effect, the LDA MR has more power than the LDA 

MR-Egger, though the difference in power is less pronounced when hE
2 = 0.5 and M has a 

strong effect on Y. When J=300, the two methods have comparable power (Table 4), with the 

LDA MR-Egger having slightly less power than the LDA MR. When there is a direct effect, 

the LDA MR-Egger has approximately equal power as when there is no direct effect.

When J=50, hE
2 = 0.5, and there is a small mediated effect, then LDA MR-Egger regression 

has more power when there is strong LD versus low LD (power of 0.914 versus 0.784). 

When J=300, there is a smaller drop in power for small LD to strong LD, with the LDA MR-

Egger power going from 0.869 to 0.840. The LDA MR approach has equal power regardless 

of whether the SNPs are strongly correlated vs weakly correlated.
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The results for the non-infinitesimal simulations are provided in Supplementary Figures 2–5. 

For the most part, these results mirror what was observed in the standard T1E analysis. The 

only difference was when J=50 and there was little LD (Supplement Figure 2). When there 

is a variable direct effect and the SNPs explain an adequate amount of the variation in gene 

expression, we see all four approaches are conservative. In this case, where a small number 

of SNPs have relatively large effects on expression, the residual errors in the regression of 

GWAS effects on eQTL weights may be increased, which in turn will deflate the test 

statistics.

When the InSIDE conditions are violated, we see that regardless of if the direct effect are 

near-constant or variable around 0 we have massively inflated T1E (Figure 3 and variable 

direct effect Supplement Figure 6). The results for when J=300 are given in the supplement 

and are similar (Supplement Figures 7 and 8). This inflated T1E was expected given the 

violation of the InSIDE condition. This violation could happen when the true disease SNPs 

are in LD with SNPs in the model but are not included in the model (colocalization). This 

could also potentially happen if the SNPs influence a third trait that then goes on to affect 

the outcome and is correlated with the mediator.

We next examine the bias of our estimates (Figure 4). We here show the results when there is 

strong LD (Figure 4). The results for low are in LD Supplement Figure 9. In Figure 4, the 

first two rows show the results when J=50, and the next two rows when J=300. The first 

column shows when there is no direct effect, the second column when there is a variable 

direct effect, and the third column when there is directional pleiotropy. The first and third 

row are when there is no effect of the mediator on the outcome (γ = 0) and the second and 

fourth row show when there is a large effect (γ ≠ 0). Here we have fixed βE and θ effects for 

all simulations.

As expected based on the section on bias of estimates sections, when γ = 0 and θ = 0, all of 

the estimates are unbiased. When there is an effect on the outcome and no direct effect, we 

see that the non LDA aware approaches converge faster to the truth than the LD aware 

methods. While the non LDA converge faster, recall that they misspecify the variance and 

lead to improper inference. We also see attenuation bias when γ ≠ 0, with estimates 

improving as the SNPs become better instruments. The attenuation bias is larger for J=300 

relative to J=50, for the same reason that we saw a decrease in power from J=50 to J=300: a 

decrease in the signal to noise ratio. When there is a variable direct effect, all of the 

approaches are biased (second column). Our empirical bias result depends on the particular 

values of βE and θ. As described in the methods (“Bias”), all of the estimates for the 

mediated effect of gene expression include a weighted covariance between βE and θ. Even if 

the average across all genes for this covariance is zero, for any particular gene it is non-zero, 

and can be large. If the βE and θ for each gene can be thought of as independent draws from 

their respective distributions, then the average absolute magnitude of the bias term decreases 

from J=50 to J=300. This is why we see smaller bias when J=300. Finally, when there is 

directional pleiotropy, only the LDA MR-Egger is unbiased when γ = 0 or J=50. When 

J=300 and γ ≠ 0, we see the attenuation bias in the LDA-MR Egger, with it biased 

downward toward the null. We saw little difference between the LDA methods based on 
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adding a regularization constant of 0.1 to the diagonal or not of the LD matrix (Supplement 

Figure 10–11).

Application to Breast Cancer GWAS Summary Data

Of the 683 genes tested, 79 were called significant (p< 7.32*10−5) by at least one approach 

(TWAS, LDA MR or LDA MR-Egger, Supplementary Tables). Comparing the TWAS vs the 

LDA MR-Egger (Figure 5A), there were 12 genes that were significant by the TWAS but not 

by LDA MR-Egger, 26 genes that were by LDA MR-Egger and not TWAS, and 20 that were 

called by both. With the LDA MR and the LDA MR-Egger, there was much more agreement 

due to the same weight matrix being used, but still the LDA MR called 8 genes as significant 

that the LDA-MR Egger did not (Figure 5B). Thirty-eight gene transcripts were called 

significant by both the LDA-MR and the LDA-MR Egger methods (Supplement Tables 1 

and 3). There were 19 genes called significant by all three approaches. A detailed list of 

which gene transcripts were found significant by which method is provided in 

Supplementary Tables 2 through 8. Examining the spearman correlation between the p-

values, LDA MR and LDA MR–Egger had an r2 of 0.45, LDA MR and TWAS of .51, and 

LDA MR-Egger and TWAS of 0.31. The kappa statistic for calling a gene transcript 

significant between LDA MR and LDA MR-Egger was 0.63, between LDA MR and TWAS 

was 0.55, and between LDA MR-Egger and TWAS was 0.48. We note that although the 

TWAS and LDA MR statistics are equivalent when the GWAS effect estimates have constant 

variance (see methods), in practice the GWAS effect estimates will differ across SNPs (e.g. 

due to sample size differences), leading to the differences in test statistics we see here. The 

Pearson correlation squared between TWAS and LDA MR test-statistics was 0.72 

(Supplement Figure 12).

A gene that we will highlight that was called significant by the TWAS was SET Domain 

Containing 9 (SETD9), with a p-value of 2.47e-23 at cytoband 5q11.2. The p-value for this 

gene transcript for the LDA MR and the LDA MR-Egger was 2.97e-09 and 0.41 

respectively. This is potentially a TWAS and LDA-MR false-positive as the LDA MR-Egger 

was not associated with gene. A fine mapping analysis of this locus found four functional 

candidate SNPs in a sample of approximately 100K women of European descent [Glubb, et 

al. 2015]. These four candidate functional SNPs were associated with an increase in activity 

of MAP3K1 (Mitogen-Activated Protein Kinase 1), another gene at this locus. SETD9 was 

ruled as not the gene of interest as it had no association with these four candidate SNPs. 

MAP3K1 is located 94 kbp from SETD9. (MAP3K1 did not pass our cis-heritable tissue 

threshold and was not included in the analysis.)

Discussion

In this work we connect TWAS with Mendelian Randomization (MR) and examine the 

performance of the LD aware MR-Egger regression in the context of causal gene expression 

identification. In contrast to TWAS that mainly focused on novel risk region identification, 

here we investigate causal gene identification at a given risk region, a more difficult 

problem; for example, traditional TWAS does not aim to disentangle between two genes that 

show significant associations at the same risk region (e.g., due to LD-tagging between SNPs 
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in the expression prediction models for the two genes). We show that the standard TWAS 

method is a particular case of MR. We investigate a variant of MR that allows for LD (LD 

aware MR-Egger) that can account for LD and direct effects under the scenario when the 

variability in direct effects across SNPs is small and the InSIDE condition holds. The LDA 

MR, the summary MR and the MR-Egger are not proper estimates under these scenarios as 

they either do not account for: the direct effect (LDA MR, MR) or the correlation between 

SNPs (MR and MR-Egger). For scenarios where the LDA MR is a valid test, the LDA MR-

Egger has slightly lower power in our simulations. We also provide a one-to-one relationship 

between TWAS and the traditional LDA-MR when the standard errors of the marginal 

GWAS effects are all equal. In our real data application, the three approaches (TWAS, LDA 

MR and LDA MR-Egger) called different genes significant, with the LDA MR-Egger 

potentially correctly calling some results as null that the TWAS did not. While we focused 

on the case of gene expression data, the LDA MR-Egger can be extended to an arbitrary 

mediator when the instruments are correlated.

The majority of our simulations assumed an “infinitesimal” genetic architecture for both the 

gene expression and outcome phenotypes. Departures from this model—for example, if gene 

expression is causally influenced by only one or a small proportion of local SNPs not 

included in the model—can affect the performance of the tests. We saw this in our 

simulations where the InSIDE condition was violated. Future work could consider the 

impact of local genetic architecture on these tests. We mainly focused on the case where 

there may be pleiotropic direct effects on the outcome, but these are not systematically 

related to the SNPs’ effects on the mediator. This is reflected in our simulations when we 

draw βE and θ independently. If there is a systematic relationship between βE and θ, then 

none of the methods we have discussed here will provide unbiased estimates of γ or valid 

tests of γ = 0 (Figure 3). There could be a systematic relationship between βE and θ even 

when γ = 0 if, for example, the SNPs influence a third (unobserved) trait, which in turn 

influences both the mediator and outcome, or if there is a confounder of the G-Y 
relationship. Of particular concern, the InSIDE condition could be violated as a result of 

colocaliztion, if the analyzed eQTL SNPs are in LD with an unmeasured (or unanalyzed) 

disease SNP. As many TWAS approaches select a subset of SNPs at a locus when building a 

genetic instrument for gene expression, it is possible that the SNPs included in a TWAS 

analysis do not include nearby disease SNPs. One method that might ameliorate this 

problem would be to use a model for gene expression prediction that does not involve SNP 

selection, such as ridge regression, and then apply LDA MR-Egger. Another would be to 

condition the TWAS test statistic on individual SNPs that are associated with outcome but 

not included in the expression prediction model [Gusev, et al. 2018; Yang, et al. 2012]. How 

well these methods can control inflated T1E due to colocalization requires further 

investigation. Evaluating the causal effect of the mediator on outcome when the instrument 

and direct effects are systematically related may not be possible without additional 

information on the mediator-outcome relationship: large samples with data on genetic 

factors, the mediator, outcome and possible confounders will likely be needed.

In practice, we note that meaningful biological interpretation of the magnitude of γ may be 

difficult, due to QC and pre-processing (scaling) of the data. (The sign of γ, however, may 
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contain useful information regarding the directionality of expression effects on disease.) We 

are also faced with the issue of attenuation bias, as we have estimates of the true eQTL 

parameters. Despite this, the LDA MR-Egger is still a valid test for the effect of the gene on 

outcome if the required assumptions are met. To reiterate these assumptions: they require 

that the variability in the direct effect of the SNPs on disease is relatively small and that the 

mechanism that the direct effect acts through is independent of the eQTL effect (InSIDE 

condition). The LDA MR-Egger can still however help to highlight a region of interest. 

Practitioners should follow up any analyses with a deep literature search paired with 

examining functional information such as pathways, enhancers, and other tissue expression. 

Whereas traditional epidemiological MR studies need to be certain of the causal pathways, 

the goal of these methods is to identify target genes whose expression levels are likely to 

influence disease risk. These genes represent candidates for functional experiments in model 

systems to investigate the effects of perturbing gene expression.

In summary, we have examined the performance of various summary statistics approaches 

and how they compare to the LDA MR-Egger. The LDA MR-Egger approach can be utilized 

only under the following situations: 1) No Direct Effect, 2) There is limited variability in 

direct effects of the SNPs on the outcome and this effect is independent of the eQTL effect. 

If we are not in one of those scenarios, the LDA MR-Egger test for the gene expression’s 

effect on outcome will not be valid—although neither will any of the other tests we 

considered. This work provides guidance on the interpretation of TWAS tests and suggests 

that LDA MR-Egger regression may be a useful sensitivity analysis in situations where false 

positives due to colocalization are a concern.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Type I error when J=50.
Each bar represents results over 5×104 simulations. Evaluated at α = 0.05. First panel 

represent when low LD (plots with A). Second panel represents when strong LD (plots with 

B). From left to right correspond to: no direct effect, variable direct effects with mean 0 

across SNPs, and direct effects with mean >0 across SNPs and small variability (directional 

pleiotropy). When there is a direct effect, the SNPs explain 1% of the variation in the 

outcome (hG Y
2 = .01).
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Figure 2: Power when little to no LD and J=50, 300.
Power results when there is little to no LD and no direct effect. Each bar represents results 

over 5×104 simulations. Evaluated at α = 0.05. First row represents J=50 and second row 

when J=300. From left to right: when γ2 = 0.005 and γ2 = 0.01.

Barfield et al. Page 23

Genet Epidemiol. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Type I error when J=50, InSIDE condition violated, and there is directional pleiotropy.
Each bar represents results over 5×104 simulations. Evaluated at α = 0.05. First panel 

represent when low LD (plots with A). Second panel represents when strong LD (plots with 

B). From left to right correspond to: correlation between θj and βE,j is 0.125, 0.5, or 0.9.
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Figure 4: Bias when strong LD for J=50, 300.
Bias plots for when there is strong LD in the SNP set. First row corresponds to J=50, γ = 0 

(plots with A). Second panel (plots with B) when J = 50 and γ2 = 0.01. Third panel (plots 

with C) when J = 300 and γ = 0. Final panel (plots with D) J = 300 and γ2 = 0.01. From left 

to right: no direct effect, variable direct effects with mean 0 across SNPs, and directional 

pleiotropy. When there is a direct effect, the SNPs explain 1% of the variation in the 

outcome (hG Y
2 = .01).
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Figure 5: Comparing −log 10 p-values.
Shows for 683 genes between LDA MR Egger and TWAS (A), LDA MR Egger and LDA 

MR (B), and LDA MR and TWAS (C). Red line is the Bonferroni cutoff of -log10(.05/683).
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Table 1:
Commonly used approaches for testing using summary statistics.

Details four common Summary Mendelian Randomization approaches and the TWAS for testing for an 

association between gene expression and outcome through GWAS (J is the number of SNPs in the loci).

Method Adjusts for Direct Effect Accounts for LD Distribution

TWAS No Yes ZTWAS~N(0,1)

MR No No ZMR~t(df = J − 1)

MR-Egger Yes No ZMRE~t(df = J − 2)

LDA MR No Yes ZLDMR~t(df = J − 1)

LDA MR-Egger Yes Yes ZLDMRE~t(df = J − 2)
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Table 2:
Simulation parameters that were modified.

Parameters that were varied for all simulations performed. A description of the parameter and potential values 

could be taken are given. All combinations of parameters were examined.

Parameter Definition Values taken

he
2 Proportion of variability in E explained by G 0.01, 0.20, 0.50

hE Y
2 Proportion of Variability in Y explained by E 0, 0.005, 0.01

hG Y
2 Proportion of Variability in Y explained by G 0, 0.005, 0.01

N Sample Size of GWAS 5000

NE Sample Size of EQTL 1000

ρ Correlation between SNPs. AR structure 0.125, 0.9

J Number of SNPs in the Loci 50,300

τ Strength of Pleiotropic Effects 0,10

L Cholesky Decomposition of Σ Function of ρ
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Table 3:
Procedure for generating simulation study.

Gives the steps in order for generating the type I error and power simulations detailed in the paper and how the 

parameters were generated.

Step Procedure Mathematically

1 Generate true eQTL βE NJ 0, IJ

2 Set the proportion of variability in expression due to SNPs

σE =
he
2

βE
TΣβE

3 Rescale the eQTL effects βE = σEβE

4 Set Expression to outcome Effect γ = hE Y
2

5 Generate potential Direct Effect θ = e + τ; e~NJ(0, IJ)

6 Set the proportion of variability in outcome due directly to 
SNPs

σ =
hG Y
2

θTΣθ

7 Rescale the Direct Effects θ = σ * θ

8 Generate the GWAS effects βG = θ + γβE

9 Generate Observed eQTL Values

βE* ΣβE + LTϵE;   ϵE NJ 0,  
1 − hE

2

NE
IJ

10 Generate Observed GWAS values

βG* ΣβG + LTϵG;   ϵG NJ 0, IJ  
1 − hE

2 * hE Y
2 − hG Y

2

N
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Table 4:
Power results from simulation study.

Details the power results at an α level of 0.05 under varying levels of LD, number of SNPs in the loci, and 

presence of a direct effect. TWAS not shown as is equivalent to the LDA MR under are simulation procedure.

LD Number of SNPS % Variation E 
explained by SNPs

Method No Direct effect Directional Pleiotropy

Strength of Mediated 
Effect

Small Effect Large Effect Small Effect Large Effect

MR 0.058 0.063 ---- ----

LDA MR 0.054 0.058 ---- ----

0.01 MR-Egger 0.057 0.062 0.059 0.063

LDA MR -Egger 0.054 0.059 0.055 0.059

MR 0.524 0.804 ---- ----

LDA MR 0.510 0.797 ---- ----

J=50 0.2 MR-Egger 0.514 0.795 0.512 0.795

LDA MR -Egger 0.499 0.787 0.498 0.788

MR 0.922 0.997 ---- ----

LDA MR 0.921 0.997 ---- ----

0.5 MR-Egger 0.915 0.997 0.917 0.997

Small LD LDA MR -Egger 0.914 0.997 0.915 0.997

MR 0.054 0.057 ---- ----

LDA MR 0.051 0.053 ---- ----

0.01 MR-Egger 0.054 0.057 0.056 0.056

LDA MR -Egger 0.050 0.052 0.052 0.051

MR 0.339 0.576 ---- ----

LDA MR 0.321 0.560 ---- ----

J=300 0.2 MR-Egger 0.338 0.573 0.341 0.581

LDA MR -Egger 0.321 0.557 0.325 0.562

MR 0.877 0.992 ---- ----

LDA MR 0.870 0.992 ---- ----

0.5 MR-Egger 0.875 0.992 0.875 0.992

LDA MR -Egger 0.869 0.991 0.869 0.992

0.01 LDA MR 0.054 0.059 ---- ----

LDA MR -Egger 0.052 0.055 0.053 0.055

J=50 0.2 LDA MR 0.513 0.798 ---- ----

LDA MR -Egger 0.389 0.629 0.389 0.637

0.5 LDA MR 0.919 0.998 ---- ----

Large LD LDA MR -Egger 0.784 0.943 0.788 0.941

0.01 LDA MR 0.049 0.049 ---- ----

LDA MR -Egger 0.050 0.049 0.051 0.051

J=300 0.2 LDA MR 0.318 0.560 ---- ----

LDA MR -Egger 0.294 0.523 0.300 0.524

0.5 LDA MR 0.869 0.992 ---- ----
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LD Number of SNPS % Variation E 
explained by SNPs

Method No Direct effect Directional Pleiotropy

Strength of Mediated 
Effect

Small Effect Large Effect Small Effect Large Effect

LDA MR -Egger 0.840 0.985 0.842 0.986
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