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Abstract 

Previous genome-wide association studies (GWAS) of hematological traits have identified over 

10,000 distinct trait-specific risk loci. However, at these loci, the underlying causal mechanisms 

remain incompletely characterized. To elucidate novel biology and better understand causal 

mechanisms at known loci, we performed a transcriptome-wide association study (TWAS) of 29 

hematological traits in 399,835 UK Biobank (UKB) participants of European ancestry using 

gene expression prediction models trained from whole blood RNA-seq data in 922 individuals. 

We discovered 557 gene-trait associations for hematological traits distinct from previously 

reported GWAS variants in European populations. Among the 557 associations, 301 were 

available for replication in a cohort of 141,286 participants of European ancestry from the 

Million Veteran Program (MVP). Of these 301 associations, 108 replicated at a strict Bonferroni 

adjusted threshold (𝛼 = 0.05/301). Using our TWAS results, we systematically assigned 4,261 

out of 16,900 previously identified hematological trait GWAS variants to putative target genes. 

Compared to coloc, our TWAS results show reduced specificity and increased sensitivity in 

external datasets to assign variants to target genes.  
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Introduction.  

 The study of blood cells in humans is well motivated by the role of blood cells as both 

facilitators of physiological processes and endophenotypes for complex diseases. Blood cells 

facilitate key physiological processes in human health such as immunity, oxygen transport, and 

clotting. Additionally, measures of blood cells in humans are endophenotypes for complex 

diseases including asthma, several autoimmune conditions, and cardiovascular disease. 

Thousands of genetic loci associated with blood cell traits have been previously discovered in 

large genome-wide association studies (GWASs) in both European cohorts and multi-population 

studies.(1–4) 

While GWAS studies provide general insights into the genetic architecture of blood cell 

traits, transcriptome-wide association studies (TWASs) are an alternative study design to both 

identify new genetic loci for complex traits and prioritize potential causal genes at known 

loci.(5–8) A TWAS tests the association between a phenotype of interest and imputed gene 

expression from genotype-based prediction models trained in a reference dataset. TWAS studies 

can have increased statistical power to discover trait-associated genetic loci compared to single 

variant association tests when a trait association is driven by multiple variants mediated by 

expression of a gene or genes. TWAS can gain power by aggregating these multiple mediated 

single variant signals into a combined test(9). Additionally, TWAS results can shed light on the 

functional mechanisms underlying variant-trait associations by linking variants to target genes 

through the gene expression prediction models. Designing appropriate functional experiments to 

interrogate biological mechanisms or to identify potential drug targets necessitates accurately 

assigning GWAS variants to target genes. Often, variants are linked to target genes using 

distance based approaches, which can lead to inaccurate assignments.(10,11) Colocalization 
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based methods evaluate the evidence that a GWAS variant coincides with an eQTL signal for a 

gene in a relevant cell type and if these signals are likely driven by the same biological process 

or the same set of variants. If there is evidence of colocalization, these methods can be used to 

assign the GWAS variant to a target gene via the eQTL signal. While useful, colocalization 

methods may be unreliable in situations where there are multiple variants which are associated 

both with a complex trait in GWAS and linked to the same target gene but with low or moderate 

effect size. By explicitly linking variants to target genes by including them in gene expression 

prediction models, TWAS results can provide similar target-gene suggestions for GWAS 

associated variants.  

In this study, we conducted a large TWAS of 29 hematological traits by studying 399,835 

participants of European ancestry from the UKB to discover novel loci and assign known GWAS 

variants to potential target genes (Figure 1)(12). First, we trained gene expression prediction 

models using a reference dataset of 922 participants of European ancestry from the Depression 

Genes and Networks (DGN) cohort with both genotype and RNA-seq data from whole 

blood(13). Second, we applied the gene expression prediction models trained in DGN to our 

discovery UKB participants (n=399,835) to obtain predicted gene expression levels and 

performed association testing between predicted gene expression values and blood cell 

phenotypes. Third, we attempted to replicate associations identified in UKB in 141,286 

European ancestry participants from the Million Veteran Program (MVP) study.(14) Fourth, we 

performed follow-up analyses including conditional association tests on known GWAS variants, 

fine-mapping of TWAS loci, and pathway analysis in order to interpret TWAS loci. Finally, we 

systematically assigned the 16,900 conditionally distinct variant-trait associations identified by 

Vuckovic et al. to target genes and compared our TWAS-based assignments to those from coloc, 
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a commonly used eQTL colocalization method (Figure 2). By conducting a TWAS with 

thorough secondary analyses and systematic variant-to-gene assignments in UKB Europeans, our 

study reveals novel biology and increases functional understanding of genetic loci associated 

with blood cell traits. We compare the results of our study to a recent GWAS of blood cell traits 

in UKB Europeans to understand the advantages of TWAS compared to single-variant 

analyses.(3) 

 

Results. 

Marginal TWAS Results. 

Using an elastic net-based pipeline, we trained gene expression prediction models using imputed 

genotypes and whole blood RNA-seq data from 922 European ancestry participants from the 

DGN cohort(13). In total, we trained prediction models for 12,989 genes, 10,004 of which 

passed our quality control filter (model R2 > 0.05 and >1 variant selected in model) 

(Supplementary Figure S1).  

 We conducted a TWAS in 399,835 participants of European ancestry from the UKB for 

29 blood cell phenotypes: 11 white blood cell indices, 4 platelet indices, and 14 red blood cell 

indices (see Supplemental Table S1). 11,759 gene-trait associations were transcriptome-wide 

significant at the Bonferroni adjusted threshold of 1.72 ×10
-7

. The 11,759 associations were 

grouped into 4,835 trait-specific TWAS loci (see Methods) with the most significant gene at 

each TWAS locus assigned as the sentinel TWAS gene. This procedure resulted in 1,792 unique 

sentinel genes. Among these 1,792 sentinel genes, 1,112 were sentinel genes for more than one 

trait (see Supplemental Figure S2). Of the 4,835 TWAS loci, 2,375 (49.1%) had multiple TWAS 

significant genes. We examined the utility of TWAS conditional analysis for fine-mapping loci 
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with multiple TWAS significant genes and highlighted one such TWAS loci near the 

erythropoietin gene, EPO. (Supplemental Results).  

 We generated credible sets at all TWAS loci using FINEMAP (see Methods for 

details).(15) 8,928 out of 11,759 (76%) marginal TWAS associations were included in the 

FINEMAP credible sets for their trait-specific loci. The average number of genes in each 

FINEMAP credible set was 3.97 (SD = 2.3) and the median was 4 (see Supplemental Table S2). 

In 297 (6.1%) trait specific loci, the sentinel TWAS gene was not included in the credible set.  

 Next, to explore potential biological pathways identified through our TWAS, we 

performed pathway analysis with clusterProfiler on genes in the FINEMAP credible sets for each 

phenotype to test for enrichment for gene ontology (GO) terms (see Methods). 13 out of the 29 

gene sets were enriched for at least one GO term at FDR=0.05 when compared to the set of all 

genes that passed QC for their gene expression prediction model (see Supplemental Table S3). 

Several gene sets were enriched for biologically plausible GO terms: immune response was 

enriched in the lymphocyte count gene set, erythrocyte development was enriched in the red 

blood cell distribution width gene set, and platelet degranulation was enriched in the platelet 

count gene set (Supplemental Table S3). These results suggest that TWAS can identify 

biologically plausible genes associated with complex hematological traits.  

In order to replicate significant results from our marginal TWAS analysis, we predicted 

gene expression values in 141,286 European ancestry participants from MVP using models 

trained in DGN (see Methods).(14) For the replication analysis, 15 out of the 29 UKB analyzed 

blood cell traits were available in MVP. 9,492 out of the 10,004 (94.8%) gene expression 

prediction models were comprised of variants that overlapped completely with variants available 

in MVP. Replication was thus attempted in MVP for 5,993 gene-trait associations with fully 
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matching phenotype and gene expression prediction model variants. Among the attempted 5,993 

gene-trait associations marginally significant in UKB (marginal in contrast to conditional on 

nearby GWAS variants), 2,357 (39.3%) replicated in MVP at the Bonferroni corrected threshold 

(𝛼 = 8.34 ×10
-6

) with the same direction of effect (Supplemental Figure S3).  

 

Conditional Analyses Adjusting for Nearby GWAS Variants.  

We then used conditional analysis to determine which of the 11,759 gene-trait associations in 

UKB represent novel findings beyond a recently published GWAS in UKB Europeans (see 

Methods for details)(3). Of the 11,759 marginal gene-trait associations, 557 were conditionally 

significant at the Bonferroni corrected threshold (𝛼 = 0.05/11,759 = 4.25×10
-6

, Figure 3). These 

557 associations represent 395 distinct genes in 463 trait-specific TWAS loci; 276 genes were 

conditionally significant for one trait, and 119 for multiple traits (Supplemental Figure S4). Of 

the 557 conditionally significant associations, 256 associations could not be replicated in MVP. 

First, 222 associations did not have matching phenotypes available in MVP. An additional 34 

associations did not have complete matching in MVP for variants in the TWAS gene expression 

prediction model. Thus, we tested 301 genes for replication in MVP. 108 associations (35.9%) 

replicate at a Bonferroni adjusted threshold (0.05/301 = 1.66×10
-4

) with matching direction of 

effect (Supplemental Figure S5).  

Below, we discuss two subsets of our TWAS conditional analysis results which 

demonstrate advantages of TWAS over single-variant analyses in UKB and may reveal novel 

blood cell biology. First, 9 of the 557 conditionally significant gene-trait associations were not 

within 1Mb of any distinct GWAS variants for any blood cell trait from Vuckovic et al (Table 1). 

These 9 TWAS associations are therefore considered loci discovered only by TWAS in UKB 
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Europeans. The RBCK1, IRAK1BP1, SNHG5 and BNIP3 regions were recently reported as 

associated with their respective traits in large multi-population GWAS meta-analyses,(2,4) 

validating these TWAS only associations from UKB Europeans. Second, we identified 92 

conditionally distinct associations grouped into 70 TWAS loci with no distinct GWAS variants 

for the corresponding phenotype category within 1Mb of the gene. This second subset supports 

that the previously reported GWAS association at the locus is extended to a new class of blood 

phenotypes. For example, this second subset might include the extension of a locus already 

associated with red blood cell related traits to platelet indices. 

 

TWAS Discovers Loci Missed by UKB European GWAS 

We identified 9 gene-trait associations that had no distinct GWAS variants within ±1Mb of the 

locus for any blood cell trait in Vuckovic et al. Among the 9 associations, 3 were unable to be 

assessed for replication in MVP due to phenotype unavailability and 1 was unable to be assessed 

due to missing variants in the gene expression prediction model. 3 out of the remaining 5 

associations replicated in MVP at a nominal significance threshold (𝛼 = 0.05) with the same 

direction of effect as in UKB, namely, interleukin 1 receptor associated kinase 1 binding protein 

1 (IRAK1BP1) for mean platelet volume (beta = 0.025, p = 3.4×10
-6

), and SNHG5 for neutrophil 

count (beta = -0.0146, p = 0.0061) and white blood cell count (beta = -0.0134, p = 0.013). 

Below, we highlight the biological implications of the IRAK1BP1 association with mean platelet 

volume. These results represent gene trait associations identified by TWAS that were not 

discovered by single variant analyses in UKB Europeans.(3) 
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IRAK1BP1 (chr6:79,577,189 - 79,656,157). In our TWAS, IRAK1BP1 demonstrated evidence of 

association with mean platelet volume despite no conditionally distinct GWAS variants within 

1Mb of the gene. The 1Mb region around IRAK1BP1 contains several genome-wide significant 

variants in Vuckovic et al., with lead variant chr6:79617522_T_C (p=6.4×10
-13 

, all variants in 

this manuscript are formatted with the following fields: chromosome number, hg19 position, 

reference allele, alternate allele). (Figure 4a). However, this region was grouped into a mean 

platelet volume locus over 8Mb away via individual-level conditional analysis (sentinel variant 

chr6:71326034_G_A). Importantly, in the Vuckovic et al. results, no target gene was identified 

based on proximity for chr6:71326034_G_A via Ensembl Variant Effect Predictor (VEP)(16) 

limiting the biological interpretation of the findings at the GWAS locus. Our TWAS prediction 

model for IRAK1BP1 is primarily driven by variants in high LD with chr6:79617522; of the top 

15 variants in terms of absolute value of the TWAS weights, 13/15 are in high LD (r2 > 0.8 in 

TOP-LD Europeans) with chr6:79617522_T_C (Figure 4b). 

After conditioning on all distinct platelet-related variants on chromosome 6, including 

chr6:71326034_G_A, the marginal TWAS association for IRAK1BP1 and mean platelet volume 

(beta =0.030, p = 9.47×10
-12

) was not attenuated (beta = 0.033, p = 5.33×10
-14

), demonstrating 

that the IRAK1BP1 TWAS signal is distinct from previously reported GWAS variants. 

Furthermore, the association between IRAK1BP1 and mean platelet volume replicated in MVP 

Europeans at the Bonferroni adjusted threshold (p = 3.4×10
-6

). Thus, with TWAS, we combined 

several trait-associated variants at the IRAK1BP1 locus into a stronger signal which 

demonstrated statistical independence from the previously reported chr6:71326034_G_A signal 

and all other distinct platelet variants on chromosome 6. Additionally, these results link the 

variants to putative target genes via our gene expression prediction models. 
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Figure 4 shows that there is cell-type specific epigenetic evidence that supports our 

findings. IRAK1BP1 is a component of the IRAK1-dependent TNFRSF1A signaling pathway, 

which can activate NF-kappa-B and regulate cellular apoptosis and inflammation.(17) Variants 

in the gene expression prediction model for IRAK1BP1 in high LD with chr6:79617522_T_C 

overlapped with megakaryocyte ATACseq peaks from BLUEPRINT (Figure 4e).(18) 

Additionally, we observed via megakaryocyte pcHi-C data that these same variants in the 

IRAK1BP1 prediction model interact with the promoter region for the nearby gene, lebercilin 

LCA5 (LCA5) (Figure 4c). LCA5 plays roles in centrosomal functions in nonciliary cells.(19) 

While both IRAK1BP1 and LCA5 are expressed in megakaryocyte cells using expression data 

from BLUEPRINT, the expression level is higher for LCA5, suggesting a potential role for LCA5 

in platelet trait variability, despite not being captured by TWAS (Figure 4d). LCA5 is not present 

in the DGN reference panel, and thus unavailable to fit a prediction model, likely because of low 

expression in whole blood (median transcripts per million 0.018 in GTEx v8).(20) Integration of 

our TWAS results with expression and chromatin conformation data in platelet producing 

megakaryocyte cells revealed candidate genes at this genomic locus; it is possible that the 

variants in the IRAK1BP1 locus aggregated by the TWAS prediction model impact the 

expression of LCA5 through spatial proximity to the promoter region of the gene. The 

IRAK1BP1 locus shows the importance of full consideration of other potential target genes as 

well as complementary functional annotation resources in biological interpretation of a TWAS 

identified signal.  

 

TWAS Implicates Genes in Novel Phenotype Categories 
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To further understand the biological significance of our TWAS results, we partitioned the 

distinct GWAS variants for 29 traits from Vuckovic et al. into three phenotype categories: red 

blood cell, white blood cell, and platelet traits.(3) A phenotype category represents a group of 

biologically related phenotypes. Our TWAS conditional analysis identified 92 conditionally 

significant associations grouped into 70 TWAS loci with no distinct GWAS variants for the 

corresponding phenotype category within 1Mb of the gene. Our results support that the 

previously reported association at the locus is extended to a new class of correlated phenotypes. 

Of the 92 associations, 42 associations could not be replicated in MVP. First, 33 associations did 

not have matching phenotypes available in MVP. An additional 9 associations did not have 

complete matching in MVP for variants in the TWAS gene expression prediction model. Thus, 

we tested 50 genes for replication in MVP. 17 out of 50 are replicated at the Bonferroni adjusted 

threshold for the total number of conditionally significant associations (𝛼 = 0.05/557 = 8.98×10
-

5
). CD79B is highlighted as an example of the biological significance of these findings. 

 

CD79B (chr17:62,006,100 - 62,009,714). One such example is the 1Mb region surrounding B-

cell antigen receptor complex-associated protein beta chain (CD79B), which was associated with 

lymphocyte count (p = 9.81×10
-10

), hematocrit (p = 1.22×10
-9

), plateletcrit (p = 3.37×10
-9

), 

white blood cell count (p = 8.49×10
-9

), and hemoglobin percentage (p = 1.21×10
-7

) in our 

TWAS marginal analysis. Supporting the role of this gene in blood cell indices, an extremely 

rare mutation in CD79B, rs267606711, has been reported to cause agammaglobulinemia 6 

[MIM: 612692], an immunodeficiency characterized by profoundly low or absent serum 

antibodies and low or absent circulating B cells due to an early block of B-cell 

development(21,22). 
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In Vuckovic et al., the region surrounding CD79B contained several borderline genome-

wide significant variants for lymphocyte count, with lead variant 17:62008437_C_T (p = 

2.3×10
-9

). However, in their conditional analysis, the region was clumped into nearby 

lymphocyte count GWAS signals, namely 17:57929535_A_G (p = 1.16×10
-25

) with annotated 

target gene RNA, U6 small nuclear 450, pseudogene (RNU6-450P) and 17:65087308_G_C (p = 

4.34×10
-10

) with target gene helicase with zinc finger (HELZ) (with both genes assigned based 

on distance). After conditioning on the set of 186 white blood cell count distinct variants 

identified by GWAS conditional analysis on chromosome 17, including 17:57929535_A_G and 

17:65087308_G_C, CD79B continued to demonstrate evidence of association with lymphocyte 

count (p = 9.8×10
-10

) and white blood cell count (p = 8.5×10
-9

).  

Further, there were 6 distinct GWAS variants from individual level GWAS conditional 

analysis across both red blood cell and platelet traits within 1Mb of CD79B. To control for 

confounding due to correlated hematological traits, we further conditioned on the 6 distinct 

variants for red blood cell and platelet traits in addition to the set of 186 white blood cell distinct 

variants. The association with lymphocyte count remained nominally significant (p = 3.03×10
-4

) 

and the white blood cell count association was attenuated (p = 0.16). CD79B demonstrated some 

evidence of association with lymphocyte count in MVP Europeans as well (p = 1.1×10
-5

) with 

matching direction of association, despite not achieving the Bonferroni adjusted threshold (𝛼 = 

8.34×10
-6

). Our findings suggest the biologically plausible CD79B association with lymphocyte 

count was likely distinct from previously reported genetic loci in the neighborhood, supporting 

the increased power of TWAS above single variant TWAS.  

 

TWAS-based assignment of variants to target genes 
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In addition to identifying gene-trait associations, our study also aimed to assign blood cell trait 

associated variants to target genes via TWAS. Our TWAS results allowed us to assign putative 

target genes to 10,239 variant-trait associations across 10 hematological traits from Vuckovic et 

al. These 10,239 variant-trait associations had previously been analyzed in an eQTL 

colocalization analysis with coloc (see Methods). In order to explore the properties of our 

TWAS based assignments, we compared the TWAS assignments to those generated by coloc for 

the same set of GWAS variants. 

In their analyses, coloc identified 427 out of 10,239 associations (4.2%) that colocalized 

with at least one eQTL. (Figure 5a). We assigned the eGene(s) corresponding to these eQTLs as 

the coloc target gene(s). Our TWAS based approach assigned target genes to 1,738 variant-trait 

associations, a four-fold increase compared to coloc. Of the 269 associations assigned to at least 

one gene by both methods, 80% of the associations have at least one assigned gene in common, 

demonstrating that the two methods tend to assign variants to the same genes where they both 

assign a target gene. Of the 158 associations assigned to genes by coloc but not by our TWAS-

based approach, 13 were assigned to genes with no expression data in our DGN reference 

dataset, 23 were assigned to genes with poor model predictive performance (model R2 <= 0.05), 

51 variant-trait associations were not within +/- 1MB of any TWAS loci, 49 were only nearby 

TWAS loci with a non-significant sentinel gene, and 22 had low correlations between variant 

dosage for the lead GWAS variant and imputed TWAS gene expression (r2 < 0.2) (Supplemental 

Figure S6).  

 To illustrate one example where the two methods agree, Figure 6 highlights the 

concordant TWAS and coloc assignment of rs6062304 (chr20:62351539_A_T), a distinct variant 

for lymphocyte percentage, to Lck interacting transmembrane adaptor 1 (LIME1), a gene with 
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known involvement in T cell signaling.(23,24) In Vuckovic et al., rs6062304 was assigned via 

VEP annotation to zinc finger CCCH-type and G-patch domain containing (ZGPAT), which has 

no clear link to blood cells. Figure 6a shows Vuckovic et al. GWAS results overlaid with the 

marginal TWAS results for lymphocyte percentage. Six TWAS gene-trait associations are 

significant, and a subset of 3 genes are included in the FINEMAP 95% credible set: LIME1, 

ZGPAT, and regulator of telomere elongation helicase 1 (RTEL1). Figure 6a shows that LIME1 

predicted expression is highly correlated (r2 = 0.905) with rs6062304, while ZGPAT is 

moderately correlated (r2 = 0.556). coloc assigns LIME1 as an eGene because of the high LD (r2 

= 0.916) between rs6062304 and an eQTL for LIME1, rs6062497 (Figure 6b). Similarly, Figure 

6c demonstrates that variants with the largest weights in the LIME1 gene expression prediction 

model are in high LD with rs6062304. In contrast, Figure 6d reveals that variants in high LD 

with rs6062304 have smaller TWAS weights in the ZGPAT model, suggesting that the ZGPAT 

association with lymphocytes at this locus is not primarily due to rs6062304. While both LIME1 

and ZGPAT correlations pass the r2 cutoff for the TWAS-based gene assignment (r2 > 0.2), 

LIME1 predicted expression is much more correlated with rs6062304, and is the most likely 

target gene at this locus according to the TWAS based approach. This highlights the value of 

considering correlation of predicted gene expression with the lead GWAS variant in TWAS 

assignment of likely target genes, as done in our pipeline. Thus, using different approaches, 

TWAS-based and coloc-based variant-to-gene assignment methods assign rs6062304 to a 

biologically plausible target gene, improving upon distance-based approaches. 

 As reported above, the TWAS based approach assigned four times as many variants to 

target genes. Figure 5a shows that there are 1,469 variant-trait pairs which are assigned to a 

target gene via TWAS not assigned to a gene by coloc. One such example is the TWAS 
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assignment of rs1985157 to leucine rich repeat containing 25 (LRRC25) (chr19:18513594_T_C), 

a distinct variant for neutrophil count and neutrophil percentage. Neither VEP nor coloc assigned 

rs1985157 to a target gene. Our TWAS marginal analysis identified 4 significant genes for 

neutrophil count at this locus, LRRC25, elongation factor for RNA polymerase II (ELL), single 

stranded DNA binding protein 4 (SSBP4), and inositol-3-phosphate synthase 1 (ISYNA1) (Figure 

7a). However, only LRRC25 predicted gene expression values have a strong correlation with 

rs1985157 (r2 = 0.863). Two other TWAS-assigned genes are moderately correlated with 

rs1985157 (ELL r2 = 0.46) and (SSBP4 r2 = 0.47). Figure 7c shows that variants in the LRRC25 

prediction model that are in high LD with rs1985157 have the largest weights in absolute value. 

In contrast, Figure 7d shows that SSBP4 predicted expression is driven by variants in moderate 

LD with rs1985157. Several studies have suggested that LRRC25 plays a key role in innate 

immune response and autophagy.(25,26) Further, cell-type specific gene expression data from 

BLUEPRINT suggest that LRRC25 is specifically expressed in neutrophils.(18) Our results show 

that TWAS-based variant-to-gene assignment methods can identify biologically plausible target 

genes, even when coloc fails to do so. 

 

Annotating Target Genes Assigned by TWAS and coloc 

In order to understand the differences in the TWAS and coloc gene assignments and to examine 

whether the additional variants assigned to genes by TWAS over coloc have relevant epigenetic 

evidence to the phenotype of interest, we compared the gene assignments of TWAS and coloc 

using BLUEPRINT cell-type specific expression data and Open Targets V2G scores (see 

Methods for details).(27) While the presence of evidence from BLUEPRINT cell-type specific 

expression analyses or Open Targets scores does not prove that an assigned gene is the true 
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target gene, a similar preponderance of evidence in external datasets is often used in practice to 

select genes for functional validation experiments. Therefore, we are primarily interested in 

exploring the utility of TWAS and coloc to generate plausible hypotheses of target genes for 

GWAS variants.  

We found that the TWAS-based approach assigned GWAS variants to genes identified by 

external datasets at a slightly lower rate than the coloc assignments, but identified target genes 

for more than double the number of variants (see Figure 5b-c). Specifically, Figure 5c shows that 

84% of the TWAS-based variant-to-gene assignments are supported by Open Targets (OT Any 

genes), and 64% of genes assigned by TWAS are the most likely target gene as identified by 

Open Targets (OT Max gene). In comparison, 88% of the coloc assigned genes are supported by 

OT Any genes and 78% as the OT Max gene. On the other hand, Figure 5c shows that 294 

TWAS pairs are assigned to an OT Any gene and 226 pairs assigned to an OT Max gene, much 

larger number of supported assignments than the 85 and 76 coloc pairs, a 3.46 and 1.97 fold 

increase respectively. The proportion of variants assigned to cell-type specifically expressed 

genes in BLUEPRINT expression data is lower compared to the Open Targets assignments 

(Figure 5c). However, the TWAS-based approach matches 3.12-fold more variants to 

specifically expressed genes in trait-relevant cell types and 3.73-fold more genes to specifically 

expressed genes for any blood cell compared to coloc. Therefore, our results suggest that TWAS, 

compared to coloc, is less specific but more sensitive when assigning variants to target genes 

supported by external annotations.  

 Since not all traits were considered for the previous eQTL colocalization analysis in UKB 

Europeans, we applied our TWAS-based variant-to-gene assignment to all 29 hematological 

traits considered in our UKB TWAS. We successfully assigned 4,261 variant-trait associations to 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddac011/6524829 by Im

perial C
ollege London Library user on 14 February 2022



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

18 

1,842 distinct potentially causal genes with an average of 1.45 (SD = 0.81) genes assigned per 

variant-trait association (see Supplemental Table S4). Of the 4,261 associations, 746 (17.5%) 

were assigned to specifically expressed genes in trait-relevant cell types, and 1,982 (46.5%) were 

assigned to specifically expressed genes for any blood cell. Both rates were comparable to the 

performance of the TWAS variant-to-gene assignments in the phenotype restricted results above. 

For the 813 overlapping variant-to-gene assignments from the Open Targets datasets, the 

replication rates were similar to the phenotype restricted results for OT Any genes (78.2%), but 

the replication rate decreased for the OT Max gene (54.5%). 

 

Discussion. 

Our TWAS of blood cell traits in UKB Europeans identified loci missed by a GWAS in UKB 

Europeans and extended known loci to additional phenotype categories, even in well-studied 

hematological traits for which over 10,000 loci have been reported by previous GWAS 

studies(2,3). We identified 9 loci that were undiscovered by GWAS of UKB Europeans for blood 

cell traits. For example, the IRAK1BP1 locus was associated with mean platelet volume, and our 

secondary analyses suggest that both IRAK1BP1 and LCA5 may be plausible target genes for 

genetic variants at this locus. As noted above, 5 of the 9 loci were reported in large multi-

population or cross-cohort meta-analyses(2,4), but had not been previously reported in the UKB 

GWAS, supporting the validity of the additional TWAS findings. These results demonstrate 

advantages of TWAS over single-variant analyses for novel locus identification within the same 

cohort.  

Further, we extended 92 previously reported associations at genomic loci to a new class 

of correlated phenotypes. Due to the shared genetic architecture of blood cell traits which is 
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mediated through the differentiation of common progenitor cells, variants which impact one 

class of blood cell traits may have an effect on other hematological traits. For example, the 

CD79B locus demonstrated a robust association with lymphocyte count despite conditioning on 

previously identified white blood cell, red blood cell and platelet distinct variants at the locus. 

This robust association confirms previously reported biological roles for CD79B with 

lymphocyte function, and establishes relevant variant-level candidates for functional validation 

through the TWAS prediction model.(21,22) Our results suggest several insights into the genetic 

architecture of blood cell traits through TWAS loci discovery above single-variant studies and 

extension of known loci to new phenotypes.  

 We addressed challenges with interpreting TWAS loci at the scale of biobank-sized 

analyses through our adapted TWAS fine-mapping via FINEMAP.(28) To our knowledge, all 

TWAS fine-mapping methods and software are currently designed for summary-statistics based 

TWAS approaches, including the recently published FOCUS method, with limited functionality 

to input user generated TWAS statistics from individual level data such as those generated by 

our REGENIE-based approach.(29,30) To overcome this challenge, we substituted the variant-

level LD matrix for the predicted expression correlation matrix in our UKB sample in the 

FINEMAP software to generate credible sets of genes. Using fine-mapped sets of TWAS results, 

we conducted pathway analysis, and the identified gene sets were enriched for trait-relevant GO 

terms (Supplemental Table S3), highlighting the biological plausibility of our fine-mapped gene 

sets. One shortcoming of our approach is that we addressed correlation at the gene level via 

predicted expression values, and this substitution for TWAS fine-mapping may not be valid since 

FINEMAP was originally designed for GWAS fine-mapping. Our extension of FINEMAP is an 

ad-hoc solution to the problem of TWAS loci fine-mapping, which is more complex than 
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variant-level fine-mapping due to correlations at both the variant and gene levels.(30,31) In 

addition to previous research, future methodological research and software development should 

be done to address this challenge.(28,30,31) 

Additionally, we performed systematic variant-to-gene assignment for distinct 

hematological trait GWAS signals using a TWAS-based approach, and demonstrated that many 

of our assignments are supported by external datasets. While the use of external datasets such as 

Open Targets or BLUEPRINT does not prove that the TWAS or coloc gene are the true causal 

gene, a preponderance of evidence from tissue-specific external datasets suggest that a gene 

could be a good candidate for follow up with functional experiments. As identifying candidates 

for functional follow up is often one goal of large association studies, we believe that this in 

silico external replication metric is reasonable for our TWAS and colocalization comparisons.  

Our variant-to-gene assignment results support complementary roles of TWAS and 

colocalization approaches. The TWAS-based approach of assigning GWAS variants to target 

genes mapped more variants to target genes using biobank scale data compared to an eQTL 

colocalization approach. However, this increased number of variants assigned to target genes 

decreased sensitivity in external annotations. One possible explanation of this result is that in 

scenarios where eQTLs have not been identified in a target tissue of interest, likely due to small 

sample size for a given expression dataset, TWAS-based methods, which combine multiple 

potential eQTLs which may be in LD with a GWAS variant, are more likely to assign GWAS 

variants to target genes. To systematically assign GWAS variants to target genes, we propose 

first using colocalization to assign GWAS variants to target genes using available cell-type 

specific eQTL data relevant to the trait of interest, and then leveraging the additional 

assignments generated by TWAS for GWAS variants not assigned to a target gene.  
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There are still several future directions for the improvement of biobank-scale TWAS 

studies. First, increasing sample sizes in tissue specific expression datasets will allow future 

TWAS studies to train gene expression prediction models in cell/tissue types which are directly 

relevant to traits of interest. Already, several TWAS methods have been developed to leverage 

multiple tissues to train better gene expression prediction models.(7,8,32) For example, at the 

identified IRAK1BP1 locus, it would be useful to have larger megakaryocyte specific gene 

expression datasets available for TWAS model training; similar cell-type specific panels would 

be useful for other hematological indices and for complex trait analysis more generally. 

Additionally, the TWAS variant-to-gene assignment approach would benefit from larger 

expression datasets to train cell/tissue type specific gene expression prediction models to assess 

the correlation between predicted expression and a GWAS variant of interest across several 

relevant models. Such cell-type specific reference panels are becoming increasingly available, 

though not always in adequate sample sizes for TWAS and not always with publicly available 

individual level data.(33) Second, extending the variable selection procedure for prediction 

models past the 1Mb cis-region surrounding genes either via trans-eQTL datasets or by selecting 

variants which are highly likely to be in interesting epigenomic regions will improve TWAS 

models.(34,35)  

 In summary, we conducted a large-scale TWAS of well-studied hematological traits and 

identified loci undiscovered by GWAS in the same cohort. We showed that TWAS-based 

approaches for assigning variants to their target genes were comparable in specificity to co-

localization based approaches, but were able to assign many more variants (4.07 fold increase) to 

target genes. Our careful use of conditional analysis, TWAS-based fine-mapping, and TWAS-
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based variant-to-gene assignments in the context of blood cell traits will be broadly useful to the 

practice of TWAS for other complex traits.  

 

Materials and Methods. 

Included Cohorts.  

Depression Genes and Networks (DGN). The DGN study was designed to collect samples of 

individuals with and without major depressive disorder, ages 21-60, from a survey research panel 

broadly representative of the United States population.(13). Genotyping and RNA-sequencing 

procedures have been described previously.(13) For 922 European ancestry participants from the 

DGN study, we obtained both genotype data imputed to the TOPMed Freeze 8 reference panel 

and RNA-seq data.(36,37) Whole blood samples were from PAXgene tubes, which retain red 

blood cells unlike peripheral blood mononuclear cell.Therefore, we may be more likely to detect 

associations with blood cell traits in DGN versus peripheral blood mononuclear cell based 

datasets.  

 

Quality Control in DGN. For training gene expression prediction models, we included bi-allelic 

variants that are common and well-imputed (MAF > 0.05, Rsq > 0.8) in both DGN and in the 

UKB. In all, 5,652,397 variants were included, here forward referred to as QC variants. DGN 

whole-blood RNA-seq data for both coding and non-coding genes was obtained for 922 

European ancestry participants.(13) As described previously, quantified gene expression values 

were normalized using the hidden covariates with prior method (38), correcting for technical and 

biological factors, including blood cell-type frequencies and the time of the blood draw.(13)  
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UK Biobank (UKB) Europeans: UKB recruited 500,000 people aged between 40-69 years in 

2006-2010, establishing a prospective biobank study to understand risk factors for common 

diseases such as cancer, heart disease, stroke, diabetes, and dementia.(12) Participants are being 

followed-up through health records from the UK National Health Service. UKB has genotype 

data, imputed with UK10K as reference, on all enrolled participants, as well as extensive 

baseline questionnaires and physical measures and stored blood and urine samples. 

Hematological traits were assayed as previously described.(1) Genotyping on custom Axiom 

arrays, subsequent quality control, and imputation has been previously described.(12)  

 For our TWAS, we analyzed UKB participants of European ancestry to match the genetic 

ancestry of DGN participants used for model training. Participants were included in our analysis 

if identified as European through a combination of self-reported ethnicity and k-means clustering 

of genetic principal components (PCs) in order to minimize genomic inflation due to population 

stratification, and for consistency with previously published blood cell trait GWAS in UKB.(3) 

First, we calculated PCs and their loadings for all 488,377 genotyped UKB participants using LD 

pruned variants (pairwise r
2
 < 0.1) with MAF ≥0.01 and missing rate ≤0.015 in the UKB data 

set that overlapped with the participants in the 1000G Phase 3 v5 (1KG) reference panel.(12) 

Reference ancestries used included 504 European, 347 American, 661 African, 504 East Asian 

and 489 South Asian samples (overall 2504). We projected the 1KG reference panel dataset on 

the calculated PC loadings from UKB. We then used k-means clustering with 4 dimensions, 

defined by the first 4 PCs, to identify individuals that clustered with the majority of 1KG 

reference panels in each ancestry. We used self-reported ethnicity, in some circumstances, to 

adjust these groups. UKB participants defined as European ancestry include those that cluster 

with most 1KG Europeans by k-means clustering. We adjusted this group by removing those that 
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self-reported as Indian, Pakistani, Bangladeshi, any other Asian background, Black or Black 

British, Caribbean, African, Any other Black background, or Chinese (n=32). Additionally, we 

removed any individuals with self-reported mixed ancestry (n=402). A total of 451,305 

participants remained in the European ancestry group. Participants were also excluded based on 

factors likely to cause major perturbations in hematological indices including positive pregnancy 

status, drug treatments, cancer self-report, ICD9 and ICD10 disease codes (see Supplemental 

Text), and surgical procedures. Participants were included only if they had complete data for all 

covariates and phenotypes. In total, 399,835 samples were included in the analysis. 

 

Quality control in UKB. As mentioned previously, we included only bi-allelic and well-imputed 

common variants (Rsq > 0.8, MAF > 0.05) in UKB. All 29 blood cell phenotypes were adjusted 

for age, age
2
, top 10 genotype PCs, center, genotyping array, and sex. For white blood cell traits, 

phenotypes were log10(x + 1) transformed before regression. Residuals from these regression 

models were inverse normal transformed and serve as phenotypes.  

 

Million Veteran Program (MVP) Europeans 

The MVP is an observational cohort study and mega-biobank in the Department of Veteran 

Affairs healthcare system which began enrollment in 2011. As of Release 3, 318,725 individuals 

of European ancestry (as defined by HARE(39)) have available electronic health records (EHR), 

survey, and genotype data. After quality control largely following the guidelines established in 

Marees et al 2018, 308,778 individuals of European ancestry remained.(40)  
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Quality Control in MVP. Only a subset of 15 hematological traits out of the 29 analyzed in UKB 

were available for replication in MVP. For our replication study, participants were limited to 

those with available data among these 15 traits (n = 141,286). Phenotypes were adjusted for 

covariates following the same procedure as in UKB.  

 

Training of Gene Expression Prediction Models. We trained gene expression prediction 

models using an elastic net pipeline following the well-established PrediXcan methodology.(9) 

We set 𝛼 = 0.5 for all gene expression prediction models since the Elastic Net with 𝛼 = 0.5 has 

been previously demonstrated to be a robust choice for modeling gene expression compared to 

LASSO or Ridge Regression.(9,41) 

Our decision to use an in-house pipeline rather than the publicly available weights from 

PrediXcan was two-fold. First, we performed TOPMed freeze 8 based imputation, enhancing 

genome coverage and imputation quality compared to the reference panel underlying the 

PrediXcan weights, the 1000G Phase 1 v3 ShapeIt2 (no singletons) panel. Second, by training 

our own prediction models, we ensured that every variant present in the prediction models was 

available in our UKB dataset.  

For each gene, we included variants within a 1Mb window of the gene start and end 

positions and excluded variants in high pairwise LD (r
2
 > 0.9) with other variants in the window. 

We tuned the elastic net penalty parameters using 5 fold cross validation with the `glmnet` 

function in R. We obtained 12,898 elastic net models where more than one variant was included 

in the prediction model. Models with a single variant were excluded from our TWAS. This 

modeling decision was made in order to differentiate our TWAS from previous single-variant 

analyses of hematological traits. Single-variant prediction models could still provide useful 
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information linking a single-variant to a target gene, but are not considered here. We further 

excluded models with model R2 <= 0.05, leading to 10,004 models for subsequent analysis 

(Figure S1).  

 

Association Testing with REGENIE. Using the 10,004 models trained in DGN, we predicted 

gene expression values in UKB European ancestry participants. We then performed association 

testing between predicted gene expression and covariate-adjusted blood cell phenotypes with 

REGENIE.(42) We used an LD (linkage disequilibrium) pruned (plink --indep-pairwise 50 5 0.1) 

set of 174,957 variants with MAF > 0.01 in the genotype data available for UKB Europeans to fit 

the REGENIE null model accounting for cryptic relatedness. We analyze all 29 phenotypes 

simultaneously using the grouping option available in REGENIE and set the number of blocks to 

1,000. 

To control Type I error at 𝛼 = 0.05, we considered a TWAS association significant if p < 

0.05/(10,004 * 29) = 1.72*10
-7

. Note that this Bonferroni adjusted significance threshold is rather 

conservative due to correlations among the blood cell phenotypes and among predicted 

expressions of genes. Results from this TWAS association analysis are referred to throughout the 

manuscript as the marginal TWAS results.  

For each trait, we grouped multiple significant TWAS gene-trait associations within the 

same region into TWAS loci via the following procedure. First, we selected the most significant 

TWAS gene as the TWAS sentinel gene for the locus. Second, we assigned all genes within 1Mb 

of the gene as a member of the locus defined by the TWAS sentinel gene. Third, we repeated this 

process only considering genes not yet assigned to a TWAS locus. The procedure is complete 

when all TWAS significant genes for a given trait are assigned a locus.  
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Conditional Analysis. In order to assess which marginally significant TWAS gene-trait 

associations provide novel findings above and beyond the single variant discoveries in GWAS of 

blood cell traits in Europeans(3), we tested the association between predicted gene expression 

and phenotype while conditioning on reported blood cell trait GWAS variants. This methodology 

has been described in a previous TWAS of blood cell traits from our group.(28) We partitioned 

the distinct GWAS variants from Vuckovic et al. into three phenotype categories: red blood cell, 

white blood cell, and platelet traits.(3) We considered all distinct GWAS variants as determined 

by conditional analysis on individual level data, referred to as conditionally independent variants 

by Vuckovic et al. For a TWAS gene associated with one trait in the above categories, we 

conditioned on any distinct variant reported as associated with any trait within the corresponding 

phenotype category on the same chromosome.  

 

Replication Analysis in MVP. We conducted two replication analyses in MVP Europeans to 

follow up on our results from the UKB TWAS: one for the marginal TWAS results and a second 

restricted to only conditionally significant genes. In both analyses, our DGN trained gene 

expression prediction models were used to impute gene expression values in MVP Europeans. 

Association testing was performed via boltLMM.(43) The Bonferroni adjusted thresholds for 

replication were determined by the number of marginal or conditional associations in the UKB 

available for replication, respectively. 

 

TWAS fine-mapping via FINEMAP. We modified the FINEMAP software to compute 

credible sets of genes from our marginal TWAS results.(15) We substituted GWAS summary 
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statistics for our TWAS summary statistics from the marginal TWAS analysis. In place of an LD 

matrix, we used a gene-gene correlation matrix computed on the predicted gene expression 

values in UKB Europeans. We compute the FINEMAP credible sets and posterior probabilities 

of inclusion for all TWAS loci with at least 2 genes.  

 

Pathway Analysis. We conducted a pathway analysis using the clusterProfiler R package to 

search for Gene Ontology (GO) terms that were enriched among FINEMAP credible sets of 

TWAS significant genes.(44) For each phenotype, we defined the gene set for each phenotype as 

the set of TWAS significant genes with FINEMAP posterior probability of inclusion in the 

credible set > 0.5. The universe of genes was the set of 10,004 genes with gene expression 

prediction models that passed prediction QC. Multiple testing was addressed by setting the false 

discovery rate for each phenotype to 0.05. The minimum gene set size for genes annotated with a 

GO term was set to 10.  

 

TWAS variant-to-gene assignments.  

We assigned the distinct GWAS variants from Vuckovic et al. to putative target genes using our 

TWAS results.(3) For a GWAS variant-trait association, we considered all significant TWAS 

gene-trait associations for the matching trait in any TWAS locus within 1Mb of the variant. We 

assigned the variant to a gene if the TWAS gene had both a FINEMAP posterior probability of 

inclusion greater than 0.5, and evidence of correlation (r
2
 > 0.2) between the variant genotype 

and predicted gene expression. We performed our TWAS assignments on 10,239 variant trait 

associations across 10 hematological traits from Vuckovic et al.(3) In their original paper, these 

10 traits were chosen by Vuckovic et al. based on data availability for eQTLs in relevant cell 
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types including platelets, CD4+, CD8+, CD14+, CD15+, and CD19+ cells. In their work, they 

performed eQTL co-localization analyses using coloc. For a GWAS variant, we assigned the 

eGene(s) corresponding to any co-localizing eQTL as the target gene.  

 

Open Targets. Open Targets Genetics is an open-access integrative resource which aggregates 

human GWAS and functional genomics data including gene expression, protein abundance, 

chromatin interaction, and conformation data in order to make robust connections between 

GWAS loci and potentially causal genes.(27) In order to assign potentially causal genes to a 

given GWAS variant, Open Targets provides a disease-agnostic variant-to-gene (V2G) score 

which combines a single aggregated score for each GWAS variant-gene prediction. This analysis 

combines four different data types: eQTL and pQTL datasets, chromatin interaction and 

conformation datasets, Variant Effect Predictor (VEP) scores, and distance from the canonical 

transcription start site for a target gene. We compare the TWAS and coloc variant-to-gene 

assignments to the sets of potentially causal genes identified by Open Targets. Performance is 

assessed by checking if any TWAS/coloc assigned gene for a given variant is either the most 

likely gene identified by Open Targets (OT Max) or any gene identified by Open Targets (OT 

Any).  

 

BLUEPRINT specifically expressed genes. We also assessed the quality of the gene assignments 

for the TWAS and coloc-based methods by determining if the assigned gene is cell-type 

specifically expressed in gene expression data from BLUEPRINT.(18) We group available 

expression data into five cell type groups: erythrocytes, megakaryocytes, macrophages and 

monocytes, nCD4 cells, and neutrophils. We classified genes as cell type group-specific or 
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shared via Shannon entropy across the five cell type groups. We first exponentiated the 

BLUEPRINT MMSEQ expression quantifications, to be comparable to RPKM. Then, for each 

gene, we calculated the normalized gene expression by dividing gene expression in each cell 

type group by the sum across all five cell type groups. Next, we calculated Shannon entropy 

using the normalized gene expression values. We defined the shared genes across cell type 

groups as those with entropy < 0.1 and the cell type-specific genes as those with entropy > 0.5 

and gene expression > 1 in the respective cell type. Biologically plausible cell type groups 

selected for the 29 phenotypes analyzed are detailed in Supplemental Table S1.  
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Legends to Figures 

 

Figure 1 - UKB TWAS of Blood Cell Traits Overview. (a) We trained gene expression prediction models using 

whole blood gene expression data from 922 Depression Genes and Networks (DGN) European ancestry participants 

by fitting an elastic net model on the cis-SNPs (+/- 1Mb) for each gene. Models with r
2
 > 0.05 are considered 

sufficiently predicted, and are subject to association testing in UKB. w represents the TWAS weights in the 

prediction model. (b) Using our DGN-trained models, we predicted gene expression in 399,835 UKB participants of 

European ancestry and performed association testing with 29 hematological traits. 11,759 gene-trait associations 

were significant at the Bonferroni adjusted threshold (out of 290,116 tested). (c) TWAS results from UKB were 

replicated in 141,286 MVP participants of European ancestry for 15 hematological traits available in MVP. (d) We 

further conditioned our TWAS significant associations in UKB on GWAS signals reported from Vuckovic et al. to 

determine which TWAS gene-trait associations were driven by previously reported GWAS variants (TWAS CA for 

TWAS conditional analysis). (e) We used the TWAS associations and prediction models (blue stars) to assign 

GWAS signals from Vuckovic et al. (gold star) to plausible target genes (see Figure 2), assessing correlation 

between each GWAS variant and predicted gene expression of each TWAS significant gene.  
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Figure 2 - TWAS variant-to-gene Approach. Comparison of our TWAS-based approach to variant-to-gene 

assignment with two commonly used approaches: distance-based and colocalization based assignments. We consider 

the problem of assigning a GWAS variant (gold star) in a non-coding region to a target gene. The nearest-gene 

approach assigns the variant to the closest gene at the locus (Gene A), but ignores epigenomic evidence at the locus. 

Colocalization based approaches assign the variant to a target gene based on evidence that the GWAS signal is not 

distinct from an eQTL signal for a target gene (green star, Gene B). Our TWAS based approach assesses the 

correlation between the GWAS variant and TWAS predicted gene expression which aggregates smaller effect cis-

eQTLs for a gene (blue stars, Gene C). For presentation brevity, we use “high r
2
” but the threshold to define high 

correlation can be lenient.  
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Figure 3 - Manhattan Plot of TWAS Conditional Analysis Results. Figure 3 shows the -log10(p-value) for 

TWAS gene-trait associations after conditioning on distinct GWAS variants from Vuckovic et al. for a given 

phenotype category. The red dashed line denotes the Bonferroni adjusted significance threshold (𝛼 = 4.25×10
-6

). 

Named genes have -log10(p-value) > 12. The conditional TWAS analysis assesses whether a TWAS signal is driven 

primarily from signals at previously discovered GWAS loci, which is a crucial step for our analysis of well-studied 

hematological traits. The maximum -log10(p-value) for each gene is plotted and stratified by phenotype category.  
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Figure 4 - IRAK1BP1 locus EpiGenome Browser. Figure 4 demonstrates the cell-type specific epigenetic 

information linking IRAK1BP1 and mean platelet volume. Figure 4a shows that variants within IRAK1BP1 were 

identified as GWAS significant variants in Vuckovic et al., 2020, but the signal at this locus was attenuated after 

conditioning on a locus 8Mb away (sentinel variant chr6:71326034_G_A). (b) Several of these variants are included 

in the IRAK1BP1 TWAS prediction model. (c) Promoter-capture Hi-C data support that TWAS model variants for 

IRAK1BP1 form a loop with the promoter region of LCA5, a mendelian disease gene for Leber congenital 

amaurosis. LCA5 was not available in our DGN expression dataset. (d) LCA5 is more strongly expressed in MK cell 

lines compared to IRAK1BP1. (e) TWAS model variants overlap with MK ATACseq peaks.  
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Figure 5 - TWAS and coloc variant-to-gene assignments. We compare our TWAS-based variant-to-gene 

assignments with assignments from coloc using a set of 10,239 variants associated with 10 hematological traits. (A) 

Coloc successfully assigns 427 variants to target causal genes, while our TWAS based approach assigns 1,738 to 

target genes. (B-C) We compare these assignments to several external datasets, using variant-to-gene assignments 

both considering phenotype-specific and phenotype-agnostic approaches. BLUEPRINT Any indicates the target 

gene is specifically expressed in any cell-type in BLUEPRINT dataset, while BLUEPRINT Exact means that the 

phenotype matches the cell-type in BLUEPRINT. OT Any corresponds to the target gene matching any gene 

indicated as a target gene, while OT Max indicates the target gene was the most likely target for OT. The TWAS 

based approach has increased sensitivity to assign genes to potentially causal genes (B) and decreased specificity to 

coloc (C).  

  

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddac011/6524829 by Im

perial C
ollege London Library user on 14 February 2022



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

40 

 

Figure 6 - TWAS and coloc variant-to-gene assignments agree at LIME1 locus. The LIME1-lymphocyte 

percentage associated locus illustrates one example where the TWAS- and coloc- based variant-to-gene assignments 

agree. (A) Genes in the FINEMAP credible set are colored by their correlation with rs6062304. The predicted gene 

expression with LIME1 is highly correlated with rs6062304, whereas neither ZGPAT nor RTEL1 are. (B) An eQTL 

for LIME1, rs6062497, is in high LD with rs6062304, and in turn coloc assigns LIME1 as an eGene. (C-D) Model 

variants for LIME1 and ZGPAT are colored by their LD with rs6062304, respectively. The variants with the largest 

effect sizes in the TWAS prediction model for LIME1 are in high LD with rs6062304, whereas those for ZGPAT are 

not.  
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Figure 7 - TWAS assigns rs1985157 to LRRC25. Figure 7 illustrates how TWAS assigned rs1985157 to LRRC25 

when coloc failed to do so with no individual significant eQTL in the region. (A) LRRC25 predicted gene expression 

was highly correlated with rs1985157 (r2 = 0.863), whereas the prediction from SSBP4 (r2 = 0.47) and ELL (r2 = 

0.457) were not as highly correlated despite both genes being significant. (B) LD patterns for variants at the locus. 

(C-D) Only model variants for LRRC25 and SSBP4 are colored by their LD with rs1985157, respectively. Variants 

with the largest TWAS weights (in absolute values) for LRRC25 are in high LD with rs1985157, whereas those for 

SSBP4 are not. 
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Tables 

Table 1. Blood Cell Trait Genes discovered by TWAS. Four genes could not be replicated in MVP: genes names 

followed by an asterisk did not have available matching phenotypes in MVP and gene names followed by a 

plus sign did not have complete variants for the respective gene expression prediction model. Abbreviations: 

transcription start site (TSS), conditional analysis (CA). 

 

 

  

Phenotype Gene 

Name 

C

hr 

TSS Model 

R2 

TWAS 

Beta 

Log10 

REGENIE_

p 

CA Beta Log10 

Conditional_p 

MVP 

Beta 

Log10 

MVP_p 

Eosinophil Count RBCK1 20 407498 0.48 -0.03 

(0.006) 

7.00 -0.029 (-

0.029) 

6.91 -0.007 

(0.006) 

0.57 

Mean Platelet 

Volume 

MFAP3

L 

4 170033

031 

0.07 0.034 

(0.006) 

7.83 0.033 

(0.033) 

7.53 -0.006 

(0.007) 

0.36 

Mean Platelet 

Volume 

IRAK1

BP1 

6 788674

72 

0.23 0.03 

(0.004) 

11.02 0.033 

(0.033) 

13.27 0.025 

(0.005) 

5.47 

Mean Platelet 

Volume 

LPCAT

4 

15 343672

78 

0.10 -0.025 

(0.004) 

9.63 -0.024 (-

0.024) 

9.46 -0.005 

(0.006) 

0.43 

Neutrophil Count SNHG5 6 856787

36 

0.87 -0.015 

(0.003) 

7.88 -0.013 (-

0.013) 

6.18 -0.009 

(0.004) 

2.21 

Eosinophil 
Percentage 

RBCK1 20 407498 0.48 -0.033 
(0.006) 

8.77 -0.033 (-
0.033) 

8.74 NA NA 

Monocyte 

Percentage 

TMEM

144 

4 158201

604 

0.53 0.031 

(0.006) 

6.88 0.03 

(0.03) 

6.61 NA NA 

Neutrophil Count BNIP3 10 131982
013 

0.08 0.022 
(0.004) 

6.83 0.022 
(0.022) 

6.86 NA NA 

Platelet 

Distribution 

Width 

GTF2H

2 

5 710676

89 

0.24 -0.037 

(0.005) 

12.93 -0.036 (-

0.036) 

12.46 NA NA 
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Abbreviations 

DGN – Depression Genes and Networks 

GO – Gene Ontology 

GWAS – Genome wide association study 

LD – Linkage Disequilibrium 

MAF – Minor Allele Frequency 

MVP – Million Veteran Program 

OT – Open Targets 

PC – Principal Component 

TWAS – Transcriptome wide association study 

UKB – UK Biobank 

VEP – Variant Effect Predictor 
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