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Climate change has increased the frequency and severity of flooding events, with significant negative impact on
agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to
a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To
distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic
adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions
differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early
transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although
flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation
encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the
alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct
physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of
chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation
of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative
differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a
response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of
genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of
flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with
the ability to cope with a compound environmental stress.

The environment that surrounds a plant changes
constantly, often imposing constraints on metabolism
that modify vegetative and reproductive development.
Flooding can have a dramatic impact on plant per-
formance; while it occurs regularly in some natural
ecosystems, it is usually disastrous in controlled ag-
ricultural environments. Flooding restricts gas diffu-
sion between submerged organs and the surrounding
aquatic environment. The limited exchange of oxygen
and CO2 slows down aerobic respiration and photo-
synthesis (Mommer and Visser, 2005; Zabalza et al.,
2009). Turbid and muddy floodwaters restrict light
penetration, further compromising the photoautotro-
phic generation of critical carbohydrates (Vervuren
et al., 2003). Finally, oxygen-deficient flooded soils
often have a severely reduced redox potential and ac-
cumulate toxic compounds, which limit root growth
(Armstrong and Armstrong, 2001).

Therefore, flooding is a compound stress, imposing
multiple constraints on submerged plants. Despite this,
marshes and river floodplains support a rich diversity
of plant life that display a gradient of flood tolerance
traits and responses (Van Eck et al., 2004; Voesenek
et al., 2004). Studies on rice (Oryza sativa) and several
wild species have identified two antithetical survival
strategies, dependent on the selection pressure of their
natural flooding regime. An escape response involving
rapid shoot elongation allows plants to regain air con-
tact by forming a snorkel during shallow and pro-
longed floods (Voesenek and Bailey-Serres, 2015). Deep
or very short floods require a quiescent strategy, where
a restriction of growth combined with conservation of
energy expenditure and reserve utilization promotes
survival until the floods recede (van Veen et al., 2014b).
Fundamental knowledge of the genetic, physiological,
and molecular regulation of these traits is not only of
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general interest but essential to improve the tolerance of
many economically relevant crops, most of which are
very sensitive to floods (Voesenek et al., 2014). The
genetic and molecular regulation of flood-adaptive
strategies has been studied most extensively in semi-
aquatic flood-tolerant species of the genera Oryza,
Rorippa, and Rumex (Fukao et al., 2006; Hattori et al.,
2009; Lee et al., 2009; Sasidharan et al., 2013; van Veen
et al., 2013, 2014a; Narsai et al., 2015).
Our understanding of the flooding-induced low-

oxygen and low-energy signaling networks also has
benefited greatly from studies on flood-sensitive Ara-
bidopsis (Arabidopsis thaliana). These investigations
have identified the main players in energy and carbon
signaling (Smeekens et al., 2010; Ljung et al., 2015) and
revealed whole-plant and cell type-specific transcrip-
tional and translational adjustments induced by low-
oxygen stress (Mustroph et al., 2009; Juntawong et al.,
2014). Importantly, oxygen-dependent degradation of
the groupVII family of ethylene response factors via the
N-end rule pathway of protein degradation has been
identified as a molecular mechanism that translates
oxygen availability into transcriptional reprogramming
(Gibbs et al., 2011; Licausi et al., 2011;Weits et al., 2014).
Recent studies also have revealed how this molecular
hypoxic response is highly regulated and fine-tuned to
maintain cellular homeostasis during low-oxygen con-
ditions (Gibbs et al., 2014; Giuntoli et al., 2014; Gonzali
et al., 2015).
Despite the progress in our understanding of

flooding-induced signaling pathways, much remains
to be discovered regarding themolecular mechanisms
that cause variation in flooding tolerance across and
within species (Voesenek and Bailey-Serres, 2015).
Variation in flooding responses among natural plant
populations is an important tool to identify the

underlying causal genes and processes (Xu et al., 2006;
Magneschi et al., 2009; Chen et al., 2010; Campbell
et al., 2015). Despite their relative intolerance to
flooding stress, Arabidopsis accessions show con-
siderable variation in their tolerance to complete
submergence (Vashisht et al., 2011). Remarkably,
this variation is not linked to differences in internal
oxygen content or initial carbohydrate reserves, the
two parameters generally considered to be essential
for surviving flooding events.

The majority of studies investigating the molecular
regulation of transcriptional reprograming in response
to changes in oxygen availability in Arabidopsis have
relied on hypoxia and/or used agar-based seedling
assays (Baena-González et al., 2007; Branco-Price et al.,
2008; Bond et al., 2009; Christianson et al., 2009;
Mustroph et al., 2009; Banti et al., 2010). However, in
natural conditions, flooding results in a gradual de-
cline in oxygen levels and often is accompanied by
other physiological changes, such as a rapid buildup
of the gaseous hormone ethylene (Voesenek and
Sasidharan, 2013). Furthermore, flooding imposes
distinct environmental constraints on the root and the
shoot and, thereby, also elicits different physiological
responses. Accordingly, an exploration of the shoot and
root responses of flooded, soil-grown plants is more
relevant to understanding flooding stress as experi-
enced in the field.

Here, we characterized the early molecular response
to darkness and flooding acclimation in eight different
Arabidopsis genetic backgrounds (Supplemental Table
S1), varying in their tolerance to complete submer-
gence, using poly(A)+ mRNA sequencing (mRNAseq).
The use of soil-grown plants subjected to submergence
(in the dark) mimicked naturally flooded conditions
in a highly controlled way, and the inclusion of a
darkness-only (without submergence) treatment allowed
us to simultaneously disentangle dark effects from sub-
mergence effects (Lee et al., 2011; Vashisht et al., 2011).
Given the distinct carbohydrate and oxygen status of the
root and shoot (rosette) tissues under these two stress
conditions, these organs were analyzed separately, and
then each organ response was compared with the other.
This was performed for all eight accessions. Our data
suggest an important role for gluconeogenesis in short-
term stress acclimation, which includes alternative
splicing (AS) of transcripts encoding key regulatory en-
zymes and quantitative transcriptional differences be-
tween tolerant and intolerant accessions. A conservative
mode of energy and resource utilization via metabolic
reprogramming and constrained growth contributes to-
ward prolonged survival underwater. Shoot-specific
flooding-induced transcriptional reprogramming was
primarily growth related, whereas in the root, mainly
plastidial and developmental processes changed. Our
results provide insight into the interactive and additive
effects of the different elements of flooding stress, pre-
sent a detailed picture of early molecular events medi-
ating stress acclimation, and identify putative novel
aspects of flooding tolerance.
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RESULTS

Early Transcriptomic Responses to Flooding and Darkness
Are Largely Conserved among Accessions

To identify early transcriptome modifications upon
flooding and dark-induced starvation, eightArabidopsis
genotypes (Cvi-0, Bay-0, Ita-0, Columbia-0 [Col-0; gl1],
Kas-1, Lp2-6, Ws-2, and C24; Supplemental Table S1)
were exposed to light (air + light [AL]), dark (air +
darkness [AD]), or complete submergence (submerged +
darkness [SD]) for 4 h (Fig. 1A). At this time point, the
decline in oxygen levels caused by submergence had
stabilized in both the root (less than 0.5 kPa) and petiole
(approximately 6 kPa), as shown by oxygen microelec-
trode measurements in submerged Arabidopsis (Col-0)
plants (Lee et al., 2011).

Themapping ofmRNAseq reads to the Col-0 genome
was successful, with 90.7% to 94.9% of the reads map-
ping to only a single genomic location. The number of
mapped single-hit reads ranged from 20.5 to 43.9 mil-
lion per library (Supplemental Table S2). Genes of very
low abundance were removed from the analysis, leav-
ing a final number of 21,940 genes. Multidimensional
scaling (MDS) of the samples demonstrated a strong
difference between root and shoot transcriptomes (Fig.
1B). A separate MDS analysis solely on shoot tran-
scriptomes separated all three treatments over the x axis
and the eight accessions over the y axis. A similar result
was found for the root, but here, for each accession, the
AD and SD samples clustered together, suggesting
similarity between the dark and submergence tran-
scriptional responses.

Figure 1. Transcriptional responses to compound, darkness, and submergence stress in eight Arabidopsis accessions. A, Sche-
matic representation of the experimental setup, light cycle, and treatments used. Arabidopsis seedlings were grown until the
10-leaf stage (9-h photoperiod; Zeitgeber time [ZT], ZT0–ZT9). Plants then remained in control (AL) conditions or were trans-
ferred to SD or AD conditions 2 h after photoperiod initiation (ZT2). Shoot and root material from Arabidopsis seedlings exposed
to AL, AD, and SD conditions for 4 h were harvested at ZT6 and used for mRNAseq. Black bars indicate darkness. Double-ended
arrows indicate data sets compared to deduce the compound stress (AL versus SD), darkness (AL versus AD), and submergence
(AD versus SD) differentially expressed genes (DEGs). B, MDS of all mRNAseq libraries, and of the shoot or root only, with
distances based on the pairwise top-500 genes differing in fold change. C, Number of DEGs in shoots and roots (Padj. , 0.05) in
response to the compound, darkness, and submergence stress. D, Compound, darkness, and submergence responses of individual
accessions comparedwith the weighted average response of all eight accessions. DEGs (Padj., 0.05) counted in C are depicted in
the corresponding graph.
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By comparing the transcriptomes of SD and AL, we
identified genes that respond to the compound stress.
Here, the compound stress is the effect of a combination
of complete submergence and darkness, as often ex-
perienced by plants under naturally flooded conditions.
The darkness response was teased apart from the
compound stress using the AD-AL comparison. Finally,
comparing SDwithAD revealed a darkness-independent
submergence response (Fig. 1A). Depending on the ac-
cession, 2,356 to 3,102 genes in the shoot were identified
as being differentially expressed (Padj. , 0.05) in response
to the compound stress (Fig. 1C). Fewer DEGs were
identified for the darkness response (975–1,481), and an
even lower numberwere regulated significantly solely by
submergence (84–581). Compared with the shoots, the
compound response in the roots was of a lesser magni-
tude (782–1,133 DEGs), and a similar magnitude was
found for darkness (415–1,325 DEGs). Furthermore,
consistent with the MDS results (Fig. 1B) in the roots,
there was hardly any effect of submergence only (26–76
DEGs). To investigate the overlap in the response
among accessions for all identifiedDEGs, the accession-
specific fold changes were plotted against the average
fold change of all eight accessions (Supplemental Data
Set S1, Sheets C and D). The strong correlations showed
that the transcriptional adjustments of all accessions
were very similar, especially for the compound and
darkness effects (Fig. 1D; Supplemental Table S3).
However, for the submergence effect, there was more
variation among accessions, especially for the roots,
where there was substantial scatter around a mean re-
sponse of zero. For the shoot, two accessions, Cvi-0 and
Ws-2, clearly showed a deviation from the average
submergence response, as reflected in the much lower
slopes (Cvi-0, 0.755; Ws-2, 0.759; average, 1.040;
Supplemental Table S3). These also showed signifi-
cantly overlapping responses to dark and compound
stress in shoots (Supplemental Fig. S1) and the fewest
shoot submergence DEGs of the accessions (Fig. 1C).
The natural variation in transcriptome responses

was investigated further by identifying genes that
responded in an accession-dependent manner
(Paccession*treatment, adj. , 0.05; Supplemental Data Set S1,
Sheet E). In the root, 196, 288, and 137 genes were
identified as varying significantly among accessions
in their response to compound, darkness, and sub-
mergence, respectively, whereas in the shoot, 562,
311, and 181 genes were identified (Supplemental
Fig. S2). To further investigate the conserved and
accession-specific responses to compound, darkness,
and submergence and highlight the implicit impor-
tant processes and players, a Gene Ontology (GO)
overrepresentation analysis was used.

Darkness Leads to Metabolic and Resource Adjustments;
Submergence Is Characterized by the Regulation of
Hormonal Processes

To identify the overall nature of the conserved tran-
scriptomic responses, enrichment of GO terms was

investigated among genes that behaved similarly in all
eight accessions (Paccession*treatment, adj. . 0.1) and also
showed a considerable response to the imposed
stresses (Pmean response, adj. , 0.01, log2 fold change
[FC] . 1.6; Fig. 2).

Typical overrepresented processes for conserved
darkness and compound effects in all accessions were
related to the down-regulation of energetically expen-
sive cell wall construction, sulfur metabolism, starch
biosynthesis (shoots only), and secondary metabolism.
Interestingly, Suc and Fru responses and trehalose
phosphate synthase activity terms were overrepre-
sented among up-regulated genes in both the root and
shoot. Not surprisingly, the response to absence of
light category also was overrepresented among the
up-regulated genes in both shoot and root in dark and
compound stress. We also identified cellular response
to iron ion overrepresentation among down-regulated
genes in the root in response to the compound stress.
The GO analyses further revealed changes associated
with nitrogen metabolism. This included the nitrate
transport, amino acid transport, and Leu catabolic
process terms that were overrepresented among
up-regulated genes in the shoot. Together, these re-
sults suggested a fundamental change in the metabolic
network in response to the applied stresses.

Compared with the darkness and compound effects,
a lower number of significantly enriched GO terms were
identified for submergence stress only. The up-regulated
genes, as expected, included anaerobic metabolism,
hypoxic response, and Suc synthase activity. Other
uniquely submergence-responsive GO categories were
hormone related (ethylene, auxin, and abscisic acid
[ABA]), indicating transcriptional regulation associated
with these hormonal cascades that is not activated by
the more metabolically determined darkness effects.

To characterize the accession-dependent responses,
GO overrepresentation analysis also was performed
on genes that varied in their treatment responses
(Paccession*treatment, adj. , 0.05; Supplemental Fig. S3). The
GO terms enriched among these genes encompassed a
wide range of categories. These were mostly associated
with photosynthesis and metabolism (lipids, amino
acids, and sulfur) and biotic defense. There was some
overlap in the GO enrichment categories between the
conserved and accession-dependent responses. This
indicated a strong regulation of the related processes,
but in varying levels of conservation among accessions.

The Compound Stress Response Is an Amplified Darkness
Response in the Shoot

In nature, severe flooding often consists of submer-
gence coupled with very low light intensities. Here, we
investigated the relative contribution of darkness and
submergence toward the final compound flooding
stress response. In the shoot, the direct comparison of
the compound and darkness responses showed a
strong positive correlation (Fig. 3A). The steep slope
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suggested that the compound response was similar to
the dark response but was enhanced by the addition of
submergence. A similar comparison of the compound
versus darkness response of the root also showed a
strong correlation. However, no additional effect of
submergence on the global transcriptomic response
was observed (i.e. the compound and darkness effects
were of similar magnitude; Fig. 3A).

To further characterize the gene categories consti-
tuting the relationships identified above, we grouped
genes that were coexpressed and, therefore, are poten-
tially members of same or similarly regulated gene
pathways.We usedWGCNA (Langfelder andHorvath,
2008) to perform a comparative analysis of gene net-
works among the three conditions (AL, AD, and SD).
Fifteen and eight coexpression modules were identified
for the shoot and root, respectively, where each module
consists of genes that show largely similar expression
patterns across the different accessions and conditions
(Fig. 3B; Supplemental Fig. S4). GO term enrichment
was investigated subsequently for the identified mod-
ules (Supplemental Data Set S1, Sheets F and G).

For both the root and shoot, two very large gene
coexpression modules were identified, namely R01,

R02, S01, and S02 (Fig. 3B). The R01 and R02 modules
both showed consistent changes in expression upon
darkness (either an increase or decrease) in all ac-
cessions but no change upon submergence. However,
R01 andR02 differed in the constitutive expression levels
of the accessions (Fig. 3C). These were enriched in
GO terms related to metabolism, such as glycolysis/
gluconeogenesis, fatty acid breakdown, acetyl-CoA, and
secondary metabolism (glucosinolates and isopentenyl
pyrophosphate/methylerythritol pathway), but also in-
cluded sugar transport and signaling. Enrichment terms
also indicated a role for jasmonic acid and brassinoste-
roids in the root upon darkness and compound stress
(Fig. 3C).

By comparison, the genes in module S01 were
expressed similarly in all accessions and only had a
darkness response and no additional submergence
effect (Fig. 3D). This module was enriched for GO cat-
egories related to photoperiod, lipid breakdown (in the
peroxisome), protein transport (required for peroxi-
some function), and sugar-mediated signaling (Fig. 3D;
Supplemental Data Set S1, Sheet G). Gene expression
patterns in the other large shoot module, S02, demon-
strated the amplified dark response by submergence for

Figure 2. GO terms overrepresented in the conserved compound, darkness, and submergence responses of the eight accessions.
Overrepresentation was determined for genes where the average response across accessions was mean log2 FC. 1.6 and Padj. ,

0.01 and where variation in the response between accessions was absent (Paccession*treatment, adj. . 0.1). GO terms with Padj. , 0.01
are shown.
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the compound stress. EnrichedGO terms included starch
and secondary metabolism. Furthermore, enrich-
ment was found for the processes of cell division and
meristem function. No clear submergence-specific mod-
ule was identified in the shoot or the root (Supplemental
Fig. S4), likely because of the relatively small number of
genes affected by submergence only (Fig. 1C).

Root- and Shoot-Specific Treatment-Responsive Genes Are
Associated with Photosynthesis and Growth Regulation

Since the organ-specific responses to the treatments
were more distinct than the response across accessions
(Fig. 1B), these differences were explored further. First,
DEGs that were dependent on the organ (i.e. genes with

a significant organ-treatment interaction) were identi-
fied (Porgan*treatment, adj. , 0.05; Supplemental Fig. S5A;
Supplemental Data Set S, Sheet H). These organ-
dependent treatment responses were largely conserved
across accessions (Supplemental Fig. S5B). Genes
with an organ-treatment interaction (Porgan*treatment, adj. ,

0.05) and a significant treatment effect (Padj. , 0.05) in
only one organ for six or more accessions were identi-
fied and designated as either root- or shoot-specific
response genes (Fig. 4A, red and blue dots,
respectively). The number of shoot-specific genes
identified for the compound, darkness, and submer-
gence effect were 340, 33, and 13, respectively. Fewer
root-specific genes were found: 59 and 48 for compound
and darkness, respectively. There were no root-specific
genes for the submergence response. Clustering of the

Figure 3. Cumulative effects of darkness and submergence and Weighted Gene Coexpression Network Analysis (WGCNA)
clustering. A, Comparison of the compound and dark responses of roots and shoots. Mean responses to treatments are plotted for
both the x and y variables. Responses for individual accessions can be found in Supplemental Figure S1. The black dotted line
represents y = x, and the blue solid line is the regression of the data for the root (y =20.02 + 0.933 x; r2 = 0.88) and shoot (y =
20.06 + 1.233 x; r2 = 0.84). B, Gene coexpressionmodules and their sizes as identified byWGCNA.Genemodules show similar
expression patterns across the three treatments and eight accessions. Roots (R) and shoots (S) were analyzed separately. Not all
genes included in the analysis could be placed in a module of coexpressed genes, and these were unplaced. C and D, Mean and
variation-centered reads per kilobase per million (RPKM) values of the largest two root (C) and shoot (D) coexpression modules
identified byWGCNA. The top 12%of geneswith the highest modulemembership score are shown. The blue and red lines reflect
the trends of the gene with the strongest positive and negative correlation to the mean module behavior, respectively. The
remaining modules are visualized in Supplemental Figure S4. To the right of each module are representative terms related to the
identified enriched GO terms. The complete GO analysis is given in Supplemental Data Set S1, Sheets F and G. ER, Endoplasmic
reticulum; IPP/MEP, isopentenyl pyrophosphate/methylerythritol.
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organ-specific genes identified a strong overlap between
the three treatments (Fig. 4B). The compound response
of the root-specific genes mirrored the darkness re-
sponse, whereas shoot-specific genes of the compound
response also illustrated the amplification of the dark-
ness response by submergence.

Therewas a very strong overlap in shoot-specific genes
between the compound, darkness, and submergence re-
sponses (Fig. 4B). Among these shoot-specific genes were
those involved in hormonal metabolism and signaling,
cell growth, and cell wall modification (Supplemental
Data Set S1, Sheet H). For example, the mRNA levels
of NINE-CIS-EPOXYCAROTENOID DIOXYGENASE4,
catalyzing a crucial enzymatic step in ABA biosynthesis,
was down-regulated, whereas ethylene (1-AMINO-
CYCLOPROPANE-1-CARBOXYLATE SYNTHASE and
1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE),
GA (GA 20-OXIDASE and GA 2-OXIDASE6), and cy-
tokinin (CYTOKININ OXIDASE3) metabolism enzymes
were up-regulated. Downstream signaling components
typical for auxin and brassinosteroids were among
the up-regulated shoot-specific genes (SMALL AUXIN
UP-REGULATED [SAUR] andSAUR-LIKEgenes,AUXIN-
REGULATED GENE INVOLVED IN ORGAN SIZE, BXR1
SUPPRESSOR1, BR-ENHANCEDEXPRESSION1, and the
BZR1-interacting GENERAL REGULATORY FACTOR8).
Downstream effector genes such as cell wall-modifying
enzymes with shoot-specific regulation (in both direc-
tions) included six genes involved in pectin esterification,
two cell wall-loosening expansins, and eight xyloglucan
endotransglucosylase/hydrolases.

Several plant developmental control and light sig-
naling genes also were among the regulated shoot-
specific genes (Supplemental Data Set S1, Sheet H).
These included the genes SQUAMOSA PROMOTER-
LIKE11 responsible for seedling to juvenile to adult
stage transitions (Huijser and Schmid, 2011) but
also CLAVATA3/ESR-RELATED16 (CLE16), CLE6, and
CLAVATA2, which are regulatory factors in shoot api-
cal meristem activity (Gaillochet et al., 2015). Among
the light signaling genes were the negative regulators
of photomorphogenesis B-BOX DOMAIN PROTEIN18,
SPA1-RELATED3, and FAR-RED ELONGATED
HYPOCOTYL1 required for phyA signaling (Li et al.,
2011). The photoperiod-related gene FLOWERING
bHLH3 and the circadian clock genePSEUDO-RESPONSE
REGULATOR9 also were among the compound shoot-
specific DEGs.

In the root, the compound and dark responses were
identical, and no submergence root-specific genes
were identified (Fig. 4, A and B). Interestingly, the root-
specific up-regulated genes consisted mainly of
chloroplast-localized and photosynthesis-related genes
(Supplemental Data Set S1, Sheet H). This included at
least seven genes involved in photosystem biosynthesis
and maintenance, five additional proteins localized to
the chloroplast, one essential for chlorophyll biosyn-
thesis, and two involved in photorespiration. Only
a few root-specific down-regulated mRNAs were
identified, which included two nitrate transporters and

a MATE efflux protein. In summary, mostly growth,
developmental, and hormonal regulatory gene tran-
scripts were stress induced in the shoot, while
chloroplast-encoded and photosynthesis-associated
genes dominated the root-specific DEGs.

Induction of the Core Hypoxia Gene Set Is Organ
Independent Only When the Darkness Component
Is Excluded

Previous studies identified 51 genes that were
up-regulated in Arabidopsis seedlings upon hypoxic
stress, regardless of organ or cell type (Mustroph et al.,
2009), and that are frequently used as core hypoxia
response markers. In soil-grown plants, roots and
shoots have distinct oxygen profiles under both con-
trol and submerged conditions. Soil-grown roots of
Arabidopsis are constitutively hypoxic, and upon sub-
mergence, internal oxygen levels drop further from 6% to
approximately 0% pO2 KPa within 3 h (Lee et al., 2011).
Although the oxygen dynamics of Arabidopsis leaf
blades is unknown, the petiole goes from 17% to 6% pO2
KPa upon submergence in the same time span. We in-
vestigated the expression pattern of the 51 cell type-
independent hypoxia-responsive genes in the context of
the severe and mild low oxygen levels in the submerged
root and shoot, respectively (Fig. 4, A, green dots, andC).

Amajority of core hypoxia geneswere regulated in both
shoots and roots upon compound, darkness, or submer-
gence. However an organ-independent hypoxia signature
response, involving the up-regulation of most of the
51 genes,was observed only for the submergence response
(when the effects of darknesswere excluded; Fig. 4C). This
submergence response alsowas very similar inmagnitude
in the roots and shoots. In contrast, for the compound re-
sponse, 18 of the 51 core hypoxia genes were classified as
shoot specifically regulated (Porgan*treatment, adj. , 0.05 in six
or more accessions). Only a few of the hypoxia marker
genes were classified as root or shoot specific upon dark-
ness. However, during darkness, the root had a predom-
inant down-regulation of most core hypoxia genes, and in
the shoot, several were dark up-regulated in Cvi-0 and
Ws-2 (Fig. 4C). Interestingly, a small subset was induced
upon darkness in both organs (AT4G27450, AT1G33055,
AT1G19530, AT4G39675, AT5G61440, andAT3G61060).
These were identified previously as induced by carbon
starvation (Usadel et al., 2008) and include EXORDIUM
LIKE1 (Schröder et al., 2011). In conclusion, it is clear
that, for the compound response, the behavior toward
darkness is an important determinant of the difference
between the shoot and root for these cell type-
independent hypoxia marker genes (Fig. 4, A and C).

Conserved AS Events Indicate an Additional Layer of
Regulation in the Adaptation to Compound, Darkness, and
Submergence Stresses

Using mRNAseq as a platform, we were able to in-
vestigate transcriptome reconfiguration at the mRNA
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Figure 4. Organ-specific transcriptome reconfiguration and low-oxygen-responsive genes. A, Scatterplot showing the mean
response of DEGs that show organ-dependent regulation by the treatment. Gray circles represent genes with a variable organ-
specific response (Porgan*treatment, adj., 0.05 in at least one accession). Black circles represent genes that show robust organ-specific
behavior (Porgan*treatment, adj. , 0.05 in six, seven, or eight accessions). Blue circles represent shoot-specific genes that have a robust
organ-treatment interaction (black) but also a robust treatment response in the shoot (Padj., 0.05 in six, seven, or eight accessions)
but not a robust treatment response in the same direction in the root (Padj. , 0.05 in six, seven, or eight accessions). Red circles
represent root-specific genes that are similar in response to the shoot-specific genes. Green circles represent cell type-
independent hypoxia-responsive genes (51 core hypoxia genes) as defined by Mustroph et al. (2009). B, Clustering of the
organ-specific behavior for compound, darkness, and submergence responses identified in A. The log2 FC of root (R)- and
shoot (S)-specific genes (red and blue circles in A) is shown. The accessions are ordered from left to right for each organ and
treatment: Cvi-0, Bay-0, Ita-0, Col-0 (gl), Kas-1, Lp2-6, Ws-2, and C24. Yellow indicates up-regulation and cyan indicates
down-regulation. Genes shown and fold change values are given in Supplemental Data Set S1, Sheet H. C, Log2 FC of the
51 core hypoxia genes. The accessions are ordered as follows: Cvi-0, Bay-0, Ita-0, Col-0 (gl), Kas-1, Lp2-6, Ws-2, and
C24 (left to right for each organ and treatment). Yellow indicates up-regulation and cyan indicates down-regulation.

Plant Physiol. Vol. 172, 2016 675

Natural Variation in Submergence Tolerance

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lp

h
y
s
/a

rtic
le

/1
7
2
/2

/6
6
8
/6

1
1
5
9
2
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://www.plantphysiol.org/cgi/content/full/pp.16.00472/DC1


isoform level corresponding to variations in mRNA
splicing events. These events can include exon skip-
ping, mutually exclusive (alternative) exon usage, and
alternative donor and acceptor splice sites that can alter
protein-coding and untranslated regions, all of which
are generally termed AS. Another event is intron re-
tention (IR), which involves the retention of introns in
the mature mRNA. IR events that result in an open
reading frame that is upstream of an intron junction
typically target transcripts for nonsense-mediated de-
cay and, therefore, are unstable mRNA isoforms
(Kazan, 2003). We focused on splice site selection and
IR variants similar to the method described by Chang
et al. (2014) by characterizing the relative increase or
decrease in specific variants between samples. More
specifically, for each accession, we characterized AS
and IR induced by the three treatments (compound,
darkness, and submergence), and for each of the three
conditions (AL, AD, and SD), we characterized the
relative variant usage between the eight accessions.

Considerable levels of both IR and AS events were
identified among the eight accessions, which was
largely independent of the treatment (Supplemental
Fig. S6, A and C). In total, 1,819 and 1,014 IR events
were treatment independent (log2 FC. 1, Padj., 0.01) in
the root and shoot, respectively (Supplemental Fig. S6B).
For AS, 2,061 and 1,798 treatment-independent root and
shoot events (log2 FC . 1, Padj. , 0.01) were identified
(Supplemental Fig. S6D). The consistency and strong
overlap in AS and IR across the three conditions (AL,
AD, and SD) indicated that these are robust differences
between the accessions. However, with respect to the
acclimative responses to darkness, compound, and
submergence stress, the treatment-induced splicing
events were of more interest (Fig. 5). While 1,214 and
2,122 genes with IR events (log2 FC. 1, Padj., 0.01 in at
least one accession) were found in the root and shoot,
the corresponding numbers for treatment-induced AS
events (log2 FC. 1, Padj., 0.01 in at least one accession)
were 210 (root) and 2,471 (shoot) genes. For both AS
and IR events, the overlap between accessions was
minimal (Fig. 5, B and D). However, the genes with
conserved splicing behavior across the accessions were
of interest as robust examples of darkness- and
submergence-induced posttranscriptional regulation.
Indeed, the 167 and 63 genes in the shoot and root that
showed IR in five or more accessions showed consistent
behavior across the accessions, and, depending on the
gene, IR was favored either upon the stress condition
(AD and SD) or under air light conditions (Supplemental
Figs. S7 and S8).

Compared with IR, fewer treatment-dependent con-
served AS events were identified, with 15 and 31 genes
displaying AS in five or more accessions for roots
and shoots, respectively (Fig. 6). For these genes, this
additional aspect of transcriptome reconfiguration in
response to compound, darkness, or submergence
stress would not only affect mRNA stability, as is the
case for IR, but potentially also could lead to altered
protein function and localization or influence other

posttranscriptional processes such as translational effi-
ciency. These regulatory processes would be in addi-
tion to the differences we already observed in the
total transcript abundance of these genes between the
treatments (Supplemental Fig. S9). To verify the valid-
ity of the observed AS patterns, independent real-time
quantitative reverse transcription (qRT)-PCR analyses
using Cvi-0 and C24 accessions as representatives were
done. We tested six genes that, in addition to showing
distinct AS patterns, also showed strong transcriptional
regulation. All six genes tested confirmed the mRNA-
seq-based evidence of AS (Fig. 7). This also revealed
that AS beganwithin a few hours of stress and persisted
at elevated levels over 48 h of compound, darkness, and
submergence treatments (Fig. 7). For most genes tested,
the increase in splice variant isoform(s) occurred rap-
idly and then declined somewhat (e.g. ROPGEF11
[AT1G52240]; Fig. 7). Several of the 46 genes with
conserved AS events could have important roles in
acclimation to the imposed stress.

For instance, in the root, ROPGEF11 preferentially
produced a short transcript over a longer transcript
isoform under darkness and compound stress, with
total transcript abundance elevated by both stresses
(Figs. 6 and 7). The shorter isoform lacks the ROP
nucleotide exchanger domain (PF03759), which for
ROPGEF11 is implicated in phytochrome interactions
in the regulation of root development (Shin et al., 2010),
and instead contains a dynein light chain domain
(PF01221; Fig. 8A). Another interesting genewasARR1,
a cytokinin response regulator (Kieber and Schaller,
2014) that was darkness induced and accumulated an
alternatively spliced variant in the shoot and root (Figs.
6 and 8B). Although AS of the pre-mRNA of ARR1 re-
sults in transcript isoforms that encode two distinct
proteins, both contain all known conserved domains of
the receptor but differ in their C termini. The isoform
variant of ARR1 that is elevated in darkness also has a
shorter and distinct 39 untranslated region, which could
influence the interaction with RNA-binding proteins
that alter mRNA stability or translation.

Among the genes displaying AS was a relatively
large group of genes associated with metabolic func-
tions (Fig. 6). Many of these were differentially regulated
by either darkness or submergence. These included two
Fru bisphosphate aldolases (FBA1 and FBA5), a Suc
6-phosphate phosphorylase, and GLUTAMATE
DEHYDROGENASE2. Also of relevance was PEROXI-
SOMALNAD-MALATEDEHYDROGENASE2 (PMDH2),
which is required for redox balance during fatty acid
breakdown in the peroxisome (Pracharoenwattana
et al., 2007). PMDH2 AS upon darkness and submer-
gence favored an enzyme form with increased activity
(Fig. 8C). Of particular interest were the AS patterns of
PPDK (AT4G15530) and LKR/SDH (AT4G33150).PPDK
is a single-copy gene that is induced by low oxygen in
a variety of species (Huang et al., 2008). Of the five
PPDK transcript isoforms, the shortest transcript
(AT4G15530.2) preferably and progressively accumu-
lated upon darkness and submergence (Figs. 7 and 8D).
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This transcript encodes the cytosol-localized form of
PPDK (Parsley and Hibberd, 2006) that is suggested to
be important during amino acid remobilization and
senescence (Taylor et al., 2010) and for gluconeogenesis
(Eastmond et al., 2015). Interestingly, several other
genes involved in gluconeogenesis were quantitatively
up-regulated or down-regulated in response to the
compound and darkness treatments (Supplemental
Fig. S10). Of these, only PPDK showed pronounced
up-regulation across accessions under submergence.
LKR/SDH (AT4G33150) encodes a bifunctional en-

zyme catalyzing the first two steps of Lys catabolism.
While the LKR component of the protein works in the
Lys catalytic direction, the SDH component has bidi-
rectional enzymatic activity (Zhu et al., 2002). Besides
being strongly up-regulated by darkness and com-
pound stress in roots and shoots (Supplemental Fig. S9),
AS of LKR/SDH was evident in the root (Figs. 6, 7, and
8E), with the longer transcript being favored under both
conditions (Fig. 7E). The long transcript results in a
protein with both LKR and SDH activity, whereas the
short transcript only has SDH activity (Zhu et al., 2002).
In the shoot, a relatively large amount of AS occurred

in transcripts related to photorespiration (GLYCERATE
KINASE and GLYCOLATE OXIDASE1), light capture
(PHOTOSYSTEM 1 LIGHT HARVESTING COMPLEX
GENE1, a putative cytochrome b6f complex subunit, and

NONPHOTOCHEMICAL QUENCHING1 [NPQ1] and
NPQ4), CO2 sensing (BETA-CARBONIC ANHYDRASE1
[BCA1] andBCA4), andplastid development (F-box family
protein, PLASTID REDOX INSENSITIVE2 [PRIN2],
and TRANSLOCON AT THE OUTER ENVELOPE
MEMBRANE OF CHLOROPLAST). These AS variants do
not necessarily lead to distinctions in the encoded protein
but modify untranslated regions of the mRNA (Fig. 8,
F and G) and, hence, could influence other posttranscrip-
tional processes. Intriguingly, both BCA1 and BCA4 dis-
played differences in the 59 untranslated region between
the treatments (Fig. 8, H and I). The isoforms preferen-
tially accumulating in darkness and submergence encode
N-terminally truncated proteins that retain enzymatic ac-
tivity but lack the sequences responsible for specific sub-
cellular targeting (BCA1 to the chloroplast andBCA4 to the
plasma membrane; Fabre et al., 2007). Altogether, these
datademonstrate thatAS can serve as aposttranscriptional
control point that impacts the accumulation, location, and
activity of a number of proteins that regulate carbon flux.

Natural Variation in Submergence Tolerance Is Associated
with Relatively Minor Transcriptomic Differences in a
Group of Putative Tolerance Genes

A previous study that used an identical experimental
setup showed considerable variation in the tolerance to

Figure 5. AS and IR upon compound, darkness, and submergence stress. A, Histograms show the magnitude of IR (calculated as
themaximumdifference in IR) upon the treatments for each accession. B, Number of genes in the shoot (green bars) and root (gray
bars) that show IR upon treatment (compound, dark, and submergence), and their overlap between accessions [log2(obs/exp). 1
and Padj. , 0.01]. C, Histograms show the magnitude of AS (calculated as the maximum difference in AS) upon the treatments for
each accession. D, Number of genes in the shoot (green bars) and root (gray bars) that are alternatively spliced upon treatment
(compound, dark, and submergence), and their overlap between accessions [log2(obs/exp) . 1 and Padj. , 0.01].
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complete submergence in the dark (compound stress)
among 86Arabidopsis accessions (Vashisht et al., 2011).
This variation could not be ascribed to differences in
anatomy, decline in organ oxygen content, or initial
carbon resources. Based on that study, three accessions

profiled here were classified as submergence sensitive
(Cvi-0, Bay-0, and Ita-0) and three as tolerant (Lp2-6,
Ws-2, and C24). The tolerant accessions also performed
better when their survival under submerged conditions
(SD) was compared with their survival under darkness

Figure 6. The conserved compound-, darkness-, and submergence-induced AS. For each variant-identifying gene region (VIGR),
the deviation from the expected read counts if no change in variant usage upon treatment would take place [log2(obs/exp)] is
shown for roots and shoots. Yellow indicates more, and cyan fewer, reads than expected for a specific VIGR. All genes that are
alternatively spliced [log2(obs/exp). 1 and Padj. , 0.01] in five or more genotypes are shown. For each condition, the genotypes
are ordered from left to right: Cvi-0, Bay-0, Ita-0, Col-0 (gl), Kas-1, Lp2-6, Ws-2, and C24.
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Figure 7. qRT-PCR validation of a selection of genes alternatively spliced upon compound, darkness, and submergence. Fold
change of transcript abundance is shown in accessions Cvi-0 and C24 upon compound, darkness, and submergence of six genes
that were identified as alternatively spliced upon the treatment in a conserved manner across accessions. Primers were used
that either amplified all transcript variants (red lines) or selectively amplified only specific variants (blue and green lines). Root
or shoot tissue was analyzed depending on the organ in which AS was identified. Details for each gene are as follows: LYSINE-
KETOGLUTARATE REDUCTASE/SACCHAROPINE DEHYDROGENASE (AT4G33150, LKR/SDH, root), the blue line repre-
sents AT4G33150.1 and AT4G33150.2; RHO GUANYL-NUCLEOTIDE EXCHANGE FACTOR11 (AT1G52240, ROPGEF11,
root), the blue line represents AT1G52240.1; GLUTAMATE DEHYDROGENASE2 (AT5G07440, GDH2, root), the blue line
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(AD; submergence stress). Based on that prior study,
genes that responded differently to compound and
submergence stress were identified by comparing the
tolerant and sensitive accessions (Ptolerance*treatment, adj. ,

0.05; Supplemental Data Set S1, Sheet K). In this way,
33 and five potential tolerance genes were identified
in the shoot for compound and submergence stress,
respectively (Fig. 9A; Supplemental Data Set S1, Sheet
K). A larger number of potential tolerance genes
were identified for the root (47 compound and 43 sub-
mergence). Although this relatively large number of
potential tolerance genes could be responsible for differ-
ential tolerance among these accessions, the magnitude
of the difference was not always large (Fig. 9B).

Interesting shoot potential tolerance genes with a
stronger overall increase in expression in tolerant
genotypes included the inorganic pyrophosphate
(PPi)-utilizing and gluconeogenic enzyme PPDK
(AT4G15530), a gene encoding a natural antisense RNA
(AT4G20362), and a RABGTPase homolog (AT4G20360).
Also predominantly up-regulated in tolerant geno-
types was plant DEFENSIN1.2b (AT2G26020). Addi-
tionally, the shoot potential tolerance genes included
several growth- and cell wall-associated genes such
as XYLOGLUCAN ENDOTRANSGLUCOSYLASE/
HYDROLASES4, an auxin-responsive GH3 family pro-
tein, and EXPANSIN A16, which were more induced in
the sensitive accessions (Supplemental Data Set S1,
Sheet K). This suggested a more conserved growth re-
sponse in the tolerant accessions in our treatment con-
ditions. To assess whether this was indeed true, petiole
elongation rates of a sensitive (Cvi-0) and tolerant (C24)
accession were measured as a marker for shoot growth
(Supplemental Fig. S11). The tolerant C24 had a greater
reduction in petiole elongation rates (relative to AL)
compared with Cvi-0 in both light and dark submerged
conditions. In the dark, Cvi-0 petiole elongation rates
were similar to those of control plants. In contrast, in
C24, petiole elongation rates were reduced to less than
33% of control (AL) rates.

The potential tolerance genes from the root were of
a different nature compared with the shoot, and no
overlap in gene composition was found between
the two organs. For instance, FERRIC REDUCTION
OXIDASE4 (FRO4) and FRO5 (AT5G23980 and
AT5G23990), which play important roles in the uptake
of iron and copper from the soil (Bernal et al., 2012; Jain
et al., 2014), were identified. Additionally, a vacuolar
iron transporter and a metal transporter (VACUOLAR
IRON TRANSPORTER-LIKE5 [AT3G25190] and ZRT/
IRT-LIKE PROTEIN2 [AT5G59520]) were classified as
potential tolerance genes. All of these genes had

stronger down-regulation in the tolerant accessions,
especially upon submergence. Another root potential
tolerance gene, LOW PHOSPHATE ROOT1 (AT1G23010),
is involved in sensing and signaling of low inorganic
phosphate availability in the root in an iron-dependent
manner (Svistoonoff et al., 2007; Müller et al., 2015)
and was up-regulated in the sensitive and down-
regulated in the tolerant accessions (Supplemental
Data Set S1, Sheet K).

Interestingly, several of the potential tolerance genes
identified here have been identified previously as com-
monly hypoxia regulated throughout the plant kingdom
(Mustroph et al., 2010). This was especially the case in
the root, with tolerance group-dependent regulation
upon the compound stress for HYPOXIA UNKNOWN
PROTEIN37 (AT2G41730), SIMILAR TO RCD ONE5
(SRO5; AT5G62520), an unknown protein (AT3G23170),
and CALMODULIN-LIKE38 (AT1G76650), recently
shown to be a calcium-regulated cytosolic RNA-
binding protein (Lokdarshi et al., 2016). A close ho-
molog of SRO5, namely SRO4 (AT3G47720), also was
identified as a tolerance gene in the root. For the shoot
compound stress, this category of genes included PPDK
(AT4G15530) and PYRUVATE DECARBOXYLASE1
(AT4G33070).

DISCUSSION

Anatomical and physiological features contribute
little toward the large variation in the tolerance to
darkness and submergence observed in Arabidopsis
accessions (Vashisht et al., 2011). For this reason, the
short-term transcriptomic acclimation was investigated
in a selection of eight accessions under highly con-
trolled conditions that closely mimic natural flooding
events in the field. Furthermore, the experimental design
made it possible to disentangle the effects of darkness
from the responses caused by reduced gas diffusion (i.e.
oxygen, CO2, and ethylene) in the underwater environ-
ment. This allowed us to identify conserved processes in
relation to the naturally occurring stress while simulta-
neously identifying accession- and tolerance-specific
processes. The systematic comparison of the shoot and
root transcriptomic adjustments of eight accessions to
flooding and starvation stress revealed robust conser-
vation in a response, which encompasses specific tran-
script isoform production but also contained subtle and
possibly significant distinctions between flooding-
tolerant and intolerant accessions. Our results empha-
size that understanding plant adaptation to flooding
requires consideration of its compound nature, which
often includes reduction in light or even complete

Figure 7. (Continued.)
represents AT5G07440.1 and AT5G07440.2 and the green line represents AT5G07440.1 and AT5G07440.3; ERYTHRONATE-
4-PHOSPHATE DEHYDROGENASE (AT1G75180, E4PDH, shoot), the blue line represents AT1G75180.2 and AT1G75180.3;
FRUCTOSE-BISPHOSPHATE ALDOLASE1 (AT2G21330, FBA1, shoot), the blue line is specific for AT2G21330.2; PYRUVATE
ORTHOPHOSPHATE DIKINASE (AT4G15530, PPDK, shoot), the blue line represents all transcripts, excluding AT4G15530.2.
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darkness in combination with a severe reduction of gas
exchange.

Alternative Metabolic Reserve Mobilization as a
Coordinated Transcriptional Response to Darkness
and Submergence

Darkness and submergence both cause similar
physiological changes in affected plants, including
carbohydrate depletion, utilization of alternative car-
bon sources, and chlorophyll degradation. However,

Arabidopsis has an amazing capacity to buffer its me-
tabolism to unexpected darkness (Graf et al., 2010). An
unexpected early night leads to appropriate reductions
in the rate of starch breakdown. This adjustment allows
the available carbohydrate reserves to last throughout
the longer than expected night and thus prevents
starvation-related transcriptional responses. However,
our data set revealed transcriptome reconfigurations
typical of starvation responses already within 4 h. This
suggests that imposing darkness or submergence stress
during approximately the first half of the light period

Figure 8. Coverage plots of a selection of genes that are alternatively spliced in response to the imposed treatments. Coverage
plots were normalized to the maximum read depth or a percentage of maximum read depth. Gene models (introns, line; exons,
thick box; untranslated region, thin box) are shown below ordered from the first model (0.1) onward and are depicted from left to
right in the 59 to 39 direction. Red and green lines indicate the locations of intact protein domains specific to certain transcript
isoforms. A, ROPGEF11, AT1G52240, in Bay-0. Red domain, dynein light chain domain (PF01221); green domain, PRONE
(PF03759). B, ARR1, ARABIDOPSIS RESPONSE REGULATOR1, AT3G16857, in Bay-0. C, PMDH2, PEROXISOMAL NAD-
MALATE DEHYDROGENASE2, AT5G09660, in Bay-0. Red domain, NAD-binding domain; green domain, malate dehydro-
genase a/b C-terminal domain. D, PPDK, AT4G15530, in Bay-0. E, LKR/SDH, AT4G33150, in Bay-0. Red domain, LKR activity;
green domain, SDH activity (Zhu et al., 2002). F, NPQ1, NONPHOTOCHEMICAL QUENCHING1, AT1G08550, in Bay-0. G,
PRIN2, PLASTID REDOX INSENSITIVE2, AT1G10522, in Bay-0. H and I, BCA1 and BCA4, AT3G01500 and AT1G70410, in
Lp2-6.
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under short-day conditions is taxing on the buffering
capacity of Arabidopsis. The metabolic buffering ca-
pacity has been shown to require the circadian clock
and targets starch breakdown (Graf et al., 2010).
Consistently, in our analysis, starch breakdown and
biosynthesis were predominantly down-regulated
upon darkness, an effect that was even stronger when
coupled with submergence. However, while the clock
and circadian machinery also were affected by dark-
ness, there was no additional effect of submergence, in
linewith the large contribution of light cues in entraining
the circadian rhythm (Hsu and Harmer, 2014).

Instead of starch, the transcriptional activation of
fatty acid and amino acid breakdown was observed,
indicating the occurrence of autophagy (intracellular
degradation and recycling of cellular components).
Arabidopsis mutants defective in autophagy are highly
sensitive to submergence (Chen et al., 2015). Several
of these genes involved in fatty acid and amino acid
breakdown are crucial to maintain energy status
and performance during stress conditions or in non-
photosynthetic developmental stages. This was shown
in mutant studies on LKR/SDH (Lys breakdown) and
PMDH2 (fatty acid b-oxidation) in heterotrophic
germinating seeds (Pracharoenwattana et al., 2007;
Angelovici et al., 2011). Interestingly, for both these
genes, specific transcript isoforms were preferentially
induced upon compound, darkness, and submergence
stress. For LKR/SDH, the preferentially induced longer
transcript favors Lys breakdown (Tang et al., 2002), and
for PMDH2, isoformswith the intact enzymatic domain
preferentially accumulated, suggesting increased en-
zymatic activity upon the imposed stresses. Several
other genes encoding key metabolic enzymes of the

amino acid and fatty acid breakdown pathways dis-
played AS upon compound, darkness, and submer-
gence (Supplemental Fig. S12). This suggests that AS
provides an additional layer of regulation that could
have a significant impact on metabolite fluxes during
these stress conditions.

A strong up-regulation of transcripts of glyoxylate
pathway enzymes also was observed. The glyoxylate
pathway shortcuts a part of the tricarboxylic acid cycle
(from isocitrate to succinate), thereby preventing the
loss of two CO2 molecules and thus preserving fixed
carbon. This suggests that protein and fatty acid
breakdown is not necessarily being utilized in respira-
tion and energy production but also is used for sugar
biosynthesis. The activation of key steps of the gluco-
neogenic pathway, involving PEP CARBOXYKINASE
(PCK ) and PPDK, upon compound, darkness, and
submergence further points toward the utilization
and mobilization of alternative carbon resources
(Supplemental Fig. S12). PPDK regulation was of spe-
cial interest since the cytosolic transcript isoform that
was preferentially up-regulated has been shown to
increase nitrogen mobilization when overexpressed
(Taylor et al., 2010). Furthermore, PPDK was more
strongly up-regulated upon compound stress in the
tolerant accession C24 than the sensitive Cvi-0, a pat-
tern that persisted over time (Fig. 7). Besides their
function in C4 photosynthesis, PCK and PPDK have
been studied primarily in the context of their gluco-
neogenic role in reserve mobilization in germinating
seeds (Penfield et al., 2004; Delgado-Alvarado et al.,
2007; Malone et al., 2007; Eastmond et al., 2015) and
around vein tissue, where they also display high ac-
tivity (Hibberd and Quick, 2002; Brown et al., 2010).

Figure 9. Flooding tolerance-dependent compound, darkness, and submergence responses. A, Number of DEGs in the shoot and
root where the treatment response depends on the tolerance group (Ptolerance*treatment, adj. , 0.05). Flooding tolerance classification
is based on Vashisht et al. (2011). Sensitive accessions are Cvi-0, Bay-0, and Ita-0, and tolerant accessions are Lp2-6, Ws-2, and
C24. B, Tolerance-specific DEGs (from A) that show distinct responses between the flooding-tolerant (teal circles) and sensitive
(yellow circles) accessions and their deviation from the average treatment response (for root and shoot compound and sub-
mergence treatments). Within each group, left graphs show DEGs with fold change higher in the tolerant accessions and right
graphs show DEGs with fold change higher in the sensitive accessions.
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Furthermore, PPDK and PCK are up-regulated in sub-
mergedRumex acetosa (van Veen et al., 2013), anoxic rice
coleoptiles (Narsai et al., 2009), and waterlogged Ara-
bidopsis roots (Hsu et al., 2011).
In line with previously identified roles and functions,

we hypothesize that under compound, darkness, and
submergence stress, the enzymes PCK and PPDK could
occupy a key function in fueling starving plant organs
with reserves alternative to starch, possibly by redi-
recting energy-rich metabolites from source leaves to
sink meristems and roots. An additional adaptive
benefit of utilizing alternative resources to starch is that
the maintenance and upkeep associated with high
protein levels and organelles (Amthor, 2000) can be
minimized. Thus, sacrificing older leaves, minimizing
the requirements of young leaves, and concentrating
resources in the meristems might provide a useful
strategy to persist under adverse flooded conditions.
A common observation in studies profiling meta-

bolic changes upon flooding is an increase in the levels
of certain amino acids. This has been documented, for
instance, in submerged rice shoots (Barding et al.,
2013), anoxic rice coleoptiles (Narsai et al., 2009), and
waterlogged poplar (Populus spp.) and Lotus japonicus
(Kreuzwieser et al., 2009; Rocha et al., 2010). Indeed, in
senescing leaves, increased protein breakdown and
amino acid catabolism coincide with increased amino
acid content (Watanabe et al., 2013; Hildebrandt et al.,
2015). Similarly, in petioles of submerged R. acetosa
plants, a large increase in free ammonia was observed
upon submergence, suggesting an increased amino
acid breakdown (van Veen et al., 2013). Further met-
abolic evidence for amino acid catabolism comes from
Arabidopsis mutants defective in energy starvation
signaling. In these lines, a similar suite of catabolic and
gluconeogenic genes were regulated as observed here,
including PPDK, and a subsequent altered metabolic
profile was observed (Hartmann et al., 2015). How-
ever, it is difficult to discern metabolic fluxes from
transcriptomic and metabolomic data except when
start or end products of specific routes are quantified.
Indeed, Rocha et al. (2010) and Antonio et al. (2016)
provide a model based on isotope flux determination,
specific to low oxygen availability induced by water-
logging, where the intertwining of nitrogen metabo-
lism and the tricarboxylic acid cycle potentially
doubles ATP production relative to glycolysis alone
when the mitochondrial electron transport chain is
compromised. This requires pyruvate to be funneled
to Ala, to prevent pyruvate-induced respiration,
blocking of the tricarboxylic acid cycle at succinate
dehydrogenase (also down-regulated in our study;
Supplemental Fig. S12), and activation of the g-amino
butyric acid shunt. These, however, could be funda-
mentally different processes from what is observed
under our experimental conditions, given that the bulk
of the transcriptomic changes we observed occurred in
response to darkness in air-grown plants, where the
advantages of these adaptations to low oxygen would
be less apparent.

Although we assign a significant role to PPDK in
resource mobilization, its relevance during hypoxic
conditions has been attributed previously to its role in
the low-oxygen-induced switch to PPi-dependent gly-
colysis (Huang et al., 2008; Mustroph et al., 2014b). The
primary advantage of PPi-utilizing enzymes such as
PPDK is the conservation of ATPs and the yield of ad-
ditional ATPs for each sugar molecule going through
glycolysis. This could be essential for survival during
low-oxygen conditions when the electron transport
chain, which provides the bulk of ATP, is hampered.
However, the activation of PPDK already under dark-
ness strongly favors a role in gluconeogenesis, since
under these conditions the ATP gain is almost negligi-
ble. Although PPi-utilizing enzymes do provide a more
energetically favorable route during anaerobic metab-
olism, whether these pathways are preferred during
low-oxygen conditions is now under scrutiny. Analyses
of Suc synthase mutants under hypoxic conditions
suggest that, despite hampered performance under
flooding stress, a major portion of the carbon provided
for glycolysis is still generated by the ATP-dependent
invertase and not via the PPi-linked Suc synthase route,
at least in Arabidopsis (Santaniello et al., 2014). In the
context of the role of PPDK as well, a reassessment
might be required for its precise role during hypoxic
glycolysis.

The observation that, upon submergence, the shoot
shows an amplification of the darkness response un-
derscores the knowledge that plants tightly adjust their
metabolism to suit their environmental conditions.
Additionally, we observed that the transcriptional
changes identified here are typical of carbon and energy
starvation, which requires resource mobilization. In
addition to this, the differential regulation of translation
is another regulatory control point under hypoxia and
in darkness (Branco-Price et al., 2008; Pal et al., 2013;
Juntawong et al., 2014). Our studies also suggest that
AS might play an important role in this response as an
additional layer of regulation in the coordinated mo-
bilization of existing and alternative reserves to endure
starvation conditions and prolong underwater survival
(Supplemental Fig. S10).

Organ-Specific Transcriptome Reconfiguration and
Oxygen-Dependent Responses

Previous studies have shown that, following low-
oxygen stress and submergence, the root and shoot
transcriptomes are reconfigured in a distinct manner
underscoring variation between these organs in cues
and protective mechanisms (Ellis et al., 1999; Mustroph
et al., 2009, 2014a; Lee et al., 2011). The differences be-
tween root and shoot in their transcriptome responses
to darkness and submergence signals can be attributed
to several factors, including the autotrophic and heter-
otrophic natures of the shoot and root, respectively,
different cellular identities and composition, distinct
physiological functions, and varying oxygen profiles.
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Endogenous oxygen levels are determined primarily by
a balance between the internal production/consumption
and the rate of inward diffusion from the surrounding
environment (soil, air, or water). In Arabidopsis roots,
oxygen levels drop from 6% to 0% and in the petiole
from 17% to 6% pO2 KPa (Lee et al., 2011) within 3 h
(oxygen levels in the lamina are unknown). The tran-
scriptomic profiling of both organs using mRNAseq
allowed for a detailed investigation of organ-specific
responses to darkness, submergence, and the role of
oxygen herein.

The large-scale differences between the organs were
typified by a higher number of DEGs and stronger gene
expression fold changes in the shoot than in the root. A
possible explanation for the greater responsiveness of
the shoot is that roots continuously habituate a dark
environment under control (AL) conditions, meaning
that the transition to dark treatment would have had a
relatively smaller impact. The fact that Arabidopsis
roots are nonphotosynthetic and constitutively a sink
also may contribute to their less dramatic responsive-
ness. More striking, however, was the lack of an am-
plification of the darkness responses in the compound
transcriptome behavior in the root. This also could re-
flect the existing sink-source relationship between the
root and shoots: roots typically dependent on the shoot
for carbon resources were already maximally starved
after the dark treatment, whereas the shoot had more
reserves to buffer the response.

Despite the fewer transcriptional changes observed
in the root, several processes were identified as root
specific. Plants have several sensing and signaling
mechanisms to detect changes in redox and maintain
redox homeostasis, which is important in all aspects of
plant growth and development. Interestingly, genes of
this category were prevalent among the root-specific
genes such as thioredoxins and rubredoxin. Further-
more, many photosynthesis-related genes were among
the root-specific genes (e.g. PSI and PSII proteins). The
increased expression of these genes and several other
chloroplast-associated genes in the roots indicates the
presence of chloroplasts in this organ, likely in the
cortex (Dinneny et al., 2008). While root greening has
been described before, it is known to occur only in the
presence of a light signal (Usami et al., 2004; Kobayashi
et al., 2012). Elevated transcripts encoding photosynthesis-
chloroplast-associated proteins in roots were reported
previously in hypoxic/flooded seedlings of Arabi-
dopsis and Rorippa spp. (Chang et al., 2012; Sasidharan
et al., 2013). In contrast to this work, the roots in these
studies were at some point exposed to light signals.
Sugar starvation and salt stress also are reported to
induce photosynthesis-associated genes in roots
(Sheen, 1990; Baena-González et al., 2007; Dinneny
et al., 2008). It has been speculated that this might be
triggered by reactive oxygen species (ROS) generated
during the stress and with a potential role in ROS
amelioration (Dinneny et al., 2008). The relevance of the
expression of these genes in a root-specific manner
upon darkness and compound stress in the absence of a

light signal remains intriguing. The regulation of ROS
production is likely a relevant function in stressed roots.
However, whether this is the case here, and what the
underlying mechanism is, remain to be determined.

Unlike the root, the shoot responded differently
to darkness and submergence. Shoot-specific genes
up-regulated by these conditions across the accessions
were associatedwith growth, senescence, and oxidative
stress, all elements of the underwater response. Al-
though there was an up-regulation of transcripts of
genes associated with growth and growth-associated
hormonal signaling (GA and ABA) in the shoot, the
petiole elongation response to dark and compound
stress was varied across accessions (Supplemental Fig.
S11; Vashisht et al., 2011). Considering that whole
shoots were sampled here, the involvement of these
shoot-specific genes in mediating changes in leaf ex-
pansion or perhaps hyponasty cannot be ruled out.
Nevertheless, the shoot core gene set reflects growth
regulation and extensive regulation of cell wall-
modifying proteins and growth regulatory hormones.
This likely is reflective of specific growth strategies that
are an important mechanism to deal with both flooding
(van Veen et al., 2014b) and low-light conditions
(Gommers et al., 2013).

Interestingly, among the compound shoot-specific
genes was a subset of core hypoxia genes. Although
previous studies have established their cell type-
independent hypoxia up-regulation, the shoot-specific
regulation here was not surprising (Mustroph et al.,
2009). Oxygen measurements on soil-grown plants
in an identical setup revealed that, despite being in
well-aerated soils, these soil-grown roots were already
hypoxic (approximately 6% pO2 KPa). Considering the
already hypoxic conditions of roots under control
conditions, it can be speculated that the constitutive
expression of these genes is associated with acclimation
to hypoxic conditions. Unlike seedlings grown on ver-
tical agar plates that experience a normoxic-to-hypoxic
transition, in our system, submerged roots transition
from hypoxic to severely hypoxic conditions (Lee et al.,
2011). Interestingly, it has been shown that low oxygen
in the root tip only is sufficient to activate low-oxygen-
responsive genes throughout the entire root (Mugnai
et al., 2012). In active meristems, hypoxia is a common
event during periods of high activity (van Dongen and
Licausi, 2015). Interestingly, darkness caused a signifi-
cant repression of the core hypoxia genes in the root.
This suggests that, although similar physiological
responses are triggered during submergence and
darkness, associated with starvation conditions, tran-
scriptomic responses are prioritized to adapt to star-
vation in the presence of oxygen. The core hypoxia
signature including the inefficient fermentativemode of
energy generation would then be a wasteful mode of
energy generation under carbon-limiting conditions.

Clearly, in the final compound response, the behav-
ior in response to darkness largely determines the
difference between the shoot and root for these cell
type-independent hypoxia-responsive genes (Fig. 4C).
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However, overall, a shift to severe or mild low-oxygen
levels did not lead to a different response when
the effects of darkness were disregarded, and only
submergence-induced hypoxia was considered. Even
the magnitude of the core hypoxia gene up-regulation
was similar for shoots and roots (Fig. 4, A and C). Re-
markably, these distinct transcriptomic reconfigura-
tions of the shoot and root systems were highly
conserved across the eight accessions of Arabidopsis.

Natural Variation in Submergence Tolerance

Natural variation in stress responses can be exploited
to identify molecular processes and components that
regulate stress responses in a differential way and,
therefore, determine tolerance. Previous studies estab-
lished significant variations in flooding tolerance of six
accessions used in this study at the level of whole-plant
survival (Vashisht et al., 2011). This allowed us to
classify the accessions into two tolerance groups and
correlatively identify potential tolerance genes based on
altered transcript accumulation or distinctions in AS.
Interestingly, the potential tolerance genes identified in
the root had no overlap with those from the shoot,
further underscoring the distinct physiological states
and functions of these two organs. Despite the lack of
overlap between root and shoot potential tolerance
genes, both included members of the core hypoxia-
responsive gene set.
Interesting shoot potential tolerance genes that have

not been implicated previously in flooding survival
included the gluconeogenic enzyme PPDK, which
was highly up-regulated in the tolerant accessions.
Targeted qRT-PCR analyses confirmed this trend over a
48-h period (Fig. 7) and revealed a much stronger
up-regulation in the tolerant (C24) accession. Previous
studies have suggested a role for the PPi-utilizing
PPDK in mobilizing protein stores (Huang et al., 2008)
and in facilitating nitrogen remobilization in senescing
leaves (Taylor et al., 2010). Furthermore, it has a key
position in a metabolic network we identified as
being important during starvation and submergence
(Supplemental Fig. S12). It further stresses the impor-
tance of efficient alternative reserve mobilization dur-
ing energy-limiting conditions. Future biochemical
and metabolic studies are necessary to determine if
up-regulation of a cytosolic PPDK enhances the utili-
zation of noncarbohydrate stores to enhance energy
production and long-term survival.
Another interesting shoot-specific potential tolerance

gene was an antisense to a RAB GTPase homolog
(AT4G20360) with organellar translation elongation
factor activity. Previous studies have shown that
Arabidopsis seedlings exposed to hypoxia drastically
limit translation as a means to curb energy expendi-
ture (Branco-Price et al., 2008; Juntawong et al., 2014;
Sorenson and Bailey-Serres, 2014). The up-regulation
of this antisense RNA in tolerant accessions could
serve to limit elongation factor-Tu synthesis, thereby

limiting overall levels of plastid or mitochondrial
mRNA translation.

Several shoot potential tolerance genes that were in-
duced only in the sensitive accessions had functions in
growth and cell wall remodeling, implying more
dampened growth responses in the tolerant genotypes.
Consistently, we found that petiole elongation rates
were significantly lower in submerged plants (relative
to control [AL]-grown plants) of a tolerant accession
(C24). In contrast, a sensitive accession (Cvi-0) main-
tained control petiole growth rates under compound
stress (SD) conditions (Supplemental Fig. S11). Taken
together, this suggests that tolerance in Arabidopsis can
be attributed to a conservative mode of energy utiliza-
tion and efficient carbohydrate management resulting
in prolonged underwater survival.

Tolerance is a complex phenomenon, especially in
the case of a compound stress like flooding. Several
aspects come into play, such as the environmental
conditions and the physiological state of the plant be-
fore, during, and after submergence. Our data suggest
that tolerant Arabidopsis accessions have restricted
shoot growth and exhibit conservative and alternative
resource utilization, involving specific stress-induced
metabolic readjustments. This is likely an important
factor influencing tolerance in the shoot, while in
the roots, tolerance appears to involve genes related
to hypoxia and development. This suggests that, to
achieve tolerance, different alterations may be required
in the root and shoot.

The tolerance of starvation stress is another factor
that interacts with low-oxygen stress to influence the
final outcome of tolerance. As observed here, some
accessions (i.e. Ws-2 and Cvi-0) showed largely over-
lapping dark and submergence transcriptomes. This
suggests that the tolerance of Ws-2 could be partly due
to its ability to withstand starvation stress. Similarly,
the sensitivity of Cvi-0 is likely linked to its poor per-
formance under dark conditions (Vashisht et al., 2011).
Accordingly, Cvi-0 petiole growth rates in the dark
(AD) equaled control (AL) rates. This would likely re-
sult in a faster depletion of existing energy and carbo-
hydrate reserves under stress conditions and hasten
plant demise.

CONCLUSION

The current upsurge in the number of global flooding
events underscores the importance of understanding
tolerance mechanisms and plant responses to flooding
stress. Knowledge of the basis of variation in stress
tolerance also is critical for developing more stress-
resistant crops for environments experiencing unex-
pected floods. This work details transcript abundance
and AS alterations in soil-grown vegetative-stage Ara-
bidopsis rosettes that were surprisingly conserved
across a set of eight diverse genotypic backgrounds.
Contrasting with this conservation was the distinct
transcriptomic reconfiguration of the shoot and root
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across the accessions, reflecting each organ’s anatomi-
cal and physiological identity and highlighting unique
metabolic and developmental plasticity as a result of
the stress.We showed that alternative selection of splice
sites provides an additional layer of molecular regula-
tion to fine-tune the response to flooding and starvation
stress. Our study also reveals that tolerance in Arabi-
dopsis is related to the ability to restrict shoot growth
and exhibit conservative and alternative resource uti-
lization involving specific stress-induced metabolic
readjustments.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Seeds of the studied Arabidopsis (Arabidopsis thaliana) accessions (Bay-0,

N22633; C24, N22620; Col-0 [gl1], N3879; Cvi-0, N22614; Ita-0, N1244; Kas1,

N22638; Lp2-6, N22595; andWs-2, N1601) were obtained from the Nottingham

Arabidopsis Stock Centre. They were sown in a soil:perlite (1:2) mixture and

cold (4°C) stratified in the dark for 4 d. Germination occurred at 20°C, 160 mmol

m22 s21 photosynthetically active radiation (9-h photoperiod), and 70% relative

humidity. At the two-leaf stage, seedlings were transplanted, one seedling per

pot (70 mL), with the soil:perlite (1:2) mixture enriched with 0.14 mg of 17%

MgOCaO (Vitasol) and 0.14 mg of slow-release fertilizer (Osmocote plus mini;

Scotts Europe) per pot. Each pot received 25 mL of nutrient solution of the

composition described (Vashisht et al., 2011). The soil was covered with black

mesh with a small hole for the seedling to grow through. The mesh prevented

the floating of soil material during submergence experiments. Plants were

grown in climate-controlled chambers (20°C, 160 mmol m22 s21 photosyntheti-

cally active radiation [9-h photoperiod], and 70% relative humidity). Plants

were automatically watered each day at the start of the photoperiod. Submer-

gence experiments were performed after plants reached a developmental stage

of 10 leaves.

Experimental Conditions

Plants were completely submerged in plastic tubs (603 403 27 cm) filled to

the brim with tap water and allowed to acclimatize overnight. Both darkness-

only and darkness and submergence treatments took place in the same

conditions as plant growth, but with the lights off (in complete darkness). Ex-

periments were started 2 h after the start of the photoperiod. Tissue harvest was

done with a low-intensity green safelight. Samples for AL, AD, and SD were

harvested after 4 h of treatment. Roots and shoots were harvested separately,

and the hypocotyl region (the region between the shoot base and the beginning

of the first lateral root) was left out. The experimentwas performed individually

three times. Each time, five biological replicates, each including a pool of five

individual plants, were sampled, and the tissues were flash frozen in liquid

nitrogen. All samplings were completed within 30 min, minimizing the effects

of circadian rhythms, and plants for each treatment were harvested simulta-

neously at the two chambers (light and dark chambers).

Petiole Elongation Measurements

Plants of Cvi-0 and C24 were grown as described above and, when they

reached the 10-leaf developmental stage, were subjected to the same experi-

mental conditions. From a homogenous set of plants, the leaf blades of the

seventh developed leaf were marked with a pink dye. Petiole lengths were

measured using a digital caliper before and after 72 h of treatment on the same

petiole.

RNA Extraction and Sequencing

Plant tissue was ground with a mortar and pestle, after which the RNAwas

extracted using the RNeasy Plant RNA Isolation Kit (Qiagen). DNA was re-

moved via on-columnDNase digestion using the RNase-FreeDNase kit (Qiagen).

For RNA sequencing, for each treatment, RNA samples consisted of RNA pooled

from biological replicates that showed consistent results in terms of marker gene

expression and petiole elongation response to submergence. Library preparation

and sequencing (on a HiSeq 2000 device) were done commercially (Macrogen;

www.macrogen.com). All treatments for each accession per organ type were bar

coded in the same sequencing reaction to allowmultiplexing of three samples per

lane. Single-end reads of 50 bp length were obtained.

Quality Control and Read Mapping

All the sequenced libraries had Phred quality scores ranging between 30 and

40, indicating 99.9% base call accuracy. Therefore, all readsweremapped to The

Arabidopsis Information Resource (TAIR) 10 Arabidopsis Col-0 genome using

tophat2 with bowtie2 (Kim et al., 2013) and allowing two mismatches. Only

single hits were used for further analysis. The number of reads mapping to the

exons, introns, and splice VIGRs (see AS, “Materials and Methods”) were de-

termined with the R packages GenomicRanges (Lawrence et al., 2013) and

Rsamtools (Morgan et al., 2013). For the exons, only reads that had no overlap

with nonexonic regions (i.e. introns or intergenic; IntersectionStrict) were

counted, whereas for intron and VIGR counts, overlap with neighboring ge-

nomic regions was permitted (IntersectionNotEmpty).

Differential Expression Analysis

Differential expression analysis was done with generalized linear modeling

approaches of the R package edgeR (Robinson and Oshlack, 2010). Where no

degrees of freedom were available, a common dispersion of 0.08 was used,

which is realistic for controlled experiments with genetically identical orga-

nisms and is conservative compared with common dispersion estimates that

were assessed by known housekeeping genes in the data set (0.02–0.06). Ad-

ditionally, only genes with more than 1 RPKM in at least one sample were in-

cluded. Differential expression upon treatment for each accession and organ

was done with a model including all three conditions. Genes that responded

differently in the shoot compared with the root were assessed in a full factorial

model for each accession and treatment. The overall response across accessions

(mean response) to the treatments was assessed in a paired design correcting for

baseline differences among genotypes (i.e. an additive model with no interac-

tion), which was done for each treatment and organ separately using tag-wise

dispersions. An analogous approach was taken for the organ-dependent mean

response, but with the added factor of the organ-treatment interaction.

Genotype-dependent treatment responses were determined with a full

factorial model and with testing for accession-treatment effects. Here also, or-

gans and treatments were analyzed separately and with the manual common

dispersion parameter. Genes showing differentiation between tolerant and in-

tolerant accessionswere identifiedby contrasting the sensitive genotypes (Cvi-0,

Bay-0, and Ita-0) against the tolerant genotypes (Lp2-6,Ws-2, andC24).Here, the

overall response of tolerant genotypes was tested for significant difference from

the overall response of the sensitive genotypes. Where the overall response of

each groupwas determined by a paired designwithout an interaction term, tag-

wise dispersion was used subsequently.

GO overrepresentation was assessed with the GOseq Rpackage (Young

et al., 2010), which incorporates gene length biases. MDS was done with the

edgeR package (Robinson and Oshlack, 2010).

WGCNA

WGCNA was used to calculate coexpressed gene modules (Langfelder and

Horvath, 2008). Since gene expression shows distinct patterns in roots and

shoots, they were analyzed separately in the clustering analysis. The raw count

data were filtered with the RPKMmethod, yielding 17,525 and 15,550 genes for

roots and shoots, respectively. Library size normalization was done with the

edgeR package (Robinson andOshlack, 2010), and the datawere transformed in

the limma package with voom function (Ritchie et al., 2015) in order to enable

usage of the WGCNA package designed for microarrays. The clustering was

performed with default settings, and soft thresholds of 4 and 9 were used for

roots and shoots, respectively. As a representative of each module, an Eigen

gene was calculated as the first principal component axis of the gene expression

pattern in that module. For each gene within a module, a module membership

score was computed based on the similarity of the gene to this Eigen gene.

AS

Estimation of AS and IR due to treatment or genotype effects was based on

the existing TAIR 10 Col-0 annotation, using a method analogous to that of
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Chang et al. (2014). Genomic regions that provide information regarding var-

iant use (i.e. genomic regions that are transcribed in one variant but not in the

alternative variant) were identified with the R package GenomicRanges

(Lawrence et al., 2013). Reads mapping to these VIGRs were counted, allowing

for overlap with neighboring genomic regions (IntersectionNotEmpty). Simi-

larly, reads mapping to unambiguous intron regions were counted to assess IR.

Expected reads for each intron and VIGR were determined assuming that

splice variant use and intron use does not change upon treatment or between

genotypes. For instance, the expected reads for a treatment in a particular

genotype would be (VIGRAL + VIGRAD + VIGRSD)/(ExonAL + ExonAD + ExonSD) 3

ExonSD. In case of multiple VIGRs in a single gene, they were calculated in-

dependently, whereas introns were grouped as one unit. Only introns and

VIGRs with an average read count of more than 12 were included. The mag-

nitude of AS and IR was determined by the ratio of the observed and expected

reads and subsequently log2 transformed so that AS and IR equals 0 when

observed and expected reads have equal values. Significance was estimated

with a x2 test [sum((O 2 E)2/E)] and Benjamini-Hochberg corrected for mul-

tiple testing (Benjamini and Hochberg, 1995). Treatment-dependent AS and IR

were assessed separately for genotypes and organs. Genotype-dependent AS

and IR were assessed separately for each condition and organ. The maximum

difference in splice variant usage is the highest log2(obs/exp) minus the lowest

log2(obs/exp).

qRT-PCR

From RNA extracted with the RNeasy Plant RNA Isolation Kit (Qiagen) and

treated with DNase (Qiagen), complementary DNA was made by reverse

transcription (SuperScript III Reverse Transcriptase; Invitrogen) with random

hexamers and including RNase inhibitor (ThermoScientific). qRT-PCR was

performed in a Viia7 Real/Time PCR system (ThermoScientific) using iTaq

Universal SYBR Green Supermix (Bio-Rad) in 5-mL reaction mixtures with

gene-specific primers and five reference genes (Supplemental Table S4).

Accession Number

The raw sequencing files from RNA sequencing are available in the

ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession num-

ber E-MTAB-4730.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Compound and darkness responses of the eight

accessions in root and shoot tissues.

Supplemental Figure S2. Number of genes with an accession-dependent

treatment response.

Supplemental Figure S3. GO overrepresentation of genes that vary in their

response across accessions.

Supplemental Figure S4. WGCNA of shoots and roots.

Supplemental Figure S5..Genes with an organ-dependent response to the

treatments.

Supplemental Figure S6. Overview of IR and AS across genotypes and

upon treatments.

Supplemental Figure S7. The conserved responses in IR upon treatment in

the root.

Supplemental Figure S8. The conserved responses in IR upon treatment in

the shoot.

Supplemental Figure S9. Change in total transcript abundance of genes

with evidence of AS upon compound, darkness, and submergence.

Supplemental Figure S10. Genes encoding important enzymatic steps of

gluconeogenesis and the glyoxylate pathway.

Supplemental Figure S11. Change in petiole growth rate upon different

combinations of darkness and submergence.

Supplemental Figure S12. Schematic simplification of pathways transcrip-

tionally regulated by compound, darkness, and submergence.

Supplemental Table S1. Variation in tolerance to complete submergence

in the dark of the eight accessions used in this study.

Supplemental Table S2. Summary statistics of Illumina sequencing of the

mRNAseq libraries and subsequent mapping to TAIR 10 Arabidopsis

genome.

Supplemental Table S3. Correlation statistics of the response of an indi-

vidual genotype compared with the mean responses of all eight geno-

types

Supplemental Table S4. Primers used for qRT-PCR analyses of transcript

abundance.

Supplemental Data Set S1. Differential expression data from the mRNA-

seq data set for all the different comparisons investigated in this study.
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