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Transcriptomic analysis of 
insecticide resistance in the 
lymphatic filariasis vector Culex 
quinquefasciatus
Walter Fabricio Silva Martins1,2, Craig Stephen Wilding  1,3, Alison Taylor Isaacs1, 
Emily Joy Rippon1, Karine Megy  4,5 & Martin James Donnelly1,6

Culex quinquefasciatus plays an important role in transmission of vector-borne diseases of public health 
importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts 
to tackle C. quinquefasciatus vectored diseases are based on either mass drug administration (MDA) 
for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted 
in increased resistance in mosquito vectors, including C. quinquefasciatus. Herein, the transcriptome 
profile of Ugandan bendiocarb-resistant C. quinquefasciatus was explored to identify candidate genes 
associated with insecticide resistance. High levels of insecticide resistance were observed for five 
out of six insecticides tested, with the lowest mortality (0.97%) reported to permethrin, while for 
DDT, lambdacyhalothrin, bendiocarb and deltamethrin the mortality rate ranged from 1.63–3.29%. 
Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1 h 
exposure and 58.02% after 4 h. Genotyping of the G119S Ace-1 target site mutation detected a highly 
significant association (p < 0.0001; OR = 25) between resistance and Ace1-119S. However, synergist 
assays using the P450 inhibitor PBO, or the esterase inhibitor TPP resulted in markedly increased 
mortality (to ≈80%), suggesting a role of metabolic resistance in the resistance phenotype. Using a 
novel, custom 60 K whole-transcriptome microarray 16 genes significantly overexpressed in resistant 
mosquitoes were detected, with the P450 Cyp6z18 showing the highest differential gene expression 
(>8-fold increase vs unexposed controls). These results provide evidence that bendiocarb resistance 
in Ugandan C. quinquefasciatus is mediated by both target-site mechanisms and over-expression of 
detoxification enzymes.

Lymphatic �lariasis (LF), is a major cause of chronic and permanent disability in tropical and subtropical regions 
as a result of lymphoedema, elephantiasis and hydrocele1,2 and is endemic in 83 countries with more than 1.2 bil-
lion people at risk of infection, especially in Southeast Asia and Africa3,4. In sub-Saharan Africa the causal agent of 
LF is the nematode Wucheraria bancro�i, which can be transmitted by both Culicine and Anopheline mosquitoes 
with Culex quinquefasciatus the major vector in urban settings in East Africa5.

In contrast to other vector-borne disease control programmes such as malaria and dengue that use anti-vector 
interventions as the major strategy, the Global Program to Eliminate LF (GPELF) is based on Mass Drug 
Administration (MDA) of anthelmintics to reduce W. bancro�i transmission6. Nevertheless, vector control is 
recommended as an intervention for LF eradication in regions where successful implementation of MDA is chal-
lenging, for instance in very remote areas, or where LF is co-endemic with loiasis which can result in adverse 
reactions to the drug cocktail used for MDA4,7. Modelling and �eld studies have shown that integration of vector 
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control into MDA programmes can reduce the required number of chemotherapy rounds and consequently the 
time frame to achieve the micro�laria (MF) prevalence threshold necessary for successful interruption of LF 
transmission1,8.

Although vector control has successfully reduced the burden of vector-borne diseases worldwide, the recur-
rent and extensive application of insecticides in endemic regions has also triggered an increase in the level of 
insensitivity to those insecticides approved for public health9,10. In addition, the limited number of insecticides 
available and the occurrence of cross-resistance between di�erent classes is especially worrying for the sustaina-
bility of vector control11,12. Consequently, identi�cation and monitoring of resistance patterns, and understanding 
the underlying mechanisms is crucial for extending the lifespan of currently available insecticides, as well as for 
planning more e�ective vector control programmes.

Insensitivity to insecticides in arthropods is thought to result mainly through mutations in target-site genes 
and/or overproduction of detoxifying enzymes13,14. Susceptibility studies in C. quinquefasciatus from diverse 
geographical regions have associated two main target-site mutations to resistant phenotypes. �e L1014F muta-
tion in the voltage-gated sodium channel gene, conferring kdr (knockdown resistance), has been associated with 
pyrethroid and DDT resistance, whilst the G119S mutation in the acetylcholinesterase (Ace-1) gene is linked to 
resistance to carbamates and organophosphates14–18. Metabolic resistance, which involves the over-expression, or 
increased catalytic capability of metabolic enzymes, is a less tractable mechanism since members of diverse gene 
families including carboxy/cholinesterases, glutathione S-transferases (GSTs) and cytochrome P450 monooxy-
genases (P450s) have previously been associated with resistance to di�erent classes of insecticide in a range of 
vector species19–21. Over-expression of detoxi�cation genes can be triggered by a range of mechanisms including 
gene duplication22, as observed for the resistance to organophosphates in C. quinquefasciatus mediated by ester-
ases23, cis-regulatory elements24,25, trans-regulatory elements, or changes in post-transcriptional repression due 
to di�erential expression of miRNAs26.

Due to the diversity of genes or gene families involved in metabolic resistance, identi�cation of candidate 
genes requires an agnostic survey of the patterns of gene expression associated with resistant phenotypes. 
Recently, studies have applied either microarray or RNA-Seq platforms to elucidate the relationship between gene 
expression and insecticide resistance27–29 although to date, most of these whole-transcriptome studies in vector 
insects are restricted to mosquitoes of the genus Anopheles. Despite the role of Culex in transmission of several 
pathogens such as �larial worms and West Nile virus (WNV)30, and reports of high levels of insecticide resistance, 
few studies have addressed the relative impact of metabolic resistance in C. quinquefasciatus31,32 particularly at a 
whole-transcriptome scale (although see33,34).

In addition to their role as disease vectors, C. quinquefasciatus are nuisance biters and failure to e�ectively con-
trol this species can lead to the perception of malaria control failure which may ultimately lead to the rejection of 
controls (e.g. IRS and ITNs)16,35. In this study, we report the results of C. quinquefasciatus susceptibility bioassays 
for six insecticides (DDT, permethrin, deltamethrin, bendiocarb, fenitrothion and lambda-cyhalothrin) from 
Nagongera, Tororo District, Uganda. We then report and apply a novel 8 × 60K whole-transcriptome microarray 
to identify candidate genes associated with bendiocarb insecticide resistance, the active ingredient used in IRS 
control in Uganda at the time of collection36.

Materials and Methods
Sample collection. Mosquitoes were collected in Nagongera, Tororo, Uganda (0° 47′ 48.9978″, 33° 58′ 47.1″) 
between June and July 2012. Resting adult C. quinquefasciatus were collected exclusively inside houses using 
aspirators and transported to the insectary. From these collections, caught blood-fed females were maintained 
in individual Eppendorf tubes lined with moist �lter paper to encourage egg laying37. From these, 64 females 
laid at least one egg batch. All egg batches were pooled and then �oated simultaneously across �ve water-�lled 
trays and emergent larvae fed on Tetramin �sh food. Pupae from all trays were transferred to a single cage and 
adults allowed to emerge. Cages for emerged adults were changed every 3 days so that single cages contained 
only 3–5 day-old adults. All bioassays were performed over a single 10 day period on adults that emerged from 
the primary egg batches. Adult mosquitoes were fed ad libitum on 10% glucose solution and used for insecticide 
susceptibility testing. Genomic DNA from each female from which egg ra�s were obtained to found the colony 
was individually isolated using a DNeasy kit (Qiagen) then used for identi�cation of C. quinquefasciatus using a 
diagnostic PCR assay38. In addition to these �eld-collected mosquitoes, a laboratory colony of C. quinquefasciatus 
from the Tropical Pesticides Research Institute (TPRI) Tanzania was used as a susceptible reference strain39 for 
the microarray study. �e TPRI colony susceptibility to the insecticide bendiocarb (see below) was veri�ed before 
the transcriptomic pro�ling by exposing 100 females (four replicates of N = 25) to bendiocarb in WHO assays 
(see below).

Insecticide susceptibility test. Bioassays were performed using test kits and insecticide-impregnated 
papers according to standard WHO methods (WHO)40, which brie�y consist of exposing mosquitoes to insec-
ticide impregnated papers �tted inside plastic tubes (125 mm × 44 mm) for 1 hour. Mosquitoes’ susceptibil-
ity is assessed by the mortality rate a�er a 24 hour recovery period. For each insecticide tested, mosquitoes 
were assayed in four replicates, performed on consecutive days, using 25 non-blood fed females (3–5 day-old) 
emerged from the F1 generation. Mosquito rearing and bioassays were conducted under insectary conditions: 
27 °C + 2 °C, 75% ± 10% relative humidity and 12 h:12 h light:dark cycles. Tests were performed with papers 
impregnated with diagnostic concentrations of six insecticides: DDT (4%), permethrin (0.75%), fenitrothion 
(1%), lambda-cyhalothrin (0.05%), bendiocarb (0.1%) and deltamethrin (0.05%). Mosquitoes were exposed for 
1h, with the exception of bendiocarb and deltamethrin where, following the results of initial 1h exposures, addi-
tional four-hour exposures were used to increase the discrimination between resistant and unexposed sympat-
ric mosquitoes. Control assays were performed with 25 mosquitoes exposed to non-insecticide treated papers. 
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Insecticide exposed mosquitoes were then transferred to clean holding tubes and provided with 10% glucose for 
a 24-hour period a�er which mortality was recorded, with dead (susceptible) mosquitoes collected and indi-
vidually stored on silica gel (for downstream DNA analyses) whilst alive (resistant) mosquitoes had a hind leg 
removed (stored on silica) and the whole body stored in RNAlater (Sigma Aldrich). Specimens preserved on silica 
were used for DNA genotyping for the G119S mutation in Ace-1 while RNAlater was used to preserve RNA integ-
rity before total RNA extraction, as described below. RNAlater stored mosquitoes were initially held overnight at 
4 °C to allow the solution to penetrate the carcass before storage at −20 °C until.

Synergist assays. Synergist tests were carried out using mosquitoes from the same generation utilised in the 
standard insecticide resistance assays following the procedure described above with an additional pre-exposure 
to three synergist compounds in order to investigate the potential mechanisms of metabolic resistance for ben-
diocarb and deltamethrin insecticides. For each synergist assay, four batches of 20–25 mosquitoes were either 
pre-exposed to impregnated papers (12 cm × 15 cm, Whatman grade no.1 �lter paper) with 4% PBO (piperonyl 
butoxide – CYP450 synergist), 10% TPP (triphenyl phosphate – esterase synergist) or 8% DEM (diethyl maleate – 
GST synergist) for one hour, then exposed to bendiocarb (0.1%) or deltamethrin (0.05%) for four hours, followed 
by a 24h recovery period. Synergist only controls were run simultaneously.

Ace-1 genotyping of bendiocarb phenotyped mosquitoes. Prior to microarray analysis all mosqui-
toes were genotyped for the G119S mutation in Ace-1. DNA was isolated from the amputated hind leg of resistant 
mosquitoes with 50 µl of 10% Chelex 100 and 2 µl of proteinase K (10 mg/mL). �e homogenate was incubated at 
94 °C for 30 min followed by centrifugation at 6,000 rpm for 10 min to collect the supernatant.

A TaqMan assay, designed to detect the G119S mutation in the acetylcholinesterase gene41, was utilised for 
genotyping with reaction mixtures composed of 1 µl of genomic DNA, 1x SensiMix II probe, 400 nM of each 
primer and 100 nM of each probe in a �nal volume of 50 µl. �ermocycling was performed on the Stratagene 
MX3005P and consisted of 95 °C for 10 min and 40 cycles of 92 °C for 15sec and 60 °C for 1 min with endpoint 
discrimination.

Microarray. 8 × 60 K microarray construction and study design. �e pattern of gene expression of bendio-
carb resistant mosquitoes was investigated using a custom designed C. quinquefasciatus whole genome oligonu-
cleotide microarray (Agilent ID 039759). An 8 × 60K microarray format with 60-mer oligonucleotide probes was 
designed to cover a variety of targets using eArray (http://earray.chem.agilent.com/earray/). �e majority of this 
array encompassed three probe replicates (56,598 probes) for each of the 19,018 transcripts in the CpipJ1.3 gene 
build42. Additionally, we downloaded 205,396 ESTs from VectorBase. From these, we identi�ed 1,987 contigs 
and 4,109 singleton sequences and designed a single probe for each (from these 1,987 contigs, only 1,935 had 
probes successfully designed and from 4,109 singletons 2,862 had successful probes designed). Additionally, three 
probe replicates were designed to each of four alternative GST transcripts not annotated in VectorBase43, and 25 
additional replicated probe groups (10 replicates) to allow estimation of reproducibility (CV (coe�cient of vari-
ation probes) (Fig. 1a). Nevertheless, it is important to bear in mind that the current array version encompassed 
genomic information exclusively from the CpipJ1.3 annotation and may therefore lack the resolution to pinpoint 

Figure 1. Overview of Culex quinquefasciatus whole-transcriptome analysis. (a) Design of the 8 × 60 K 
Agilent microarray. CpipJ1: consensus gene set of the automated gene prediction from the C. quinquefasciatus 
Johannesburg strain genome sequence. EST: expressed sequence tags. GSTD1: Glutathione S transferase D1. CV 
probe: coe�cient of variation. (b) Interwoven hybridization loop design for comparison between bendiocarb 
exposed and non-exposed Ugandan �eld-collected mosquitoes and the TPRI susceptible strain. Circles 
represent pools of 10 females. C: Uganda non-exposed mosquitoes (sympatric control), R: Uganda Resistant 
mosquitoes, TPRI (Tropical Pesticides Research Institute): C. quinquefasciatus susceptible strain from Tanzania.
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speci�c gene sets linked to geographic background. Full details of the array design are given in ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress/) with the accession number A-MTAB-649.

From the six insecticide susceptibility test groups, we chose bendiocarb selected mosquitoes for the microar-
ray analysis since we observed only moderate mortality 58.02% (95% CI-con�dence interval 51.53–64.25%) for 
this insecticide following 4h exposure (Fig. 2) thereby allowing clear discrimination between resistant and unex-
posed sympatric mosquitoes and we also detected an increase in mortality in the presence of two synergists (See 
Fig. 2; TPP and PBO), indicating the likely involvement of metabolic resistance. �ree experimental conditions 
were employed: Tororo_Resistant (following 4h bendiocarb exposure), Tororo_Control (4h exposure to control 
papers) and TPRI_Control (4h exposure to control papers). All mosquitoes were wildtype 119G homozygotes for 
Ace-1. Comparison between the bendiocarb selected samples and controls (Tororo_Control and TPRI_Control) 
was performed on three RNA pools per group using an interwoven loop design (Fig. 1b) as described by Vinciotti 
et al.44.

RNA extraction, labelling and hybridization. Total RNA was isolated from three pools of 10 female mosqui-
toes for each group using the RNAqueous-4PCR kit (Ambion) according to the manufacturer’s instructions. 
Total RNA quantity was assessed using a Nanodrop spectrophotometer and RNA quality assessed on an Agilent 
Bioanalyzer. Each pool of RNA was individually labelled with Cyanine-3 and Cyanine-5 (Cy3 and Cy5) using the 
Low input Quick Amp Labelling Kit (Agilent Technologies) followed by puri�cation through Qiagen RNeasy 
Columns (Qiagen) with quality and quantity checked using a Nanodrop and Bioanalyzer, respectively.

Before hybridization, 300 ng of Cy3 and Cy5 labeled cRNA was fragmented using the gene expression hybrid-
ization kit (Agilent) in a total volume of 25 µl including 5 µl of 10x blocking agent and 1 µl of 25x fragmentation 
bu�er. �e fragmentation reaction was incubated at 60 °C for 30 min, then chilled on ice for 2 min before addi-
tion of 25 µl of 2 x GE hybridization bu�er Hi-RPM. Each array was hybridized using 45 µl of the fragmentation 
solution for 17 hours at 65 °C and 10 rpm. A�er hybridization, arrays were washed with wash bu�ers 1 and 2 for 
1 min each, followed by acetonitrile for 10 sec and �nally �xation solution for 30 sec. Arrays were scanned using 
the microarray scanner system (Agilent Technologies) and feature extraction performed using Feature Extraction 
so�ware (Agilent Technologies) according to the manufacturer’s recommendations. All arrays passed the Agilent 
quality control with QC score ≥10.

Data analysis. All microarray data analysis was performed in R version R.3.0.145. Array normalization was car-
ried out using the Limma 3.2.3 package46 and data analysis performed using MAANOVA so�ware version 3.047 
to detect overall di�erential levels of gene expression across the three treatment groups. �e top overexpressed 
genes were selected a�er an ANOVA F-test based upon a false discovery rate (FDR) decision criteria of log10 
(Q value) > 2.5. Within this subset of signi�cantly di�erentially expressed probes, those that were signi�cantly 
overexpressed in the Bendiocarb-exposed mosquitoes were pinpointed by comparing expression pattern in all 
pair-wise comparisons (see Table 1).

Additionally, the pattern of di�erential transcript level was also characterized through pair-wise comparisons 
between Ugandan resistant, sympatric control and the TPRI strain using a Student’s t-test with genes considered 
di�erentially overexpressed where P < 0.05.

Functional characterization of di�erently expressed transcripts detected from the ANOVA and pair-wise 
comparison were then submitted to a Gene Ontology (GO) analysis to classify probes on their GO categories 
(cellular components, biological process and molecular functions). For this, a sub-set of overexpressed probes 
were selected based on the threshold of log10 (Q value) > 2 of the ANOVA analysis to capture a broader selec-
tion of highly overexpressed probes. �is was then submitted to VectorBase for functional annotation (GO term 
identi�cation) using the Biomart tool. �e REVIGO web server48 was employed to summarize and visualize the 
distinct GO terms identi�ed. Relatedness among GO terms was assessed using the uniqueness method, followed 

Figure 2. Insecticide susceptibility status of C. quinquefasciatus from Tororo (Uganda). Bioassay results 
following exposure to WHO insecticide treated papers at standard conditions and e�ect of insecticide synergists 
on the susceptibility status. Grey and blue bars represent WHO standard and synergists bioassay, respectively. 
Error bars represent 95% CI. PBO: piperonyl butoxide, DEM: diethyl maleate, TPP: triphenyl phosphate.
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by clustering of GO terms with closer semantic similarity. Signi�cantly enriched GO terms were calculated in 
David49,50.

RT-qPCR validation. Reverse-transcription quanti�cation PCR (RT-qPCR) using cDNA synthetized from the 
same pools of total RNA applied for microarray hybridization were used to con�rm the expression pro�le of three 
out of 16 top candidate gene identi�ed by the microarray (CPIJ020018 [=Cyp6z18], Cyp6n23, R2D2 Table 1) 
using two housekeeping genes - 40S ribosomal protein S3 and β-tubulin - as endogenous controls. Speci�c prim-
ers to amplify PCR fragments with size ranging from 107 to 176 bp (see Supplementary Table S1) were designed 
using primer3 so�ware51; however, only for four genes (Cyp6z18, R2D2, 40S ribosomal protein S3 and β-tubulin) 
was it possible to design primers spanning exon junctions (primers for Cyp6n23 were exonic only). Speci�city of 
primer sets was veri�ed by identi�cation of a single symmetrical amplicon peak following melting curve analysis. 
Additionally, PCR e�ciency was veri�ed using a 10-fold serial dilution of standard cDNA with only primer sets 
with an e�ciency ranging from 90 to 110% taken forward for RT-qPCR reactions.

Two technical replicates of all RT-qPCR reactions were carried out for each gene in a total volume of 20 µl 
including 1 µl of cDNA (1:4 stock diluted), 10 µl of Brilliant II SYBR® master mix (Agilent Technologies) and 100 
nm of each forward and reverse primer. Ampli�cation was conducted under standard qPCR reaction conditions 
on the Mx3500P qPCR system (Agilent Technologies). Gene expression quanti�cation of the three selected genes 
was assessed according to the ∆∆Ct method52.

Manual annotation of the CPIJ020018 gene region. During qPCR primer design for the top candidate gene 
CPIJ020018 (annotated as Cyp6z16 in VectorBase CpipJ1.3 assembly #1, annotation 1.3), we concluded that the 
available, automated gene annotation of this particular gene was unreliable. �e genomic sequence of this region 
in VectorBase includes a region of about 810 bp in supercontig 3.2948 with no nucleotide sequence information, 
which spanned the automated annotation of Cyp6z16. We suspected additional coding sequence to lie within this 
region. To con�rm this, we designed primers to span the complete region and ampli�ed a 4.7 kb region covering 
the full length of the candidate gene genomic sequence.

PCR reactions to amplify the Cyp6z16 genomic region were conducted in a �nal volume of 20 µl includ-
ing 40 ng of genomic DNA, 1 x Phusion HF bu�er, 200 µM each dNTP, 0.5 µM each primer Cx_6Z16F and 
Cx_6Z16R (see Supplementary Table S2) and 0.02 U/µl Phusion DNA polymerase. Reaction conditions were 
98 °C for 30 sec, 30 cycles of 98 °C for 10 sec, 62 °C for 30 sec and 72 °C for 3 min, with a �nal extension of 72 °C 
for 5 min. PCR products were puri�ed using the GeneJET PCR puri�cation kit (�ermo Scienti�c) then cloned 
into pJET1.2 PCR vector (�ermo Scienti�c). Finally, the full length of cloned PCR product a�er plasmid puri-
�cation using the GeneJET Plasmid Miniprep Kit (�ermo Scienti�c) was sent to Source BioScience, UK for 
Sanger sequencing using nine internal primers (see Supplementary Table S2). Sequence traces were analyzed 
using CodonCode Aligner version 4.2.2. Following removal of vector sequences a single contig was built from 
overlapping sequences. �is contig sequence was then used for gene structure prediction and transcript annota-
tion using the Augustus web interface53.

Gene Transcript GO

log Fold-Change (-log Q value)

Ugandan Bendiocarb 
vs TPRI

Ugandan Sympatric 
vs TPRI

CPIJ020018-RA cytochrome P450 6Z18 monooxygenase activity 3.13 (2.80) 2.59 (2.80)

CPIJ005900-RA cytochrome P450 6N23 monooxygenase activity 2.13 (2.80) 1.87 (2.80)

CPIJ003654-RA electron transfer electron carrier activity 2.36 (2.58) 2.23 (2.58)

CPIJ010823-RA serine protease 27 precursor serine-type endopeptidase activity 4.41 (2.53) 3.86 (2.44)

CPIJ013083-RA brain chitinase and chia hydrolase activity, hydrolyzing 
O-glycosyl compounds 1.31 (2.44) 0.93 (2.38)

CPIJ016928-RA 15.4 kda salivary peptide No information in VectorBase 2.99 (2.44) 2.73 (2.42)

CPIJ004984-RA serine proteases 1/2 precursor serine-type endopeptidase activity 4.26 (2.44) 3.60 (2.40)

CPIJ011746-RA R2D2 double-stranded RNA binding 1.89 (2.41) 1.72 (2.40)

CPIJ004019-RA saccharopine dehydrogenase oxidoreductase activity 1.47 (2.44) 1.05 (2.30)

CPIJ004019-RA saccharopine dehydrogenase 
domain oxidoreductase activity 1.24 (2.40) 1.11 (2.40)

CPIJ002104-RA plasma alpha-L-fucosidase 
precursor catalytic activity 1.32 (2.44) 0.90 (2.26)

CPIJ015009-RA histone H3.3 type 2 DNA binding 1.32 (2.40) 1.13 (2.38)

CPIJ000182-RA N-acetylneuraminate lyase catalytic activity 2.44 (2.42) 1.76 (2.26)

CPIJ011590-RA conserved hypothetical 
protein No information in VectorBase 0.87 (2.37) 0.81 (2.38)

CPIJ019290-RA DNA ligase 4 DNA binding 1.22 (2.34) 1.20 (2.35)

CPIJ016792-RA hypothetical protein No information in VectorBase 3.39 (2.38) 2.94 (2.29)

Table 1. Top di�erentially expressed genes from microarray analysis comparing Uganda resistant and 
sympatric controls compared to TPRI susceptible strain.
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Transgenic expression in Drosophila flies. The full-length sequence of Cyp6z18 was codon-optimised by 
Genscript (Piscataway, NJ, USA) for Drosophila and synthesised with EcoRI-XbaI sites then cloned into the 
pUAST.attB vector (provided by Dr J Bischof, University of Zurich). Transformation was performed using the 
PhiC31 system with plasmids injected into the germline of D. melanogaster with a chromosome 2 attP land-
ing site (y w M(eGFP, vas-int, dmRFP)ZH-2A; P{CaryP}attP40) by the University of Cambridge Fly Facility. A 
single transgenic line was generated and balanced. To induce expression of Cyp6z18, �ies were crossed to the 
Act5C-GAL4 strain (y1 w*; P (Act5C-GAL4-w) E1/CyO,1;2) (Bloomington Stock Center, IN, USA). For each 
treatment, Cyp6z18 transgenic or untransformed controls, three crosses of 12–15 females to 6–7 Act5C-GAL4 
males were performed. Shortly a�er pupae were seen, the parental generation was transferred into new rearing 
vials to continue egg laying. �e date of appearance of newly-emerged o�spring was observed for a total of 8 
Cyp6z18 and 11 control rearing vials.

Results
Insecticide susceptibility status. Insecticide resistance levels following WHO susceptibility tests on F1 
female mosquitoes to all six insecticides tested are shown in Fig. 2. �e lowest mortality 0.97% (95% CI 0.92–
5.09%) was observed to permethrin while for DDT, lambdacyhalothrin, bendiocarb and deltamethrin the mor-
tality rate ranged from 1.63% (95% CI 1.35–4.76% −3.29% (95% CI 2.43–6.73%) (Fig. 2). For fenitrothion we 
observed the highest mortality among the insecticides tested 69.42% (95% CI 64.27–74.16%). To investigate the 
e�ect of exposure duration on mortality, bioassays with bendiocarb and deltamethrin were also carried out for 
four hours. For both insecticides, an increase in mortality was detected (Fig. 2); however, only for bendiocarb did 
the mortality increase signi�cantly from 2.04% (95% CI 1.93–10.2%)) to 58.02% (95% CI 51.53–64.25%) whilst 
for deltamethrin the increase was non-signi�cant 9.09% (95% CI 6.12–13.59%).

Adult mosquitoes were also assayed with bendiocarb and deltamethrin for four hours exposure after 
pre-exposure in parallel to three synergist compounds (TPP, DEM and PBO). Synergism was observed for both 
insecticides following TPP and PBO pre-exposure whilst no signi�cant e�ect on mortality was detected for DEM 
(Fig. 2). TPP and PBO signi�cantly increased the mortality of bendiocarb from 58.02% (95% CI 51.53–64.25%) 
to 80.51% (95% CI 69.6–88.34%) and 83.14% (95% CI 73.41–89.96%) respectively.

Frequency of Ace-1 resistant alleles in bendiocarb selected mosquitoes. Both dead and alive mos-
quitoes following exposure to 0.1% bendiocarb (4h) were genotyped for the Ace1-119S mutation using a custom 
Taqman assay. �e wild-type allele was observed at the highest frequency (Fig. 3a) 86.22% (95% CI 83.02-90.34) 
with homozygous genotypes predominating 72.44% (95% CI 68.72–76.64). No homozygous resistant genotypes 
were detected (Fig. 3b). �ere was a highly signi�cant association between the Ace1-119S allele and bendiocarb 
resistant phenotype (Fig. 3c; P < 0.0001, Fisher’s Exact test) with an OR of 25 (95% CI 3.37–186).

Gene expression profiling of bendiocarb selected mosquitoes. To identify candidate genes associ-
ated with resistance in bendiocarb selected mosquitoes, transcriptomic pro�les of three groups of Ace-1 wild-type 
(119G) mosquitoes were compared: Ugandan bendiocarb exposure survivors, Ugandan Control exposed (sym-
patric control) and a control exposed fully susceptible TPRI strain. Among the three groups we identi�ed 32 
probes signi�cantly di�erently expressed in the ANOVA analysis applying a threshold of –log10 false-discovery 
rate (FDR) adjusted P value > 2.5, of which 50% of the probes had higher expression in the Ugandan exposed 
compared to both the sympatric control and TPRI (Table 1). �e list of top candidate genes included two P450s: 

Figure 3. Ace1-119S allele and bendiocarb association test in C. quinquefasciatus. (a) Ace-1 allelic (b) genotypic 
frequencies (c) association of the Ace-1 genotype and bendiocarb (0.1%)/4 hours resistant phenotype.
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CPIJ020018 (shown to be Cyp6z18 following reannotation – see below) and Cyp6n23, which displayed increases 
in gene expression compared to the TPRI strain of 8.75 and 4.37-fold, respectively.

For functional characterization of the most signi�cantly di�erentially expressed probes, a list of probes with 
a − log10 false-discovery rate (FDR) > 2 obtained from the ANOVA (Fig. 4a) comparison was submitted to Gene 
Ontology (GO) analysis. A�er removing duplicate probes, 358 unique genes were submitted to VectorBase for 
the GO term search using Biomart (for complete annotation see Supplementary Table S3.) In total 298 terms were 
obtained with the majority of extracted GO terms clustered on the molecular function and biological process 
categories (see Supplementary Table S4 for GO Term frequencies and description). Among the top 10 enriched 
terms for each category, GO terms linked to metabolic process, biosynthetic process, transport, membrane, inte-
gral component of membrane, nucleus, binding, cation binding and metal ion binding were observed with per-
centage of annotations ranging from 2.16 to 75.39% (1–81 genes, respectively) (Fig. 4b–d). Metabolic process 
was the predominant term across all categories corresponding to 75.39% of enriched GO terms, while within the 
category of molecular function and cellular component we observed a large proportion (21.23%) of terms associ-
ated with binding functions (29 genes) and membrane 61.59% (29 genes), respectively. Further analysis utilising 
the 358 unique genes showed �ve clusters of GO terms with signi�cant enrichment (enrichment score >1.3: 
Supplementary Tables S5 and S6). Cluster 1 had the highest enrichment score (5.15) and was associated with 
the GO term ‘transferase activity’ and Interpro IDs for Glutathione S-transferases (‘Glutathione S-transferase, 
N-terminal’ Benjamini-Hochberg P = 6.7 × 10−6; ‘Glutathione S-transferase, C-terminal’ Benjamini-Hochberg 
P = 2 × 10−5).

To explore further the transcriptomic pro�le of the bendiocarb resistant phenotype, pairwise comparison 
using Student’s t-test was applied to compare exposed and unexposed Ugandan mosquitoes to the TPRI suscep-
tible strain. Signi�cantly up and down-regulated genes with a fold-change > 2.5 were also investigated by GO 
analysis. For down-regulated genes we observed similar �gures between exposed and unexposed mosquitoes 
in contrast to up-regulated genes where we identi�ed 33 genes exclusively in the exposed mosquitoes (Fig. 5a). 
Pairwise comparisons also identified eight significantly differentially expressed genes putatively associated 
with insecticide detoxi�cation: three exclusively in the pools of exposed mosquitoes: GSTs (CPIJ018629-RA; 
fold-change 2.79 and CIPJ018632-RA, fold-change 2.0) and esterase (CPIJ013918-RA; fold-change 2.86) whereas 
for the other �ve: P450 (CPIJ020018-RA), GSTs (CPIJ010814-RA, CPIJ018624-RA, CPIJ018626-RA) and esterase 
(CPIJ013917-RA) were observed in both Ugandan exposed and unexposed mosquitoes.

In general, the GO term enrichment of the up and down-regulated genes for the Ugandan exposed and unex-
posed mosquitoes shows a similar list of terms (Fig. 5b) with the exception of three terms: metabolic process, 
phosphate-containing compound metabolic process and cation binding that were observed exclusively on the 
exposed mosquitoes with frequencies of 60.61, 16.39 and 17.07%, respectively (Fig. 5c). Nevertheless, this analysis 
excluded 39 and 18 up and down-transcribed genes (See Supplementary Tables S7 and S8), respectively, such as 
esterases (CPIJ013917-RA and CPIJ013918-RA) and heat shock proteins (CPIJ013880-RA and CPIJ005642) for 
instance, that were not associated with GO terms from VectorBase.

Figure 4. Candidate genes di�erentially transcribed in C. quinquefasciatus bendiocarb selected mosquitoes. (a) 
Changes of gene expression between the three groups (Uganda exposed and un-exposed and TPRI) presented 
as a volcano plot. (b–d) Are sunburst plots showing representative top 10 GO term clusters (molecular function, 
biological process and cellular component, respectively) of di�erentially expressed transcripts with FDR > 2.0.
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Candidate gene validation by qPCR. �e expression patterns of three candidate genes, randomly chosen 
from the list of top candidates, (both P450 genes Cyp6z18 and Cyp6n23, plus R2D2) were additionally assessed 
by qPCR. Satisfactory PCR e�ciency ranging from 91.4 to 101.8%, (within the 10% acceptable variation) was 
obtained for primer pairs designed for candidate genes and endogenous controls (Supplementary Fig. S1). 
Additionally, the primer sets were speci�c, with a single symmetrical amplicon peak in melting curve analyses 
(Supplementary Fig. S2). For all three candidate genes (Cy6z17, Cyp6n23 and R2D2) we observed a good correla-
tion between the microarray and RT-qPCR expression fold-change with ratios of up-regulation detected by both 
methods di�ering by less than 1.5 × (Supplementary Fig. S3).

Annotation of CPIJ020018. A�er identi�cation of CPIJ020018 as the top candidate gene in the microarray 
results, further analyses on the genomic and cDNA sequences available from VectorBase were conducted. �is 
revealed an atypical gene architecture for a P450 gene with the presence of one intron >3Kb (Fig. 6a). Closer 
analysis of the genomic sequence indicated a region of 809 bp with no nucleotide information (Ns) internal to 
the CPIJ020018 genomic sequence. In silico analysis of a contig constructed a�er PCR ampli�cation and clon-
ing of the complete region encompassing the genomic region of interest (accession number MH822866), sug-
gested the presence of two distinct P450s instead of the single Cyp6z16 predicted by the automated annotation 
in VectorBase. �e two genes predicted are each composed of two exons separated by one intron (Fig. 6b and 
Supplementary Material 1). BLAST analysis of both predicted amino-acid sequences against Anopheles gambiae 
and Aedes aegypti sequences available on VectorBase and the Cytochrome P450 homepage54 shows the top hits 
belong to CYP genes from the Z family. Following submission to the P450 nomenclature database the partial 
P450 is now labelled cyp6z16 and the full-length novel P450, which is interrogated by the microarray probes 
(hitting CPIJ020018 exon-2) is formally labelled cyp6z18 (note cyp6z17 is annotated is annotated on supercontig 
3.3058). Together the gene prediction and BLAST analysis carried out indicate that the top candidate gene from 
the microarray analysis is cyp6z18 and not cyp6z16 (which is not interrogated by any probes due to incorrect 
annotation). cyp6z18 is closely related to other P450s which have previously been associated with metabolic 
resistance in both An. gambiae55,56 and Ae. aegypti57,58 (Fig. 6c). We note that whilst our microarray design was 
undertaken on the CpipJ1 assembly, the CpipJ2 assembly (available from April 2014) did not revise the assembly 
or annotation of this sca�old.

Transgenic expression of cyp6z18 in Drosophila flies. Drosophila melanogaster �ies were transformed 
with a transgene encoding cyp6z18 for expression using the GAL4/UAS system. Individuals containing the 

Figure 5. Transcriptomic pro�le of di�erentially expressed genes with fold-change >2 in Uganda exposed and 
sympatric mosquitoes compared to TPRI. (a) Venn diagram showing the overlap of up- and down-regulated 
transcripts between the three groups. (b) Comparison of the number of GO terms identi�ed by each pair-wise 
comparison. (c) GO term enrichment of up-regulated transcripts between the groups with frequency higher 
than 2%.
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cyp6z18 gene and untransformed controls were crossed to �ies of the Act5C-GAL4 driver line to induce ubiqui-
tous expression of cyp6z18. Expression of cyp6z18 negatively impacted �y �tness, evident in prolonged pre-adult 
development. �e number of days between placing adult �ies in a rearing vial and the �rst o�spring emerging was 
measured. A signi�cant di�erence in this value was detected, with an average of 23 days for cyp6z18-expressing 
�ies (95% CI 21.21–25.04) and 16 days for untransformed control �ies (95% CI 15.23–16.41) (unpaired t-test 
with Welch’s correction P < 0.0001, N = 19). Because of this �tness cost, experiments to test the impact of cyp6z18 
expression upon insecticide resistance were not pursued.

Discussion
Insecticide resistance is widespread in malaria vectors in Uganda37,59–63 and known to result from both target-site 
and detoxi�cation mechanisms63–65. In this study, we investigated the insecticide susceptibility status and possi-
ble mechanisms involved with insecticide resistance in the LF vector C. quinquefasciatus mosquitoes collected 
in a region of Uganda (Tororo) where both Anopheles gambiae and Anopheles funestus exhibit resistance to the 
insecticides currently used for malaria control37,62,63. We have shown previously41 that the pattern of target-site 
mutations in Ugandan Culex varies regionally despite intense gene �ow, suggesting a heterogeneous pattern of 
insecticidal selection pressures. Here we show that in Culex from Tororo, eastern Uganda, resistance to three of 
the four classes of insecticide occurs at high levels and, at least for bendiocarb, is mediated by both target-site and 
metabolic mechanisms. Although, the G119S mutation in Ace-1 is not at high frequency, it is strongly associated 
with resistance with an OR of 25 (95% CI 3.37–186). With such a strong resistance association it seems surpris-
ing that the 119S allele is at such low frequency 14% (95% CI 7.9–22.4) in the Nagongera population. �is is a 
much lower frequency than observed in other vector mosquitoes where carbamates are routinely used in vector 
control66. Whilst insecticides linked to selection of Ace-1 resistant alleles have not been o�cially applied for 
vector control in the studied area for over one decade67,68 indoor residual spraying (IRS) using bendiocarb was 
conducted in Tororo from December 2014 - February 201569,70, a�er the period of collection of these samples, 
and hence this allele frequency is higher than expected. Nevertheless, an indirect source of insecticide exposure 
due to agricultural activities could also be shaping the insecticide resistance as described for C. quinquefascia-
tus populations from Iran71. However, the Ace-1 mutation is known to confer a �tness disadvantage which may 
explain the low frequency of the resistance associated allele72. �is recent evolution of insecticide resistance in 
Ugandan Culex populations, possibly in response to malaria vector control, has also been suggested in other 

Figure 6. Cyp6z16 and cyp6z18 predicted gene structure and annotation. (a) output of the VectorBase genome 
Browser suggesting a gene architecture with four exons and three introns. Figure adapted from VectorBase96 (b) 
Schematic representation of CPIJ020018 a�er re-annotation using Augustus so�ware, indicating two distinct 
genes here named cyp6z18 (g1.t1) and cyp6z16 (g2.t1). (c) Unrooted distance neighbour joining tree showing 
phylogenetic relationship of the predicted gene cyp6z18 from C. quinquefasciatus to Aedes aegypti and An. 
gambiae cytochrome P450s from the CYP6 gene family. Blue branches and genes highlighted in red represents 
the relationship of the re-annotated gene structure.
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African countries such as Tanzania and Zambia, where moderate resistance has also been detected to bendiocarb, 
in contrast to the high levels of resistance detected to both pyrethroids and DDT16,73.

�e potential involvement of metabolic resistance in bendiocarb resistant C. quinquefasciatus from Tororo 
is supported by the synergist assays, which show an increase in mortality to bendiocarb when mosquitoes were 
pre-exposed to either TPP (a synergist of esterases) or PBO (a synergist of cytochrome P450s). Together the Ace-1 
genotyping and synergist assay data strongly suggested an alternative mechanism of resistance to the well-known 
Ace1-119S target-site mutation in the Ugandan bendiocarb resistant phenotype. Transcriptomic pro�ling of Ace-
1 wild-type mosquitoes identi�ed two P450s (CPIJ020018 and Cyp6n23) with the highest up-regulation in the 
resistant samples among the top candidate genes. Over-expression of both these cytochrome P450s (CPIJ020018 
and cyp6n23) identi�ed in our analysis are especially relevant as many genes belonging to this gene family have 
been associated with insecticide metabolism in a variety of vector species28,74,75.

�e likely association of this candidate cytochrome P450s with the carbamate resistant phenotype is supported 
also by the synergism e�ect of the P450 inhibitor PBO76. Most CYPs previously associated with the insecticide 
resistance phenotype in mosquitoes, (e.g. cyp6p3, cyp9j32 and cyp6m10) are typically associated with metabo-
lism of pyrethroids and DDT56,75,77, while so far very few examples of bendiocarb metabolism by P450 have been 
reported. Recently, Edi et al.78 demonstrated that cyp6p3 is associated with the bendiocarb resistant phenotype 
in An. gambiae from Tiassalé, Cote d’Ivoire and con�rmed its capability to metabolise bendiocarb. Additionally, 
two other An. gambiae P450s (cyp6z1 and cyp6z2) have also been demonstrated to be capable of metabolizing 
the carbamate insecticide carbaryl79 and upregulation of the An. funestus cyp6z1 is associated with carbamate 
resistance in this species80. Interestingly, both cytochrome P450s identi�ed here belong to the CYP6 family, which 
includes most of the CYPs genes already described as insecticide metabolizers23. Our GO term enrichment anal-
ysis also indicated a likely impact of other metabolic genes such as GSTs, which from our data had the highest 
enrichment score in the cluster analysis, with two GST genes (CPIJ018629-RA and CIPJ018632-RA) overex-
pressed exclusively in exposed mosquitoes. �ese �ndings indicate that further functional analysis should be 
performed to pinpoint the role of GSTs in the carbamate resistant-phenotype of Culex. We note that other studies 
have already shown that genes belonging to this family have roles in resistance to DDT and pyrethroids in Culex 
mosquitoes81,82.

For the candidate gene cyp6z18, functional enzymatic characterization for insecticide metabolism, was applied 
as an in vivo approach using transgenic gene expression in Drosophila. Unfortunately, this approach did not suc-
ceed in validating this gene as the transgenic construction negatively a�ected Drosophila development. Further 
work using alternative approaches such as in vivo gene expression through CRISPR/Cas983 or in vitro metabo-
lism assays e.g.28 could be applied to con�rm the role of the candidate gene in metabolic resistance. As shown 
herein and elsewhere84,85, investigation of resistant phenotypes in light of metabolic resistance is imperative for 
pinpointing the genetic mechanisms associated with evolving insecticide resistance. For instance, while our data 
show that both target-site and detoxi�cation gene over-expression underly the resistance to bendiocarb in C. 
quinquefasciatus from Tororo, other studies have demonstrated that P450 overexpression alone is the primary 
mechanism in kdr-free populations such as in Anopheles arabiensis from Chad, Central Africa84 and Malaysian 
Aedes albopictus85. Taken together, these �ndings highlight the relevance of identifying the mechanisms driving 
resistance in order to facilitate the development of �eld-applicable markers to detect increased resistance at the 
early stages of resistance development as well as to assist in decision-making for more e�ective control interven-
tions. For instance, choosing either insecticide-only nets or insecticidal-synergistic nets (e.g. those incorporating 
piperonyl butoxide - PBO)86 or the rational use of insecticides from distinct classes to tackle the threat of an 
increased burden of vector-borne diseases driven by reduced e�cacy of ongoing vector control interventions87.

Further analysis of the genomic and transcriptomic sequences of the top candidate gene CPIJ020018 (anno-
tated as cyp6z16 in VectorBase) suggests annotation inaccuracy. A�er re-annotation, our analysis indicates 
that CPIJ020018 consists of two distinct CYP genes (cyp6z16 and cyp6z18) instead of one as suggested by the 
automated annotation of VectorBase. Annotation problems as observed for cyp6z16 may potentially occur for 
other genes (see88 for annotation de�ciencies of recent Anopheles sequencing), thus a review and improvement 
of gene annotation for C. quinquefasciatus and other vector species such as Anopheles dirus, Aedes albopictus and 
Lutzomyia longipalpis recently included on the VectorBase genome browser, especially of gene families linked 
to insecticide resistance, would bene�t future transcriptomic monitoring of insecticide resistance. Whilst, the 
increased usage of RNA-Seq for di�erential gene expression analyses may suggest this is unnecessary, the typical 
RNA-Seq pipeline maps reads to annotated gene sets and hence a robust annotation of these gene families would 
still be bene�cial. C. quinquefasciatus remains the poor relation of disease vectors with respect to assembly and 
annotation of genome sequence, whilst the genome sequences of A. gambiae and A. aegypti have received impor-
tant and successful genome updates89,90 Culex remains assembled with a high number of sca�olds and hence gaps.

�is microarray study also identi�ed that four other detoxi�cation genes (three glutathione S-transferases 
(GSTs) and one esterase) were also over-transcribed compared to TPRI, although they were not di�erently 
expressed between Tororo resistant and sympatric unexposed controls. High expression of these genes alone or 
in combination with other detoxi�cation enzymes could also be a possible mechanism associated with the ben-
diocarb phenotype as reported previously91,92, although in our data no signi�cant synergist e�ect by DEM, a GST 
inhibitor was observed, further characterization of these genes is warranted.

Although C. quinquefasciatus is a vector of important neglected tropical diseases, planning and management 
of vector control strategies for Anopheles species has received considerably more attention and funding. Whilst 
this could re�ect that MDA is currently the primary intervention for LF eradication with vector control deemed 
secondary, a reduction of LF transmission by Culex species due to control programs aimed at anopheline species 
has been demonstrated93,94. �us, in a possible integrated vector-control scenario the monitoring of insecticide 
resistance and determination of the mechanisms resistance for vector species of apparent secondary interest can 
be critical to e�ective integration95.
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Conclusions
Our data demonstrate that although Ugandan C. quinquefasciatus mosquitoes had not been covered by a speci�c, 
targeted local vector control program, high levels of insecticide resistance were identi�ed in the studied popu-
lation, indicating that application of insecticide to control other species with public health importance such as 
anophelines through indoor residual spray (IRS) and insecticide treated nets (ITNs), or through application of 
insecticides for agricultural purposes could be driving the evolution of insecticide resistance in this population. 
�is study also provides strong evidence that a metabolic mechanism is associated with the bendiocarb resistant 
phenotype observed in Tororo. Lastly, by a whole-transcriptomic analysis we identify two new candidate genes 
belonging to the cytochrome CPY6 gene family associated with metabolic resistance to bendiocarb.
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