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Abstract

Phenotypic cell-to-cell variability within clonal populations may be a manifestation of “gene 

expression noise”1–6, or it may reflect stable phenotypic variants7. Such “non-genetic cell 

individuality”7 can arise from the slow fluctuations of protein levels8 in mammalian cells. These 

fluctuations produce persistent cell individuality, thereby rendering a clonal population 

heterogeneous. However, it remains unknown whether this heterogeneity may account for the 

stochasticity of cell fate decisions in stem cells. Here we show that in clonal populations of 

hematopoietic progenitor cells, spontaneous “outlier” cells with either extremely high or low 

expression levels of the stem cell marker Sca-19 reconstitute the parental distribution of Sca-1 but 

do so only after more than one week. This slow relaxation is described by a Gaussian-Mixture 

Model (GMM) that incorporates noise-driven transitions between discrete subpopulations, 

suggesting hidden multi-stability within one cell type. Despite clonality, the Sca-1 outliers had 

distinct transcriptomes. Although their unique gene expression profiles eventually reversed to that 

of the median cells, revealing an attractor state, they lasted long enough to confer a greatly 

different proclivity for choosing either the erythroid or myeloid lineages. Preference in lineage 

choice was associated with elevated expression of lineage-specific transcription factors, such as a 

> 200-fold increase in GATA110 among the erythroid-prone cells, or > 15-fold increased PU.111 

expression among myeloid-prone cell. Thus, clonal heterogeneity of gene expression level is not 
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due to independent noise in the expression of individual genes, but reflects metastable states of a 

slowly fluctuating transcriptome that is distinct in individual cells and may govern the reversible, 

stochastic priming of multipotent progenitor cells in cell fate decision.

Cell-to-cell variability can be quantified by analyzing the dispersion of expression levels of a 

phenotypic marker within a cell population. Flow cytometric analysis of EML cells, a 

multipotent murine hematopoietic cell line12, revealed an approximately 1000-fold range in 

the level of the constitutively expressed stem cell surface marker Sca-1 among individual 

cells within one newly-derived clonal cell population (Fig. 1a). The heterogeneity of Sca-1 

expression in this clonal population was highly consistent between measurements (Fig. 1c) 

and could not be attributed to measurement noise (Fig. 1b). Moreover, cell-cycle dependent 

cell size variation contributed only 1% to the observed variability of Sca-1 levels per cell 

(Supplementary Discussion and Supplementary Fig. 1).

To characterize the dynamics by which population heterogeneity arises, cells with the 

highest, middle, and lowest ~15% Sca-1 expression level (denoted henceforth as Sca-1Low, 

Sca-1Mid, and Sca-1High fractions) were isolated from one clonal population using 

fluorescence activated cell sorting (FACS). Cells were stripped free of the staining antibody 

immediately after isolation and cultured in standard growth medium. Within hours, all three 

fractions showed broadening of the narrow Sca-1 histograms obtained immediately after 

sorting (Fig. 2a) but more than 9 days elapsed before the three fractions regenerated Sca-1 

histograms similar to that of the parental (unsorted) population (Fig. 2a). Therefore, the 

restoration of the wide range of Sca-1 surface expression levels is a slow process (requiring 

> 12 cell doublings) that is independent of initial Sca-1 expression-levels. Clonal 

heterogeneity was also regenerated from subclones derived from randomly selected 

individual cells that had varying initial mean Sca-1 levels (Supplementary Fig. 2).

What drives the regeneration of the parental “bell-shaped” histogram from the three sorted 

population fractions (Fig. 2a)? Although a variety of mechanisms may in principle underlie 

this behavior (Supplementary Discussion and Supplementary Fig. 3 and 4), we consider here 

a general theoretical stochastic formulation. Because the genetic circuitry governing the 

expression of Sca-1 is poorly understood13, modeling the process explicitly with genetic 

circuits subjected to stochastic dynamics14 is not feasible. Instead, we took a 

phenomenological approach to determine the model class of stochastic processes which 

describes the observed behaviour. The simplest model is an elementary mean-reverting 

(Ornstein-Uhlenbeck, O-U) process15 that includes both noise-driven diffusion (capturing 

the generation of cell-cell variability) and a drift towards the deterministic equilibrium 

(representing relaxation to the parental distribution mean) (Supplementary Theoretical 

Methods). However, a simple O-U process describes the data only poorly, since it fails to 

recapitulate the growth of the long left tail (e.g., 100-fold range for the Sca-1High fraction) in 

the histogram.

An alternative explanation is that the relaxation process is complicated by slow dynamics on 

a rugged potential landscape that consists of multiple quasi-discrete state transitions whose 

stochastic nature produces an additional source of variability16. Recent analysis of human 

myeloid progenitor cells has provided experimental evidence for the existence of multiple 
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metastable states17, consistent with the dynamics of complex gene regulatory networks that 

control mammalian cell fates17. We thus extended the simple O-U model to include 

transitions between distinct states (virtual subpopulations) using a Gaussian-Mixture Model 

(GMM) as a first approximation to a multimodal system. As quantified by the Akaike 

Information Criterion (Supplementary Theoretical Methods), the data can be described by a 

minimal GMM model comprised of only two distinct states, each described as a Gaussian, 

the parameters of whichwere obtained from the observed histograms in the stationary phase 

(time ≥9 days).

Our GMM model allowed us to partition cells in every measured histogram (time point) into 

two “virtual subpopulations” (blue = subpopulation 1 and red = subpopulation 2 in Fig. 2a) 

based on the expression values of the individual cells, thus providing the time evolution of 

the mean μi and the relative abundance (weight) wi for each subpopulation i =1, 2 (Fig. 2b 

and 2c and Supplementary Theoretical Methods). Interestingly, this theoretical description 

suggests that the asymmetric broadening of the truncated histograms, as partially reflected in 

the changes in μ for the two subpopulations (Fig. 2b), only accounts for a fraction of the 

restoration of the equilibrium heterogeneity. In contrast, stochastic transitions between the 

subpopulations, as reflected by the evolution of the weights wi, played a dominant role in the 

later relaxation to equilibrium. Importantly, for the Sca-1Mid and Sca-1High fractions, 

changes in wi were initially negligible until 96 h, at which point the wi exhibited a steep 

change before eventually reaching a plateau (Fig. 2c).

In summary, our results suggest that the observed clonal population heterogeneity of protein 

expression is not simply the manifestation of noise around a single, deterministic 

equilibrium (attractor) state described by an O-U model. Instead it is likely the result of 

processes involving stochastic state transitions in a multi-stable system17, which may 

explain the slow regeneration of the parental heterogeneity.

These results suggest that whole population averaging of the level of Sca-1 may not 

appropriately characterize its biological function. Instead, because of the slowness of 

relaxation to the mean values, momentary levels of Sca-1 within individual cells may reflect 

distinct, enduring functional states with different biological consequences. Thus, we asked 

whether clonal heterogeneity in Sca-1 expression correlates with heterogeneity of the 

differentiation potential of these cells. Indeed, among the secondary clones generated from 

the parental population, the rate of commitment to pro-erythrocytes in response to 

Erythropoietin (Epo) (Methods, and Supplementary Fig. 5) was inversely correlated to the 

baseline mean Sca-1 expression of each clone (Supplementary Fig. 6). Similarly, for the 

three sorted fractions (Fig. 3a), the relative erythroid differentiation rates were distinct, with 

Sca-1Low cells differentiating the fastest, followed by Sca-1Mid and Sca-1High (Fig. 3b). 

Importantly, although the Sca-1Low fraction differentiated into the erythroid lineage at a rate 

7-fold higher than the Sca-1High fraction (Fig 3b), the Sca-1Low fraction was not composed 

of spontaneously and irreversibly pre-committed pro-erythrocytes. Instead, these cells were 

still undifferentiated as evidenced by expression of the stem cell marker c-kit, their normal 

proliferation capacity (Supplementary Fig. 7) and their ability to reconstitute the parental 

histogram (Fig. 2a).
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When we stimulated erythroid differentiation at later time points after sorting on 7, 14, and 

21 days (as the Sca-1 histograms became more similar to each other while restoring the 

parental distribution), the difference in the erythroid differentiation rate between the 

Sca-1Low versus Sca-1High fractions was gradually lost (Fig. 3b–e). Surprisingly, despite the 

near complete convergence of the Sca-1 histograms at 7 days, variability in differentiation 

kinetics was consistently detectable beyond 14 days after sorting (Fig. 3d). This suggests 

that clonal heterogeneity in Sca-1 expression controls differentiation potential but constitutes 

only a one-dimensional projection of separate states in the high-dimensional space of gene 

expression levels17. To reveal additional dimensions, we looked for correlated heterogeneity 

in other proteins and investigated whether expression of the erythroid-fate determining 

transcription factor GATA110 differed among the Sca-1 fractions. Real-time PCR revealed 

significantly higher GATA1 mRNA levels in the erythroid differentiation-prone Sca-1Low 

progenitor cells (260-fold increase over Sca-1High fraction), followed by the Sca-1Mid (2.7-

fold increase over Sca-1High fraction) and Sca-1High fractions (Fig. 3g), and these differences 

were paralleled by GATA1 protein levels (Fig. 3i). Importantly, GATA1 mRNA expression 

among the three sorted fractions at 5 and 14 days after sorting (Supplementary Fig. 8) 

mirrored the gradual loss of variability observed in the differentiation kinetics for the 

erythroid lineage (Fig. 3b–e).

GATA1 plays an antagonistic role in lineage determination with the myeloid-fate 

determining transcription factor PU.1, and these two transcription factors mutually inhibit 

each other to regulate the erythroid versus myeloid fate decision18. Thus, we hypothesized 

that cells that are least prone to erythroid differentiation and exhibit low GATA1 expression 

may have high PU.1 levels, and thus be predisposed to the myeloid lineage. Indeed, real-

time PCR revealed the highest PU.1 mRNA levels among the Sca-1High progenitor cells (17-

fold increase over Sca-1Low fraction), followed by the Sca-1Mid (3.6-fold increase over 

Sca-1Low fraction) and Sca-1Low fractions (Fig. 3h). These differences were paralleled by 

PU.1 protein levels (Fig. 3j). Furthermore, myeloid differentiation rate was the highest 

among Sca-1High cells, followed by Sca-1Mid and Sca-1Low (Fig. 3f) in response to GM-CSF 

and IL-3 (Methods and Supplementary Fig. 5). These results show that within a clonal 

population of multipotent progenitor cells, spontaneous non-genetic population 

heterogeneity primes the cells for different lineage choices.

Since both GATA1 and PU.1 are pivotal lineage-specific transcription factors, we asked 

whether the dramatic up-regulation of GATA1 and associated down-regulation of PU.1 in 

the most erythroid-prone Sca-1Low cells reflect a particular cellular state in terms of 

genome-wide gene expression. Microarray-based mRNA expression profiling on Sca-1Low 

(L), Sca-1Mid (M), and Sca-1High (H) fractions immediately after sorting revealed that these 

three fractions differed considerably in their transcriptomes (Fig. 4). Replicate microarray 

measurements showed that the observed transcriptome differences could not be attributed 

solely to experimental error (Supplementary Fig. 9). Significance Analysis of Microarrays 

(SAM)19 revealed >3900 genes that were differentially expressed between the Sca-1Low and 

Sca-1High fractions at a stringent False Detection Rate (FDR) of 1.5%. The distinct global 

gene expression profiles of the three fractions converged to a common pattern within 6 days 

after sorting, a progression that can be quantified by the inter-sample distance metric D = 1-

R, where R is the Pearson correlation coefficient. The distances between the three profiles 
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decreased from D (L - M) 0 days = 0.027 to D (L - M) 6 days = 0.009 and from D (M - H)0 days 

= 0.061 to D (M - H)6 day =0.012 (Fig. 4 and Supplementary Table 1). Thus, the outlier 

populations reconstituted the traits of the parental population not only with respect to their 

distribution of Sca-1 expression (Fig. 2a) and differentiation rates (Fig. 3b–e), but also with 

respect to their gene expression profiles across thousands of genes. This global relaxation 

from both ends of the parental spectrum towards the center is predicted by the model in 

which a stable cell phenotype, such as the progenitor state here, is a high-dimensional 

attractor state20. It also confirms that the Sca-1 outlier cells were not already irreversibly 

committed. Nevertheless, Sca-1Low cells exhibited a transcriptome that was clearly more 

similar than the Sca-1High cells to the maximally differentiated (unsorted) cells (Fig. 4) that 

were cultured in the presence of Epo for 7 days (D (L - 7d_Epo) = 0.079 versus D (H - 
7d_Epo) = 0.158, Supplementary Table 1), a remarkable feat given the spontaneity and 

stochasticity of the process that generated these differentiation-prone outlier cells. In fact, 

with respect to 200 “differentiation marker genes” (Methods), only the Sca-1Low cells were 

statistically similar to the Epo-treated cells (p < 3×10−14, pair-wise t-test), whereas the 

Sca-1Mid (p >0.8) and Sca-1High (p > 0.6) cells were not, further confirming the 

transcriptome similarity between the Sca-1Low and Epo-treated cells, which may be related 

to their elevated GATA1 levels.

Our results demonstrate the robust nature of cell-to-cell variability that underlies the 

heterogeneity of gene expression in a clonal population of mammalian progenitor cells. 

While the source of the heterogeneity and the molecular mechanisms responsible for its slow 

restoration remain to be elucidated, our experiments and general theoretical considerations 

point to discrete transitions in a dynamical system exhibiting multistability as one source of 

this behavior. Independent of the specific mechanism, we show that biological function in 

metazoan cells is not necessarily determined by the ensemble average of a nominally 

homogenous cell population, and that outliers in a heterogeneous cell population do not 

simply represent irrelevant, short-lived phenotypic states caused by random fluctuations in 

the expression of a single gene. Instead, the departure from the average state is characterized 

by slowly fluctuating transcriptome-wide noise that has significant biological functionality 

in the priming of cell fate commitment. This finding helps unite two old dualisms: between 

plasticity and heterogeneity in explaining multipotency21,22, and between instructive and 

selective regulation in explaining cell fate decisions18. Exploiting the spontaneous, transient 

yet enduring cell individuality in differentiation potential resulting from clonal heterogeneity 

also could be of practical value in attempts to steer lineage choice in stem cells for 

therapeutic applications.

Methods

Culture of EML cells, creation of single-cell derived subclones and differentiation into 
erythroid and myeloid cells

EML cells (gift from Keith Orford/David Scadden) were maintained in growth medium 

(GM) containing Iscove’s Modified Dulbecco’s Medium (IMDM) + 20% Horse Serum 

+ 12–15% (v/v) BHK/MKL-conditioned medium (CM) + 1% glutamine/penicillin/

streptomycin. To obtain single-cell derived subclones, cells were plated into 60 mm plates at 
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500–2000 cell/ml density in 1% methylcellulose (Methocult M3134) containing GM and 

incubated without disturbance for ten days. Individual well-demarcated colonies were hand-

picked with Pasteur pipettes under microscopic guidance and transferred to liquid cultures in 

microwell plates. Typical subclones required ~18 days in culture to expand to a sufficiently 

large population for experiment. To differentiate EML cells into the erythroid lineage, 

previously reported differentiation protocol12 was adapted. Briefly, on day 1, cells were 

cultured in GM + 10 ng/ml of mouse recombinant Erythropoietin (Sigma-Aldrich) at 

250,000 cells/ml density. On day 3, cells are spun down and re-suspended into IMDM 

+ 20% Horse Serum + 2% BHK/MKL – CM + 10 ng/ml of mouse recombinant 

Erythropoietin at 125,000 cells/ml density to give resulting erythroid cells a growth 

advantage. One day 6, an additional 10 ng/ml of Epo is added. Typically, seven days of 

Erythropoietin (Epo) treatment generated ~40–60% (of total) pro-erythrocytes that were 

benzidine stain positive and Sca-1/c-kit double negative (Supplementary Fig. 5). Benzidine 

staining was performed following reported protocol25 and examined by microscopy after 

cytospin. To differentiate EML cells into myeloid cells, previously reported differentiation 

protocol12 was adapted. Briefly, on day 1, cells were cultured in GM + 10 ng/ml of mouse 

recombinant IL-3 (Peprotech) + 10−5 M retinoic acid (Sigma-Aldrich) at 300,000 cells/ml 

density. On day 4, cells were thoroughly washed with PBS to remove remaining SCF from 

the growth medium and cultured in IMDM + 20% Horse Serum + 2% BHK/MKL – CM 

+ 10 ng/ml of mouse recombinant granulocyte macrophage colony-stimulating factor (GM-

CSF, R&D Systems) + 10−5 M retinoic acid (Sigma-Aldrich) at 200,000 cells/ml density. On 

day 6, an additional 10ng/ml of GM-CSF is added. After 7–9 days, differentiated myeloid 

cells dominate the culture and show Mac-1 and Gr-1 expression by flow cytometry.

Flow cytometry, Fluorescence Activated Cell Sorting (FACS), and Bead calibration

For direct cell surface protein immunostaining the antibodies Sca-1-PE (Caltag) and c-Kit-

FITC (BD Pharmingen) antibodies were used at 1:1000 dilutions in ice-cold PBS + 1% fetal 

calf serum with (flow cytometry) or without (FACS) 0.01% NaN3. Appropriate isotype 

control antibodies (BD Pharmingen) were used to establish background signal due to non-

specific antibody binding. Propidium iodide (PI) staining was correlated with lower forward 

scatter (FSC) among EML cells (Supplementary Fig. 10). Thus, dead cells with positive PI 

staining were easily removed from all analysis by gating out the low FSC population. Flow 

cytometry was performed on a Becton Dickinson FACSCaliber analyzer and FACS with 

either a Becton Dickinson FACSAria or AriaSpecial Sorter UV laser system at the Dana 

Farber Cancer Institute Flow Cytometry Core. Computational data analysis was done with 

FlowJo 2.2.2. For cell sorting, input cell number ranged from 60 – 100 × 106 cells. Cells 

were sorted into ice-cold medium for a maximal duration of 3 h. Gates for the lowest, 

middle, and highest Sca-1 expressors were set based on proportion of total population. For 

cells that were re-cultured after FACS, the staining antibody was removed following 

protocol as previously reported17. Quantum PE Molecules of Equivalent Soluble 

Fluorochrome (MESF) beads (Bangs Laboratories) were used to correct for the effect of 

day-to-day fluctuations in the flow cytometer, following the manufacturer’s instructions. 

Calibration curves were constructed using Matlab 7.2 (MathWorks) and used to convert 

obtained fluorescence data into absolute MESF units for the purpose of quantitative 

theoretical modeling.
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Gene expression profiling with microarrays and data analysis

Gene expression profiling was performed at the Molecular Genetics Core facility at 

Childrens Hospital, Boston using MouseWG-6 v1.1 microbead chips (Illumina). Raw gene 

expression data was first subjected to Rank-Invariant Normalization using BeadStudio 3.0. 

Matlab 7.2 was used to filter the list of 46,628 genes based on two sets of criteria: 1) 

Detection p-value based on Illumina replicate gene probes: genes with detection p-values > 

0.01 in all samples were called “absent” in all samples and thus removed (giving rise to Set 

1, consisting of 14038 genes). Genes with differing detection call between the duplicate 

samples were also removed. 2) Fold-change: genes that did not show at least a 2-fold change 

compared to the Sca-1Mid fraction in 4 out of the 12 total samples were also removed 

(resulting in Set 2: 2997 genes). Alternatively, the Significance Analysis of Microarrays19 

algorithm was used to filter by fold change at a stringent False Detection Rate of 1.5% 

(resulting in Set 3: 3973 genes). Qualitative conclusions did not depend on the exact 

stringency of the filtering. After filtering, gene expression levels were transformed by log10 

and subjected to clustering analyses. Gene Expression Dynamics Inspector (GEDI) maps for 

visual representation of global gene expression based on self-organizing maps (SOM) were 

generated using the program GEDI23 (http://www.childrenshospital.org/research/ingber/

GEDI/gedihome.htm). In GEDI, each “tile” within a “mosaic” represents a minicluster of 

genes with highly similar expression pattern across all the analyzed samples. The same 

genes are forced to the same mosaic position for all GEDI maps, hence allowing direct 

comparison of transcriptomes based on overall mosaic pattern. Color of tiles indicates the 

centroid value of gene expression level for each minicluster. Dissimilarity between samples 

was quantified by 1- R where R is the Pearson’s correlation coefficient calculated for all 

genes in a pair of samples. For statistically analysis of the similarity between the sorted 

fractions and the Epo-treated sample, a subset of ~200 “differentiation marker genes” were 

obtained from stringent SAM-analysis of the unsorted, untreated control and the unsorted, 

Epo-treated sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Robust clonal heterogeneity
a, b, Heterogeneity in Sca-1 expression among clonal cells (a) was significantly larger than 

the resolution limit of flow cytometry approximated by measurement of reference MESF24 

beads (b). c, Stability of clonal heterogeneity in Sca-1 over 3 weeks.
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Figure 2. Restoration of heterogeneity from sorted cell fractions
a, Clonal cells with the highest (Sca-1High), middle (Sca-1Mid) and lowest (Sca-1Low) 15% 

Sca-1 expression independently re-established the parental extent of clonal heterogeneity 

after 216 h in separate culture. As an example, each cell in the Sca-1High experiment was 

theoretically partitioned into one of two GMM-subpopulations (blue and red). b, c, The 

temporal evolution of the means μ1,2 (b) and weights w1,2 (c) for the Sca-1High GMM 

subpopulations 1 and 2. The evolution of the weights was fitted to a sigmoidal function (c, 
dotted curves). Black dotted dash lines, equilibrium values for μı and wi.
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Figure 3. Clonal heterogeneity governs differentiation potential
a–f, Sca-1Low (Low, black), Sca-1Mid (Mid, grey), and Sca-1High (High, white) fractions (a) 

stimulated by Epo (b) and GM-CSF (f) immediately after isolation showed variable 

differentiation rates into the erythroid and myeloid lineages, respectively. Upon 7, 14, and 21 

days (d) of post-sort culture, Epo- treated cells showed convergence in both pre-stimulation, 

baseline Sca-1 expression (Fig. 2a) and relative differentiation rates (b–e). Asterisk, p < 

0.001 (two-tailed normal-theory test). g, h, qRT-PCR analysis of GATA1 (g) and PU.1 (h) 

mRNA levels in Sca-1 sorted fractions. Means ± s.e.m. of triplicates shown; triple asterisk p 
< 10−5, double asterisk p < 0.0002, asterisk p < 0.003 (one-tail Student’s t-test). i, j, Western 

blot analysis of GATA1 (i) and PU.1 (j) protein levels in Sca-1 fractions (lanes 3–5) and 

mock-sorted cells (lane 6). MEL cell line (lane 1), positive control; G1E and 503 (lane 2) 

cell lines, negative controls for GATA1 and PU.1, respectively. GAPDH, loading control.
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Figure 4. Clonal heterogeneity of Sca-1 expression reflects transcriptome-wide noise
Self-organizing maps of global gene expression for a subset of 2997 genes visualized with 

the GEDI23 program for Sca-1Low (L), Sca-1Mid (M), Sca-1High (H) fractions at 0 and 6 days 

(d) after FACS isolation and for a differentiated erythroid culture (7d Epo) and an untreated 

(Untreated) control sample. Pixels in the same location within each GEDI map contain the 

same minicluster of genes. Color of pixels indicates centroid value of gene expression level 

for each minicluster in log10 units of signal. Dissimilarity between transcriptomes indicated 

above . GATA1-containing pixel boxed in white.
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