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Transcriptomic analysis of human primary breast cancer

identifies fatty acid oxidation as a target for metformin
Simon R. Lord 1,2,3, Jennifer M. Collins4, Wei-Chen Cheng1, Syed Haider5, Simon Wigfield2, Edoardo Gaude6, Barbara A. Fielding4,7,

Katherine E. Pinnick4, Ulrike Harjes2, Ashvina Segaran1, Pooja Jha8, Gerald Hoefler8, Michael N. Pollak9, Alastair M. Thompson10,

Pankaj G. Roy11, Ruth. English12, Rosie F. Adams12, Christian Frezza6, Francesca M. Buffa1, Fredrik Karpe3,4 and Adrian L. Harris 1,2,3

BACKGROUND: Epidemiological studies suggest that metformin may reduce the incidence of cancer in patients with diabetes and

multiple late phase clinical trials assessing the potential of repurposing this drug are underway. Transcriptomic profiling of tumour samples

is an excellent tool to understand drug bioactivity, identify candidate biomarkers and assess for mechanisms of resistance to therapy.

METHODS: Thirty-six patients with untreated primary breast cancer were recruited to a window study and transcriptomic profiling

of tumour samples carried out before and after metformin treatment.

RESULTS:Multiple genes that regulate fatty acid oxidation were upregulated at the transcriptomic level and there was a differential

change in expression between two previously identified cohorts of patients with distinct metabolic responses. Increase in

expression of a mitochondrial fatty oxidation gene composite signature correlated with change in a proliferation gene signature. In

vitro assays showed that, in contrast to previous studies in models of normal cells, metformin reduces fatty acid oxidation with a

subsequent accumulation of intracellular triglyceride, independent of AMPK activation.

CONCLUSIONS:We propose that metformin at clinical doses targets fatty acid oxidation in cancer cells with implications for patient

selection and drug combinations.

CLINICAL TRIAL REGISTRATION: NCT01266486.

British Journal of Cancer (2020) 122:258–265; https://doi.org/10.1038/s41416-019-0665-5

BACKGROUND
Epidemiological and retrospective clinical studies suggest a
reduction in relative risk of cancer associated with the diabetes
drug, metformin, and multiple phase 3 clinical trials are now
underway to assess the potential of repurposing metformin as an
anti-cancer therapy.1 However, metformin’s anti-cancer mechan-
ism of action remains unclear. The canonical view is that metformin
activates 5′ AMP-activated protein kinase (AMPK) in cancer cells
leading to metabolic reprogramming and inducing a limit on
utilisation of nutrient resources, subsequently halting prolifera-
tion.2 Activation of AMPK is thought to be secondary to inhibition
of complex 1 of the mitochondrial respiratory chain3 and growing
evidence suggests that metformin modulates mitochondrial
metabolism at clinical doses.4,5 In a clinical pharmacodynamic
study of 36 breast cancer patients we recently showed that
metformin treatment leads to two distinct metabolic responses.4

Here, we describe further analysis of our patient cohort in which

we identify that multiple genes regulating fatty acid oxidation
(FAO) are upregulated at the transcriptomic level following
metformin treatment. Additionally, increase in expression of a
composite mitochondrial FAO gene expression profile correlated
with change in a proliferation gene signature and this signature
discriminated between the patient groups with differential
metabolic responses. In vitro assays showed that, in contrast to
previous studies in models of normal cells, metformin reduces fatty
acid oxidation with a subsequent accumulation of intracellular
triglyceride, independent of AMPK activation.

METHODS
Clinical study design and patient selection
Patients with a new diagnosis of primary breast cancer were
recruited in three UK centres. The study was prospectively
approved by the NHS Oxfordshire Research Ethics Committee A
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and registered with the ClinicalTrials.gov identifier: NCT01266486.
Metformin was given in the Glucophage XR™ formulation in an
escalating dose once daily for a minimum of 13 days and a
maximum of 21 days (500 mg for days 1–3, 1000mg for days 4–6
and 1500mg thereafter). The day prior to commencing metformin
a core biopsy was taken under ultrasound guidance from the
periphery of the primary tumour and a second biopsy using the
same approach after 13–21 days of metformin treatment as
above. Within 1 min of this procedure the biopsy material was
snap frozen in liquid nitrogen prior to storage at −80 °C. Please
see Fig. S1A and Lord et al., Cell Metabolism for further details.4

Bioinformatic analysis and statistical methods
Next-generation sequencing of ‘Poly (A) targeted’ mRNA was
carried out for the clinical biopsy samples taken pre and post-
metformin. The fold change of normalised expression level, FPKM
(Fragments Per Kilobase of transcript per Million mapped reads),
for each gene was then estimated from those aligned reads using
Cuffdiff 2.2.1. Non-parametric rank product (R project v3.3.1) was
used to prioritise the genes with statistically significant change
in abundance (FDR < 0.05) between pre- and post-metformin
treatment.4

Statistical analysis and graphs for in vitro and in vivo models
were carried out using GraphPad Prism v6.0 (GraphPad). Methods
used to estimate significance included one-way ANOVA and
unpaired Student’s t-test. The latter was used unless otherwise
described in the text. Standard error of the mean (SEM) was used
to report variability unless otherwise indicated in the text. Based
on our and others’ previous analyses of gene expression data, we
estimated that a minimum of 20 cases with paired measurements
at two time points were sufficient to observe expression changes
of at least 1.7-fold in genes showing a coefficient of variation at
each time point up to 50% with a significance level after multiple
test correction of p= 0.05 (taking into account filtering of not
expressed transcripts) and an 80% power. However, this estimate
assumes uniformity of drug response and so double the number
was desirable for higher significance and considering correlation
with other markers.

In vitro breast cancer cell line culture
All cell lines were purchased from the American Type Culture
Collection within the past 2 years (LGC standards, UK). LGC
standards routinely authenticate cell lines using short tandem
repeat profiling. All cell lines were passaged for only a maximum
of 3 months after resuscitation. All cell lines were tested for
mycoplasma contamination prior to use. None of the cell lines
used are listed in the database of commonly misidentified cell
lines identified by the ICLAC. Human breast carcinoma cell lines
MCF7, T47D, BT474, MDA-MB-231, MDA-MB-468 and MDA-MB-157
cells were all cultured in Dulbecco’s Modified Eagle Medium
(DMEM) (Invitrogen) supplemented with 10% foetal bovine serum
(FBS) and 100U/ml penicillin, and 100μg /ml streptomycin and
cultured at 37 °C and in 5% CO2 in a humidified incubator.
Metformin was purchased from Calbiochem, and etomoxir, AICAR
and rotenone from Sigma–Aldrich.

Gas chromatography analysis of TG and DG FA for in vitro samples
FA methyl esters (FAMEs) of adipocyte TGs were prepared and
analysed by GC as described previously.6 FA concentrations
were calculated relative to an internal standard (C15:0 TG), and
the results expressed either as micrograms of FA per 4 × 106

cells or as percentage of total TG. For DG:TG calculations, lipids
were extracted as described except that the fractions were
separated using thin layer chromatography rather than solid
phase extraction columns and using a C15:0 DG internal
standard.

Use of stable isotopes in vitro to measure FA uptake and trace
carbon contribution of DNL substrates
Fifty micromolar [U-13C]palmitate (CK Gas, Ibstock, UK) was added
to MCF7 and MDA-MB-468 cells for 48 h. After harvesting cells,
FAMEs were prepared. TGFAs were quantitated using GC and the
isotopic enrichment of TG measured using gas chromatography-
mass spectrometry (GC–MS) as previously described.6 Isotopically
labelled DNL substrates were added to metformin-treated
MCF7 cells to determine the effects of metformin on substrate
contribution towards lipid synthesis. Twenty-five millimolar
D-[U-13C]glucose, 4 mM [U-13C]glutamine and 5mM [U-13C]lactate
were used. FAMEs were prepared from harvested cells after 48 h of
the indicated treatment and TGFAs were measured for amount of
FA and isotopic enrichment of FA using GC and GC–MS,
respectively. The contribution of each substrate towards DNL
was calculated using quantitative mass spectral analysis as
previously described.7 Briefly, we calculated the fraction of all
13 C carbon atoms in the product (e.g. palmitic acid). As the
substrates [U-13C]glucose, [U-13C]glutamine and [U-13C]lactate
were uniformly labelled, this represented the fraction of the
product formed from the substrate being studied.

Use of 2H2O to estimate DNL for in vitro samples
As previously described 2H2O was added to media to a concentra-
tion of 5%.8 Cells were then harvested after 48 h of the indicated
treatment and TG and PL FAMEs prepared prior to GC and GC–MS
analysis. Molar enrichment of each TGFA was measured and
percentage synthesis calculated based on observed/theoretical
molar enrichment. The amount of DNL-derived FA was then
calculated from the total TGFA measured using GC analysis and
expressed as µg FA/4 × 106 cells or as percentage of total TGFA. PL
analysis was carried out as per TGFA analysis except only measuring
enrichment of palmitate due to the very low enrichment of other
FAs in the PL fraction (likely due to lower levels of modification of PL
DNL-derived palmitate).

FAO measurements for in vitro samples
Cells were treated for 48 h with either 0, 1 or 2 mM metformin,
with or without 100 µM etomoxir. FAO was then measured as
previously described9 using 0.5 mM oleate and 0.5 µCi [14C]oleate
(Perkin Elmer, UK) solution bound to bovine serum albumin in low
(5mM) glucose DMEM. Rate of oxidation was calculated as pmol
CO2/h/4 × 106 cells.

Xenograft experiments and LD540 staining of frozen sections
All protocols were carried out under Home Office regulations and
were approved by the University of Oxford Medical Sciences
Division AWERB Committee. Six to eight-week-old female Balb-C
nu/nu mice (Harlan) were injected into the mammary fat pad with
25 μl Matrigel (BD Bioscience) and 2.5 × 106 MDA-MB-468 cells
suspended in 25 μl serum free medium. Once greater than 50% of
xenografts had reached a size greater than 150mm3 half the mice
were treated with metformin in the drinking water (750 mg/kg/
day). Tumour volume was calculated from the formula V= L ×
W × H × π/6 (L= length, W=width, and H= height). Animals were
not randomised but allocated to the metformin or no treatment
arms with equal weighting for tumour size at baseline. The
investigator was not blinded to the group allocation during the
experiment. Once tumours reached 1.44 cm3 mice were sacrificed
by cervical dislocation. Tumours were then snap frozen in liquid
nitrogen and frozen sections cut and stained with LD540 and DAPI
(Vectashield mounting medium with DAPI). A Zeiss Axio Observer
Z1 inverted epifluorescence microscope was used to capture
images of the (less necrotic) periphery of the tumour. The area
staining for lipid with LD540 was then defined as a percentage of
the area staining for DAPI using image analysis software (ImageJ).
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LD450 staining of intracellular lipid droplets in vitro and BODIPY
uptake
MCF7 cells were seeded on sterile coverslips in 6-well plates
overnight prior to treatment for 48 h with 0, 2 or 10 mM
metformin treatment prior to removal and staining with LD540
and DAPI (Vectashield mounting medium with DAPI). Z-stack
images were then created with laser scanning confocal micro-
scopy (Zeiss LSM510 Meta). Control samples had oleic acid to a
concentration of 250 μM added for 24 h prior to microscopy.
For BODIPY uptake measurements, cells were treated with the

fluorescent palmitate analogue, 4,4-difluoro-5,7-dimethyl-4-bora-
3a,4a-diaza-s-indacene-3-hexadecanoic acid (BODIPY® FL C16,
Invitrogen) for 15 min and then washed with phosphate buffered
saline (PBS). After harvesting with trypsinisation the cells were
fixed with 4% paraformaldehyde prior to re-suspension in PBS and
then analysed using a FACSCalibur flow cytometer (BD Bios-
ciences) and Cellquest software (BD Biosciences).

In vitro cell growth assays
100,000 cells were plated on a 6-well dish and the following day the
media replaced with DMEM media supplemented with metformin
at a concentration of 0 (control) or 2 mM and/or 100μM etomoxir.
The media was supplemented with or without 25mM glucose, with
or without 20mM galactose and with 1mM pyruvate and 4mM
glutamine. For the fatty acid supplementation experiment the
media was supplemented with and without a mixture of fatty acid
at a concentration of 0.2, 0.5 and 1mM (oleate, palmitate and
linoleate in a ratio of 45%, 30% and 25%, respectively). Cell number
was counted at 96 h using an automated cell counter (Nexcelom).
To maintain more consistent nutrient concentrations the media was
replaced on a 24-hourly basis.

RESULTS
We previously conducted a clinical pharmacodynamic study that
integrated dynamic fluoro-deoxy-D-glucose positron emission
tomography-computed tomography (FDG-PET-CT) imaging, tran-
scriptomic and metabolomic analyses to characterise metformin’s
effects on breast cancer metabolism (see Fig. S1A for study
schema). This work identified two distinct metabolic responses to
metformin in primary breast cancer, an oxidative phosphorylation
(OXPHOS) transcriptional response (OTR) group for which there
was an increase in OXPHOS gene transcription and an FDG
response (FR) group with increased FDG uptake. This was linked to
change in a validated transcriptomic proliferation metagene,
which suggested that tumours in the OTR group were resistant to
metformin.4 In that analysis our work focussed on changes in
OXPHOS, glucose, glutamine and aspartate metabolism. However,
it was striking that several lipid metabolism pathways had
significant changes in expression at the transcriptomic level
(Fig. 1a and Table S1) and that metabolomic profiling of primary
breast tumour tissue showed a decrease in the level of
propionylcarnitine, one of a family of short-chain acyl-carnitines
that aid the shuttling of fatty acid oxidation degradation products
out of mitochondria. Consistent decreases in short-chain acyl-
carnitine levels have previously also been described in a clinical
metabolomic study of metformin in ovarian cancer.5

Complex 1 is required to generate the cofactor NAD+ to
catalyse the final dehydrogenation step of FAO and notably, in the
transcriptomic analysis from our patient study, the fatty acid
degradation pathway (KEGG:00071) was significantly upregulated
(corrected hypergeometric p-value= 0.005, Fig. 1a). We then
assessed the change in levels for all the expressed genes in this
pathway for the OTR group vs. FR group. Of the 16 key genes
directly involved in regulating mitochondrial FAO, eight genes had
significant change in expression between the two groups.
However, this was true for only three of the 18 genes that
annotate to other fatty acid degradation processes such as

aldehyde and peroxisomal fatty acid metabolism (Fig. 1b).
Unsupervised hierarchical clustering of these mitochondrial FAO
genes revealed that most of the tumours in the OTR group also
clustered together in this analysis (8 patients in OTR group vs.
Twenty-eight patients in the FR group) (Fig. 1c). Next, having
determined the median fold change in expression for this set of
mitochondrial FAO genes to provide a ‘FAO gene composite
signature’, we observed a difference in the fold change in
expression of this composite variable between the OTR and FR
groups (Fig. 1d). Additionally, there was a positive correlation
between the fold change in the FAO gene composite signature
and change in a validated human breast cancer proliferation
signature10 (Fig. 1e).
Next, we examined the effects of metformin in vitro in breast

cancer cell lines. Lipid accumulation has been described as a
consequence of reduced FAO inhibition.11 Using gas chromato-
graphy, the effect of metformin treatment on cellular triglyceride
fatty acid (TGFA) content was assessed in three oestrogen/
progesterone receptor (ER/PR) positive human breast cancer cell
lines (MCF7 and T47D, BT474) and three ER/PR negative cell lines
(MDA-MB-231, MDA-MB-468 and MDA-MB-157). Metformin led to
dose-dependent TGFA accumulation in two of the six cell lines
investigated: MCF7 and MDA-MB-468 (Fig. 2a).
Lipid droplets play a key role in the storage of TGFA thereby

preventing lipotoxicity from free fatty acids. Staining with the
lipophilic fluorescent dye, LD540, demonstrated an increase
in lipid droplets in metformin-treated MCF7 cells (Fig. 2b).
LD540 staining of metformin-treated MDA-MB-468 xenografts
also demonstrated a marked increase in lipid accumulation
compared with controls (percentage of DAPI staining area: 8.9 ±
2.8% vs. 26.6 ± 6.3% in control and metformin-treated xenografts
respectively, p= 0.03) (Fig. 2c).
Monounsaturated fatty acids are preferred substrates for

synthesis of TGFA prior to lipid droplet storage.12 Notably, the
analysis of the transcriptomic data from our patient study for all
tumours revealed that the biosynthesis of unsaturated fatty acids
pathway (KEGG:01040) was significantly upregulated. In particular,
the gene stearoyl-CoA desaturase (SCD), which catalyses the rate
limiting step in the formation of monounsaturated fatty acids, had
a highly significant increase in expression (Fig. 2d). Metformin
treatment of both MCF7 and MDA-MB-468 cells led to an increase
in desaturation of [U-13C]palmitate (percentage of TGFA in the
desaturated fraction). There was also an increase in elongation of
the exogenous fatty acids in the TG fraction (Fig. 2e, f).
Direct measurement of FAO using the radiolabelled tracer [14C]

oleate in MCF7 and MDA-MB-468 cells confirmed that metformin
induced a marked reduction in FAO. Etomoxir (an inhibitor of
mitochondrial fatty–acyl–carnitine transport and thus FAO) further
reduced FAO compared to metformin alone in MCF7 cells
highlighting that inhibition of FAO activity was incomplete after
dosing at 2 mM metformin for this cell line. Metformin also
reduced FAO in MDA-MB-231 cells but the rate of FAO in
untreated cells was much lower for this cell line (Fig. 3a). Etomoxir
alone led to TGFA accumulation in both MCF7 and MDA-MB-468
cells. Etomoxir alone led to TGFA accumulation in both MCF7 and
MDA-MB-468 cells and in MCF7 cells, metformin in combination
with etomoxir led to further TGFA accumulation compared with
metformin or etomoxir alone (Fig. 3b).
Metformin reduced cell growth for MDA-MB-468 cells but not

MCF7 and MDA-MB-231 cells in 25 mM glucose. Replacement of
glucose with galactose forces cells to rely on mitochondrial
respiration (OXPHOS and FAO).13 In glucose free media supple-
mented with 20mM galactose, metformin treatment led to
inhibition of cell proliferation in all three cell lines. Etomoxir alone
inhibited proliferation of MCF7 cells and MDA-MB-231 cells under
25mM glucose and glucose free/galactose supplemented condi-
tions, respectively, suggestive of some reliance on FAO for tumour
growth for these cell lines (Fig. 3c). The addition of a mixture of
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the three main dietary fatty acids (oleate, palmitate and linoleate)
at 0.2, 0.5 or 1 mM did not lead to a significant additive effect on
proliferation following treatment with 2 mM metformin when
compared with no fatty acid (Fig. S1B), (one-way ANOVA).
De novo lipogenesis (DNL) is the synthesis of FA and

incorporation into lipids, from non-lipid precursors. To determine
the impact of metformin on DNL we measured the incorporation
of deuterated water (2H2O) into lipids. Metformin treatment led to
an accumulation of DNL-derived TGFA in metformin-treated MCF7
and MDA-MB-468 cells (Fig. 3d), although the proportion of DNL-
derived TGFA within the total cellular TG pool in MDA-MB-468
cells decreased (Fig. 3e). Metformin reduced the proportion of
TGFA derived from glucose in MCF7 cells (Fig. 3f).
As the increase in DNL-derived FA did not account for all the

observed increase in triglyceride accumulation in metformin-
treated cells, we investigated metformin’s effects on cellular FA
uptake. Essential fatty acids cannot be synthesised de novo
and metformin increased the amount of the essential FA, linoleic

acid, within MCF7 cells as a proportion of total TGFA (Fig. 4a).
Metformin increased uptake of BODIPY–C16, a fluorescent
palmitate analogue, in MCF7 cells to a greater extent than in
MDA-MB-231 cells (fold difference in fluorescence vs. control cells
1.42 ± 0.07, p < 0.001 and, 1.21 ± 0.07, p= 0.008, in MCF7 and
MDA-MB-231 cells, respectively) (Fig. 4b). Furthermore, metformin
increased the accumulation of TGFA derived from exogenous
[U-13C]palmitate in both metformin-sensitive MCF7 and MDA-MB-
468 cells (Fig. 4c).
As metformin treatment of MCF7 cells led to a 2-fold reduction

in the diacylglycerol (DG) to TG ratio (Fig. S1C) we assessed the
effect of metformin on lipolysis. The total lipase activity was not
decreased in metformin-treated MCF7 cells. Additionally, there
was no change in ATGL activity or HSL activity (Fig. S1D).
Treatment of MCF7 cells with the activator of AMPK, AICAR, had

no effect on TGFA accumulation (Fig. 4d). Conversely treatment
with the complex 1 inhibitor, rotenone, led to an accumulation of
TGFA (Fig. 4e). Using AMPK-targeted siRNA to the PRKAA1 and
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PRKAA2 subunits of AMPK, we achieved abrogation of phosphor-
ylation of AMPK up to 72 h (Fig. S1E). Total TGFA increased with
metformin treatment but was unaffected by siRNA-mediated
AMPK silencing (Fig. 4f). AMPK knockdown in MCF7 cells did lead

to a small reduction in BODIPY–C16 uptake both in control
cells and metformin-treated cells (Fig. 4g). Despite this observa-
tion, metformin stimulated accumulation of exogenous TGFA (as
measured by TGFA not enriched by 2H2O) was unaffected by
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AMPK knockdown, suggesting that FA uptake secondary to AMPK
activation was not the driver for overall TGFA accumulation
(Fig. 4h). Rotenone treatment significantly reduced [14C]oleate
oxidation whilst there was a trend toward a modest increase for
AICAR (Fig. 4i).
One possible explanation for the differential response between

cell lines to metformin is expression of the organic cation
transporters OCT1 and OCT2, which play a role in cellular drug
influx.14,15 However, expression of these transporters was unex-
pectedly greatest in the resistant cell lines (MDA-MB-231 and
BT474) (Fig. S1F). We also explored whether mitochondrial
functional capacity reflected sensitivity to metformin. However,
baseline oxygen consumption did not correlate with the degree of
triglyceride accumulation in response to metformin across the six
cell lines (Fig. S2). MDA-MB-468 was the most sensitive cell line to
metformin’s effect on triglyceride accumulation, cell proliferation
and mitochondrial respiration across the board (Fig. S3).

CONCLUSIONS
Our clinical study suggests that, at least at the transcriptomic level,
metformin modifies FAO in primary breast cancer at therapeutic
dosing, resulting in adaptation of the fatty acid desaturation
pathway. Consistent with this observation, levels of short-chain
acyl-carnitines were decreased in the tumour tissue of metformin-
treated patients. The positive correlation between changes
in mitochondrial FAO gene transcription and expression of a
proliferation signature suggests that mitochondrial FAO response
to metformin treatment may link to therapeutic benefit.

Prior preclinical studies of metformin’s effects on FAO have
focussed on mouse embryonic fibroblasts (MEFs), hepatocytes,
hepatoma and cardiac and skeletal muscle cell models demon-
strating increased FAO in an AMPK-dependent manner with a
resultant decrease in cellular lipid content.16–20 However, in our
cell line models of breast cancer, metformin inhibited FAO. We
also observed an increase in total cellular TGFA, and we had
hypothesised that this may partly be due to increased exogenous
FA uptake. The expectation was that the main driver for this under
conditions of ATP depletion would be AMPK activation21 and
indeed AMPK knockdown resulted in reduced uptake of BODIPY in
metformin-treated cells. However, knockdown of AMPK had no
effect on accumulation of exogenous TGFA suggesting that any
impact on TGFA accumulation by an AMPK induced increase in FA
uptake is insignificant. Additionally, the accumulation of both
DNL-derived TGFA and not just exogenous TGFA was suggestive
of an alternative process other than just an increase in FA uptake.
Both metformin and rotenone (another inhibitor of complex 1)
decreased FAO (in contrast to AICAR) and hence we speculate that
metformin’s effects on FAO are driven by the more direct effect on
complex 1 rather than downstream modulation of AMPK activity.
That metformin also had no effect on lipolysis suggests inhibition
of FAO is the driver for TGFA accumulation and consistent with
this hypothesis etomoxir mimicked metformin’s effect on TGFA
accumulation.
The increase in the fraction of desaturated fatty acid observed

in vitro is suggestive of FA processing prior to triglyceride storage
in lipid droplets in order to prevent cellular toxicity from
accumulation of saturated FAs.12,22 SCD has been found to have
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elevated expression at the mRNA and protein level in human
tumours and SCD inhibitors have successfully blocked tumour
growth in preclinical models. Recent work has demonstrated that
SCD inhibition sensitised tumour cells to metformin and other
compounds that target the electron transport chain23 and we
propose that this therapeutic strategy should be further explored.
Our study showed relative consistent sensitivity between assays

(TG accumulation, oxygen consumption and proliferation) for each
cell line. We did not identify any specific molecular determinants
for sensitivity and indeed demonstrated that low transporter
protein expression did not match to assay response. However, a
number of resistance mechanisms have been proposed for
biguanides including mtDNA mutations in genes that encode
for Complex 1.24 Mutations in LKB1, a kinase upstream of AMPK,
have been reported in MDA-MB-231 cells and to mediate
sensitivity to metformin.25,26 See Fig. 5 summarising our model
with regard to the effect of metformin on lipid metabolism on
breast cancer cells.
There are some limitations to this study. Most breast cancer

gene expression proliferation signatures have been mapped to
specific breast cancer subtypes and our signature was developed
from a cohort of ER-positive and HER2-negative tumours (the most
common subtype in our study) while this study was unselected for
breast cancer subtype. Our patient cohort did not have an
untreated control arm and it is possible that the passage of time
(2 weeks) and repeat biopsy could alter gene expression analysis
(or other assays), which in our study has not been controlled for.
In conclusion, these findings may have implications for

repurposing metformin as an anti-cancer agent. Activation of
FAO can rescue cancer cells under either drug induced stress
(mTORC1 inhibitors) or loss of attachment from the extracellular
matrix and FAO is a potential target for cancer therapy.27

Metformin has been shown to inhibit glucose oxidation and
deplete ATP in cancer cells28,29 and the requirement of FAO for
ATP production at times of energy stress has been shown in
several different models.27 Metformin may selectively targets

cancer stem cells30–32 and links have been made between active
FAO and cancer stem cell maintenance and function.33,34

Epidemiological studies have suggested that metformin may
decrease the risk of metastases in diabetic breast cancer patients
receiving metformin35 and recently inhibition of FAO has been
shown to markedly decrease metastasis and tumour growth in
triple negative breast cancer xenograft models.36,37 Lastly,
metformin’s modulation of cancer lipid metabolism may prove a
useful biomarker of anti-cancer effect. Dynamic monitoring of
metformin’s effects on FAO may define early response, for
example, using the novel positron emission tomography tracer,
18F-fluoro-pivalic acid.38
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