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Abstract

Purpose: Previously identified transcriptomic signatures

have been based on primary and metastatic melanomas with

relatively few American Joint Committee on Cancer (AJCC)

stage I tumors, givendifficulties in sampling small tumors. The

advent of adjuvant therapies has highlighted the need for

better prognostic and predictive biomarkers, especially for

AJCC stage I and stage II disease.

Experimental Design: A total of 687 primary melanoma

transcriptomes were generated from the Leeds Melanoma

Cohort (LMC). The prognostic value of existing signatures across

all the AJCC stages was tested. Unsupervised clustering was per-

formed, and the prognostic value of the resultant signature was

compared with that of sentinel node biopsy (SNB) and tested as

a biomarker in three published immunotherapy datasets.

Results: Previous Lund and The Cancer Genome Atlas

signatures predicted outcome in the LMC dataset (P ¼ 10�8

to 10�4) but showed a significant interaction with AJCC

stage (P ¼ 0.04) and did not predict outcome in stage I

tumors (P ¼ 0.3–0.7). Consensus-based classification of the

LMC dataset identified six classes that predicted outcome,

notably in stage I disease. LMC class was a similar indicator

of prognosis when compared with SNB, and it added prog-

nostic value to the genes reported by Gerami and colleagues.

One particular LMC class consistently predicted poor out-

come in patients receiving immunotherapy in two of three

tested datasets. Biological characterization of this class

revealed high JUN and AXL expression and evidence of

epithelial-to-mesenchymal transition.

Conclusions: A transcriptomic signature of primary

melanoma was identified with prognostic value, includ-

ing in stage I melanoma and in patients undergoing

immunotherapy.

Introduction

Cutaneous melanoma continues to increase in incidence

worldwide. Although earlier diagnosis has been documented

with correspondingly better outcomes, the rising incidence of

thinner tumors means that, counterintuitively, one-fifth of

deaths now occur in patients presenting initially with early

disease (1). In the United Kingdom, 91% of melanomas are

diagnosed at American Joint Committee on Cancer (AJCC)

stages I to II (2). Therefore, better prognostic biomarkers are

needed to identify early-stage disease requiring adjuvant ther-

apies, as well as predictive biomarkers of response to check-

point blockade.

Previous transcriptomic analyses of cutaneousmelanoma have

generated gene signatures with a prognostic value independent of

AJCC stage (3–7). The prognostic signature developed by Jonsson

and colleagues (3) classifies metastatic melanomas into four

classes (Lund 4 classes), later simplified into two classes (Lund

2 grades; ref. 4), and the signature developed by The Cancer

Genome Atlas (TCGA) consortium classified melanomas into

three classes (TCGA 3 classes; ref. 8). The prognostic significance

of the Lund 4 class and TCGA 3 class signatures have been

replicated in relatively small datasets, notably with few AJCC

stage I patients (5, 9). Another transcriptomic signature based on

27 genes was developed by Gerami and colleagues (6) to classify

patients with primary melanoma into tumors that were high or

low risk for metastasis.

In this study, the first aim was to test the prognostic value of

the Lund and TCGA signatures, as well as the gene list of

signature of Gerami and colleagues (6) in a large popula-

tion-based cohort of primary melanomas with a good propor-

tion of stage I patients and extensive phenotypic annotations

(Leeds Melanoma Cohort, LMC). Because the dataset was well
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powered for discovery of novel tumor subtypes, unsupervised

clustering of the tumor transcriptomes of the LMC was per-

formed and the prognostic value of the resultant signature was

compared with that of sentinel node biopsy (SNB) in analyses

stratified by AJCC stage. Finally, the association between the

Leeds signature and outcome was tested in published data from

patients receiving immunotherapy (10–12).

Materials and Methods

Leeds Melanoma Cohort

As described previously (13), 2,184 patients with primary

melanoma were recruited to the LMC in the period of 2000 to

2012. This was a population-ascertained cohort, which, therefore,

recruited patients treated at multiple clinical centers (recruitment

rate 67%). During this period, SNB was neither offered nor

accepted universally. The study was ethically approved (ethical

approval MREC 1/3/57, PIAG 3-09(d)/2003) and in accordance

with the Declaration of Helsinki. Participants were consented to

sampling of their formalin-fixed, paraffin-embedded tumor

blocks that were stored in the NHS (UK National Health Service)

histopathology departments of the respective hospitals. Hema-

toxylin and eosin–stained slides were generated and examined to

facilitate subsequent sampling of the blocks using a 0.6-mm

diameter tissue microarray needle as previously reported (5, 13).

Prior to sampling, all the tumor blocks were reviewed, and if there

was only a small amount of tumor left in the block, then the block

was not sampled, lest a clinically important block be destroyed.

Up to two cores were sampled from each block, and, to increase

the comparability between tumors, the samples were consistently

extracted from the least inflamed, least stromal regions of the

invasive front of the tumor. The tumor-infiltrating lymphocytes

(TILs) were scored using the classification system of Clark and

colleagues (14). As previously reported (13), 703 tumor tran-

scriptomes were profiled and in this study, 16 samples were

removed in quality control leaving a cohort of 687 patients,

henceforth referred to as the whole LMC dataset. The dataset

contained 251 patients who had an SNB test (Supplementary

Table S10), and only 16 patients are known so far to have been

treated with checkpoint blockade. The LMC patients were

assigned an AJCC stage based on the AJCC staging eighth edi-

tion (15). Where patients did not have an SNB, the AJCC staging

used was derived from clinical staging and pathologic examina-

tion of the wide local excision sample.

mRNA extraction and expression data generation

Both mRNA and DNA were extracted from the tumor sam-

ples derived from cores following a previously described pro-

tocol (5, 13). The whole genome mRNA expression profiling

was carried out using Illumina's DASL-HT12-v4 array. As

described previously, for quality control, the mRNA was

extracted from up to two cores for a number of patients

(117 duplicates in total); gene expression data from only one

extraction per patient was used in subsequent analyses (13).

The raw transcriptomic data were extracted from the image files

using GenomeStudio (Illumina Inc.) and were preprocessed as

previously reported (13). Briefly, after background correction

and quantile normalization (R package LUMI; ref. 16), singular

value decomposition was used to remove the batch effect

[R package SWAMP (refs. 13, 17)].

Quality control in LMC

The array included 29,262 probes corresponding to 20,715

unique genes. For genes withmultiple probes, the probe detected

in the largest number of tumors was retained, and two additional

filters were applied: genes had to be detected with P < 0.05 in at

least 40% of tumors and had to have a standard deviation (SD)

>0.40. This SD threshold was chosen on the basis of the overall

distribution across the 20,715genes on the log2 scale. Themedian

SDwas 0.68. The data were standardized to give each gene amean

of 0 and SD of 1.

Procedures

The LMC tumors were classified into the Lund 4 classes, Lund

2 grades, and TCGA3 classes using the supervised nearest centroid

classification (NCC) as described previously (5). All the 27 genes

of the gene signature of Gerami and colleagues (6)were present in

LMC dataset and were analyzed using a univariable survival

analysis in the whole LMC dataset and stage I tumors. Unsuper-

vised clustering was performed using the consensus Partitioning

Around Medoids clustering method in the R-package Consensu-

sClusterPlus (18, 19) with Euclidean distance as the dissimilarity

measure and a resampling fraction of 0.8 for both genes and

samples in 1,000 iterations (Supplementary Methods).

Statistical analysis

Cox proportional hazard models and Kaplan–Meier curves

wereused to test the associationwith survival (R-package Survival;

ref. 20). The survival timewas calculated from timeof diagnosis to

the time of last follow-up or time of death from melanoma,

whichever occurredfirst, referred to asmelanoma-specific survival

(MSS). Patients with deaths caused by factors other than mela-

noma were censored at the time of death. ROC analysis was

performedusingAJCC stage pre-SNBandAJCC stage post-SNB for

patients who had SNB. Clinical staging prior to SNB is described

as AJCC pre-SNB. The AJCC stage post-SNB includes additional

information on regional lymph node metastasis. The analysis

used AJCC staging eighth edition, and MSS up to 3 years was

chosen as cutoff based upon the inclusion of the majority of the

deaths without loss of data as a result of censoring (Supplemen-

tary Table S11). Patients who were censored before 3 years were

Translational Relevance

The introduction of adjuvant but toxic therapies for primary

melanoma has highlighted the need to stratify patients based

on improved prognostic and predictive biomarkers. We report

a six-class transcriptomic signature generated from primary

melanomas that predicted prognosis, notably in stage I dis-

ease. The signature demonstrated comparable prognostic val-

ue to that of sentinel node biopsy. When the six classes were

applied to published transcriptomic datasets from patients

treated with immunotherapy, one class consistently predicted

poor outcome. This class was characterized by expression of

JUN and AXL, both known determinants of poor therapeutic

response in advanced melanoma. These findings suggest that

the six-class signature should be applied to larger datasets as

they become available, in order to further validate its clinical

relevance as a prognostic/predictive biomarker in the adjuvant

setting.

Prognostic Gene Signature in Stage I Melanoma
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not included in the analysis. The analysis was performed using R-

packages pROC, plotROC, and ggplot2 (21–23).

Pathway enrichment analysis

The differentially expressed genes (DEG) were identified using

the Significance Analysis of Microarrays (R-package SAMR) by

comparing each class versus all others (24). Pathway enrichment

and biological network analysis of DEGs with a q value equal to 0

were performed using ReactomeFiviz in Cytoscape (25). The

central nodes of the biological network were identified using a

centrality measure (betweenness) in Gephi (ref. 26; Supplemen-

tary Methods).

Copy-number alterations

The copy-number alterations (CNA) data were generated in a

subset of LMC tumors using Illumina's next-generation sequencing

(NGS) platform as reported in the study by Filia and colleagues

(ref. 27; Supplementary Methods). Among the 687 transcriptome-

profiled patients of LMC,CNAdatawere available for 272 patients.

TheCNAwere assessed in the regions spanning the genes identified

ashubs innetwork enrichment analysis. The ratio betweenmeanof

the window read counts in the region mapping to a gene and the

average read count of the 10 flanking regions around that gene was

used to estimate the copy-number changes. The windows (5k)

corresponding to a gene locus were identified using the R packages

biomaRt (28, 29). The cutoff for calling a region amplified was

chosen as a value greater than 0.4 whereas a value less than �0.4

was used to identify a deletion. The 272 samples in theCNAdataset

were at AJCC stages I (n¼ 80), II (n¼ 147), and III (n¼ 45; similar

distribution to the whole LMC dataset).

Lund validation dataset

For replication, a primary melanoma transcriptomic dataset of

223 tumors from a Lund cohort (Sweden) was used (Harbst and

colleagues; ref. 4). The samples were classified using the newly

generated signature by the supervised NCC approach (5). Of

those 223 patients, 200 had recorded information on melanoma

relapse in the follow-up time postdiagnosis and were used to test

the association between patient subgroups and relapse-free sur-

vival (using Cox proportional hazard models, Kaplan–Meier

curves, and log-rank test).

Immunotherapy datasets

Three publicly available transcriptome datasets (Hugo Cohort:

GSE78220, Ulloa-Monotoya Cohort: GSE35640, and Riaz

Cohort: https://github.com/riazn/bms038_analysis) were down-

loaded (10–12) and samples were quantile normalized and

classified using the NCC method (Pearson correlation coeffi-

cient). The Riaz cohort was a mixture of samples from various

melanoma types (cutaneous melanoma, mucosal melanoma,

acral melanoma, uveal/ocular melanoma, others). In this study,

the samples labeled as cutaneousmelanomawere analyzed. In all

the three cohorts, the association with response to immunother-

apy was tested using Fisher exact test.

Results

Existing signatures showednoassociationwith survival in stage

I melanoma

The structure of datasets used in this study is depicted

in Fig. 1. When applied to the whole LMC dataset (n ¼ 687),

the three formerly published signatures (Lund 4 class, Lund

2 grade, and TCGA 3 class) replicated previously observed

associations with MSS (Fig. 2A, C, and E). However, upon

stratifying LMC patients on the basis of AJCC stage, the Lund

and TCGA signatures showed no association with prognosis

for LMC stage I patients (Fig. 2B, D, and F). The Lund 2-grade

signature had the highest statistical power (since based on only

two groups) and showed a statistically significant interaction

with AJCC stage (P ¼ 0.04, Supplementary Table S1), suggest-

ing that the lack of association in stage I was not solely due to

low sample size. Because the full details of the commercial

signature of Gerami and colleagues (6) were not published, we

were limited in the scope of its replication in the LMC dataset.

However, analyzing the 27 Gerami genes identified 23 genes as

predictors of prognosis in the whole LMC dataset (Supple-

mentary Table S2). However, in keeping with the Lund and

TCGA signatures, none of these genes showed a significant

association with prognosis in stage I tumors (Supplementary

Table S2).

Generating novel LMC classes and their clinical

characteristics

Consensus clustering of the LMC dataset was performed,

and following additional quality control measures (Supple-

mentary Table S3), six distinct, novel molecular classes were

identified (Fig. 3A). These classes were associated with clini-

copathologic variables known to have prognostic value, includ-

ing tumor site (P ¼ 0.03), age at diagnosis (P ¼ 0.03), mitotic

rate (P ¼ 0.002), ulceration (P ¼ 0.01), AJCC stage (P ¼

6 � 10�10), TILs (P ¼ 6 � 10�4), and Breslow thickness

(P ¼ 9 � 10�14; Table 1). The LMC class 1 and 5 tumors

tended to be thin and nonulcerated, whereas class 2 and 4

tumors were thicker. Class 3 and 6 tumors were the thickest and

most frequently ulcerated. The six classes showed strong asso-

ciation with BRAF (P ¼ 6 � 10�5) and NRAS mutation status

(P ¼ 3 � 10�4): class 1, 5, and 6 tumors were frequently BRAF

mutated, whereas class 2, 3, and 4 tumors were frequently

NRAS mutated (Table 1).

LMC classes predicted prognosis in primary melanoma and in

stage I subset

The LMC classes predicted MSS in the whole LMC dataset

and notably, across AJCC stages I, II and III subsets (Fig. 3B and

C, Supplementary Fig. S1). In the unadjusted analysis of the

whole dataset (Fig. 3B, Supplementary Table S4), class 1

(baseline) had the best prognosis and class 2 [HR ¼ 1.7,

95% confidence interval (CI): 0.8–3.5] and class 5 (HR ¼

1.5, 95% CI: 0.7–3.1) showed intermediate prognosis, whereas

class 3 (HR ¼ 5.0, 95% CI: 2.5–10.1), class 4 (HR ¼ 2.4, 95%

CI: 1.2–4.7), and class 6 (HR ¼ 3.1, 95% CI: 1.6–6.1) had the

worst prognosis. In multivariable analysis, classes 3, 4, and 6

remained significant predictors of poor prognosis after includ-

ing AJCC stage, sex, age at diagnosis, mitotic rate (Supple-

mentary Table S4), and when the AJCC stage was replaced by

ulceration and Breslow thickness in the model (Supplemen-

tary Table S6). In the LMC stage I subset, class 6 (HR ¼ 6.6,

95% CI: 1.4–31.2) significantly predicted poor prognosis in

unadjusted analysis (Fig. 3C and Supplementary Table S5) and

it remained significant when sex, age at diagnosis, mitotic rate,

ulceration, and Breslow thickness were adjusted (HR ¼ 9.8,

95% CI: 1.1–86.2, Supplementary Table S6). Because Gerami

Thakur et al.
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signature was not available to us in full, we ran unsupervised

clustering of the LMC dataset using the 27 Gerami genes to

generate the two tumor groups analyzed by Gerami and

colleagues (6), referred to as the Gerami clusters. This analysis

showed that the LMC classes and Gerami clusters had inde-

pendent prognostic effects in the whole LMC dataset (Supple-

mentary Table S7); however, the Gerami clusters showed no

prognostic value in stage I tumors whereas LMC class 6

remained a significant predictor in the multivariable model

(Supplementary Table S8).

To validate the prognostic value of the LMC classes in an

independent dataset, a 150-gene–based signature (LMC signa-

ture), generated after refining approximately 13,000 genes (Sup-

plementary Fig. S2), was applied to the Lund dataset (4). In

keeping with the observations made in the LMC dataset, class

3, class 4, and class 6 predicted worse prognosis in the Lund

dataset, whereas class 1, class 2, and class 5 predicted better

prognosis (Fig. 3D, Supplementary Table S9). Because the Lund

dataset had only a few stage I cases (n¼ 58), the prognostic value

of LMC signature could not be replicated in stage I disease.

Whole LMC dataset (n = 687)

Positive

Trascriptome generation (n = 703)

Comparing prognostic value with 

sentinel node biopsy

Leeds Melanoma Cohort (LMC)

16 Samples removed 

during quality control

Consensus clustering

Prognostic value of LMC classes

External validation: Lund cohort (n = 200)

Prognostic outcome: relapse-free survival

Predicting response to immunotherapies:

Hugo cohort (n = 27)

Ulloa−monotoya cohort (n = 55)

Riaz cohort (n = 30)

Additional value for clinical settings

LMC classes

Testing prognostic value of existing signatures:

Lund signature, TCGA signature, and Gerami genes

LMC class signature (150 genes)

Copy-number data (n = 272)

Negative

Sentinel node biopsy (n = 251)

Figure 1.

Analysis workflow of the study.
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LMC signature had independent prognostic value when

compared with SNB

In the dataset derived from individuals who had an SNB, the

prognostic value of combined LMC class signature and pre-

SNB AJCC stage was similar to that of AJCC stage with SNB (i.e.

stage post-SNB; AUC 0.82 vs. 0.79, P ¼ 0.7, Fig. 3E). Com-

bining the LMC signature with AJCC stage post-SNB, patient's

sex, age at diagnosis, and site of tumor increased the AUC to

0.88. Similarly, in the subset of patients at stage I pre-SNB, the

LMC signature alone had comparable prognostic value to AJCC

stage post-SNB (AUC ¼ 0.88 vs. 0.82, P ¼ 0.1, Fig. 3F). In this

stage I subset, addition of stage post-SNB, patient's sex, age at

diagnosis, and site of tumor to the LMC signature further

increased the AUC to 0.99. However, the limited sample size

of stage I dataset and including so many variables clearly

overfitted the model, giving near-perfect classification and

illustrating that independent datasets are needed to better

assess performance.
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Replicating Lund and TCGA

signatures using LMC dataset.

Kaplan–Meier plots showing the MSS

for Lund 4 classes (HI, high immune;

NL, normal-like; Pigm, pigmentation;

Prolif, proliferative; A), Lund 2 grades

(low grade and high grade; C), and

TCGA 3 classes (immune, keratin,

MITF low; E) across the whole LMC

dataset. In AJCC stage I subset,

Kaplan–Meier plots showing the MSS
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(D), and TCGA 3 classes (F). P values

are from log-rank test. Samples that

could not be classified into any of the

classes were not used in survival

analysis.
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Figure 3.

Defining LMC signature and its prognostic value. A, The area under the CDF and its relative change with increasing k. The delta area graph shows little variation at

k¼ 6. Heatmap of consensus matrices at k¼ 5 and 6. The blue color indicates high consensus score and the white color indicates low consensus (B) Kaplan–

Meier plot showing the MSS for the six classes in (B) the whole LMC dataset, (C) the LMC stage I, and (D) relapse-free survival in the Lund cohort (P value from

log-rank test, or Wald test for two-group comparison). Seven mucosal tumors were excluded from analysis. E, ROC curves comparing the prognostic value of the

LMC signature to that of SNB in the whole dataset. The AUCs for LMC classþ stage pre-SNB and stage post-SNB were not significantly different (DeLong test

P¼ 0.7). F, The ROC curve comparing prognostic value of LMC signature with SNB in the stage I pre-SNB group. All but 1 patient were stage IB pre-SNB;

therefore, AUC for LMC signature alone was compared with stage post-SNB and the difference was not significant (DeLong test P¼ 0.7). The difference in AUCs

between stage post-SNB alone and LMC classþstage post-SNB was also not significant (DeLong test P¼ 0.1).
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Biological overlap between the LMC and existing signatures

The six classes of LMC signature showed distinct gene expres-

sion profiles (Fig. 4A) and showed partial overlap with the

existing Lund and TCGA signatures. LMC classes 1, 3, and 5

overlapped substantially with the high-immune, pigmentation,

and normal-like classes of the Lund 4 classes (Fig. 4B), and with

the immune, MITF low, and keratin classes of the TCGA 3-classes

(Fig. 4C). In contrast, LMC classes 2, 4, and 6 represented a

mixture of the Lund4 classes andTCGA3 classes. Gene expression

pathway enrichment analysis revealed distinctive biological fea-

tures of the 6 LMC classes: notably class 2 was characterized by

increased WNT signaling genes and metabolic pathways; class 4

by decreased expression of immune genes, and class 6 by

increased expression of cell cycle and consistent downregulation

of cell metabolism pathway genes (Supplementary Table S14).

When applied to the LMC 6 classes, the Lund modules (30)

revealed discrimination consistent with enriched gene pathways:

LMC class 1 tumors showed higher immunemodule activity, and

class 3 tumors showed higher cell-cycle module activity (Fig. 4D).

Interestingly, class 6 tumors had relatively higher cell cycle but

also immune module activity and, as expected, the immune,

stroma, and interferon modules were positively correlated but

they negatively correlated with cell-cycle and MITF modules

(Fig. 4D). The tumor-infiltrating immune cell populations imput-

ed for each of the LMC classes (31) were consistent with the Lund

immune module, as class 1 had the highest immune cell popula-

tions and class 3 the lowest, whereas class 6 appeared tomaintain

an intermediate level of immune cell populations, having the

second highest scores on average (Supplementary Fig. S3).

A comparisonwith theConsensus ImmunomeClusters (CICs),

previously generated in the same LMC dataset based on 380

immune genes (13), showed that the two most prognostically

contrasted LMC classes (class 1 and class 3) had a near-perfect

match with CIC 2 (high immune) and CIC 3 (low immune/

b-catenin high), respectively (Supplementary Fig. S4), whereas

the rest of LMC classes were a mixture of CICs. Cluster 1 had

correspondingly a higher proportion of tumors with histologic

evidence of brisk TILs (36% compared with 8% in class 3).

Analyzing the correlation between the Gerami genes and LMC

signature genes showed that the Gerami genes positively corre-

lated with the genes upregulated in LMC class 5 tumors and

negatively correlated with genes upregulated in LMC class 3

tumors (Supplementary Fig. S5). Consistent with this, Gerami

clusters 1 and 2 highly overlapped with LMC classes 3 and 5,

respectively (Supplementary Fig. S6).

JUN as marker of poor prognosis in class 6 tumors

LMC class 6 predicted worse prognosis within AJCC stage I

tumors. Further biological network analysis identified JUN as a

key upregulated nodal gene in this class (Fig. 5A and B). TheNGS-

basedCNAdata froma subset of LMC tumors (n¼ 272) indicated

that class 6 tumors were more likely to have DNA amplifications

of JUN than other classes (P ¼ 0.003, Fig. 5C, Supplementary

Fig. S7). In melanoma, JUN has been reported to activate epi-

thelial-to-mesenchymal transition (EMT), and accordingly a

6-gene–based (32) and 200-gene–based EMT signature (33) con-

sistently scored higher in LMC class 6 than in all other LMC classes

(Fig. 5D, Supplementary Fig. S7). A secondary key nodal gene

NFKB1 identified tobeupregulated in class 6hadno copynumber

changes. Further examination of immunohistochemically stained

sections showed that all four tumors stained from class 6 were

positive for NFKB1 protein expression, and this was similar to

other LMC classes (P ¼ 0.4, Supplementary Fig. S7).

LMC signature as a potential predictor of response to

immunotherapy

The value of the LMC signature in predicting outcome in

patients treated with immunotherapy was assessed in three dis-

parate clinical trial cohorts of metastatic melanoma (Fig. 5F;

refs. 10–12). In the cohort of Hugo and colleagues, tumors

classified as class 6 were mainly nonresponders to PD-1 blockade

in comparison to the other LMC classes (P ¼ 0.03). Hugo and

colleagues reported that expression ofAXL predicts poor response

to PD-1 blockade; the gene expression data revealed significantly

higher AXL expression in class 6 tumors when compared with

other classes within their cohort (Fig. 5G). Similarly, for the

cohort reported by Ulloa-Montoya and colleagues, class 6 tumors

showed a significantly higher proportion of nonresponders to

Table 1. The LMC classes' association with clinicohistopathologic variables

LMC classes

Histopathologic variables

Whole dataset

n ¼ 687 (%)

Class 1

(n ¼ 71)

Class 2

(n ¼ 122)

Class 3

(n ¼ 73)

Class 4

(n ¼ 143)

Class 5

(n ¼ 136)

Class 6

(n ¼ 142) P
a

Sex: male, n (%) 310 (45) 39 (55) 51 (42) 34 (47) 56 (39) 55 (40) 75 (52) 0.07

Tumor site: limbs, n (%) 289 (42) 37 (52) 58 (48) 26 (36) 58 (41) 64 (47) 46 (32) 0.03

Age at diagnosis (years), median (range) 58 (18–81) 59 (21–76) 59 (22–79) 60 (20–77) 58 (18–81) 53 (25–76) 59 (22–81) 0.03

Breslow thickness (mm), median (range) 2.3 (0.3–20) 1.7 (0.7–5.5) 2.1 (0.8–8.9) 3.2 (0.8–20) 2.3 (0.3–15) 1.8 (0.7–12) 3.0 (0.8–18) 9 � 10�14

AJCC stage, n (%)b 6 � 10�10

I 236 (35) 39 (55) 42 (35) 11 (15) 46 (33) 71 (53) 27 (19)

II 335 (49) 26 (36) 57 (48) 46 (64) 77 (55) 45 (33) 84 (60)

III 109 (16) 6 (9) 21 (17) 15 (21) 18 (12) 19 (14) 30 (21)

Ulceration (present), n (%) 228 (33) 16 (23) 32 (26) 30 (41) 53 (37) 38 (28) 59 (42) 0.01

Mitotic rate (number of mitoses per mm2) 1 (0, 25) 0 (0, 11) 1 (0, 17) 2 (0, 25) 1 (0, 13) 1 (0, 12) 1 (0, 18) 0.002

TILs, n (%) 6 � 10�4

Absent 76 (15) 2 (4) 13 (14) 17 (32) 14 (16) 15 (16) 15 (13)

Nonbrisk 333 (68) 30 (60) 65 (71) 32 (60) 60 (68) 63 (66) 83 (74)

Brisk 81 (17) 18 (36) 14 (15) 4 (8) 14 (16) 17 (18) 14 (13)

BRAF mutant, yes, n (%) 266 (47) 26 (43) 38 (30) 23 (40) 44 (36) 63 (59) 72 (61) 6 � 10�5

NRAS mutant, yes, n (%) 138 (25) 8 (14) 35 (34) 17 (30) 41 (34) 20 (19) 17 (15) 3 � 10�4

aThe associationswere tested using Pearson c2 test for categorical variables and the Kruskal–Wallis test for continuous variables. Symbol n is the number of samples.
bSeven patients had mucosal melanoma and, although they were classified, they were not included in survival analyses. Their AJCC stage was not reported. Each of

LMC class 2 and class 4 contained two of these, whereas classes 3, 5, and 6 had one each.
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Figure 4.

Biological characterization of the six LMC classes. A, The heatmap shows gene expression across the classes with tumor samples placed in columns and genes in

rows. Blue depicts low expression and red depicts high expression. Each gene expression was standardized to mean 0 and standard deviation 1. The up- and

downregulated nodal genes identified in network analyses are shown under the heatmap. The bar plot shows the overlap between the LMC classes and Lund 4

classes (HI, high immune; NL, normal-like; Pigm, pigmentation; Prolif, proliferative; B), and TCGA 3 classes (C). The samples that could not be classified into the

Lund 4 classes and TCGA 3 classes were labeled here as Uncls.D, The modules (defined by a list of differentially upregulated genes) associated with melanoma-

specific biological pathways as identified by the Lund group (30). Box plots of immune and cell-cycle module scores (standardized expressions) within the six

LMC classes and correlation matrix of immune, cell-cycle, MITF, stroma, and interferon module scores. Themodule score variation across the classes was tested

using the Kruskal–Wallis test.
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Biological characterization of LMC class 6 and association with response to immunotherapy. A, Network of upregulated genes in the LMC class 6 with key genes

(highest betweenness centrality) shown as large circles. Subnetworks are shown in different colors. B, Expression of JUN across the six LMC classes (P value from

Kruskal–Wallis test). C, JUN copy-number alterations in LMC class 6 versus other classes.D, The six-gene–based EMT score in tumors across the six LMC classes

(P value from Kruskal–Wallis test). E, The gene expression of NFKB1 across the six LMC classes (P value from Kruskal–Wallis test). F, The LMC classes association

with response to immunotherapy in three cohorts (P value from Fisher exact test). Patients in these cohorts were classified into the six LMC classes by the NCC

method. G, Expression of AXL across the six LMC classes in the Hugo Cohort dataset (P value fromMann–Whitney U test). H, Kaplan–Meier plot showing survival

curves of LMC class 1, class 3, and class 6 in the Riaz Cohort. Other LMC classes had less than five samples and were excluded. No., number.
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MAGE-A3 immunotherapy in comparison to other classes. The

cohort reported by Riaz and colleagues was predominantly com-

posed of nonresponders to anti-CTLA-4 further treated with PD-1

blockade but LMC classes were not convincingly predictive but

class 3 predicted poor prognosis, which was consistent with the

LMC dataset when compared with good prognosis class 1

(Fig. 5H).

Discussion

In this study, transcriptome classification was performed uti-

lizing a large population-ascertained cohort of primary melano-

mas, revealing classes having prognostic value in stage I disease. In

stage I tumors, the LMC signature predicted outcome comparably

to AJCC staging including SNB. Furthermore, evidence suggests

that the signature predicted outcome in patients treated with

immunotherapies.

Given the rising incidence of early-stage tumors and the cost of

adjuvant therapies to health services and to patients in terms of

toxicity, there is an urgent need to identify better prognostic and

predictive biomarkers for early-stage disease.When previous gene

signatures were applied to the LMC (3, 8), the signatures robustly

predicted outcome when the dataset was analyzed as a whole but

failed to do so in stage I tumors alone. Although the full Gerami

signature was not available, analyzing the prognostic value of

genes reported in that study (6) showed that the genes were

predictive of prognosis in the whole LMC dataset but not in stage

I tumors. In this work, a six-class signature (Supplementary data

file) was identified, which was prognostic not only in the whole

LMC dataset but also in patients diagnosed at AJCC stage I. The

prognostic value of the LMC signature was validated in an

independent cohort of primary melanoma built in Lund (4)

although the number of stage I cases in this cohortwas insufficient

to allow replication of the signature's prognostic value in stage I

disease.

The LMC signature showed limited overlap with the Lund and

TCGA signatures. When comparing it with previously identified

immunome clusters by our group (13), two LMC classes strongly

overlapped with immune subgroups. The nonoverlapping classes

could not be clearly discriminated using the immunome clusters

suggesting that these LMC classes are driven by different genomic

mechanisms. Comparison of LMC signature genes with Gerami

genes indicated a biological pathway overlap as Gerami genes

were found to be strongly correlated with LMC classes 3 and 5.

Although SNB is an important melanoma staging tool, the

surgery is associated with morbidity (34, 35). In the LMC, SNB

was observed to be of prognostic value in thewhole dataset and in

stage I tumors. However, the LMC signature performed just as

well. Given the morbidity of SNB, it may be argued that the LMC

signature should be tested in an independent study as a possible

alternative to this procedure especially in stage I disease where the

likelihood of a positive result is overall low andmust be weighed

against morbidity.

In melanoma, increased immune gene expression has been

consistently shown to predict good prognosis (5, 9, 13, 36).

However, a subset of tumors (LMC class 6) was observed which,

despite showing immune gene expression, resulted in the

patient's early death. Further biological characterization of this

class identified copy-number amplifications and increased

expression of JUN. Ramsdale and colleagues (37) have shown

that JUN promotes an invasive cell phenotype through activation

of the EMT pathway, and a higher scoring EMT signature in LMC

class 6 confirmed increased activity of the EMT pathway in this

class. Riesenberg and colleagues (38) have reported that increased

JUN expression leads to proinflammatory and stress signals that

promote cytokine expression in coordination with NF-kB. Again,
these findings are consistent with the presented transcriptomic

observations of JUN and NFKB1 in defining LMC class 6 (Fig. 5B

and E). There was insufficient tissue to carry out immunohis-

tochemistry for JUN; therefore, JUN protein expression in the

TCGA dataset was examined and confirmed a positive correlation

between JUN gene transcription and protein expression (Supple-

mentary Fig. S7). Collectively, these data are indicative of copy-

number gains resulting in both increased gene expression and

transcriptional activity of JUN in LMC class 6 tumors, although

further proteomic studies would be required to confirm this.

The LMC signature was associated with response to immu-

notherapies; specifically, class 6 associated with poor outcome in

two of the three tested datasets. None of these datasets are

sufficiently large to make clear inferences. It is of note that the

expression of AXL, a known marker for immune evasion, was

significantly upregulated in LMC class 6 in metastatic melanoma

samples in the Hugo dataset.

The inherent strength of this study is the relatively large size of

the population-ascertained cohort. A corresponding limitation is

the lack of a well powered AJCC stage I dataset to allow inde-

pendent replication of the signature in stage Imelanoma. Another

limitation of this study is that only one-third of LMC patients had

an SNB, limiting the power to compare staging tests. The LMC

recruitment period preceded the advent of both immunotherapy

and targeted therapy, and only a very small number of the study

participants have been treated with these drugs. Excluding the

samples from these participants showed no modifying effect of

such treatments on MSS in the LMC dataset (data not shown).

In conclusion, this study presents a novel signature with

demonstrated prognostic value similar in magnitude to that of

AJCC staging of melanoma but having added value in stage I

melanoma. The data further confirm that AJCC stage largely

captures biological variation associated with survival. The LMC

class signature prognostic value was similar to that of SNB in the

whole dataset (where their effects were additive) and in stage I

disease. The signature predicted poor outcome in patients receiv-

ing immunotherapies and, in particular, identified high-JUN/

high-AXL as a tumor phenotype with poor prognosis in early-

and advanced-stage melanoma albeit in very small datasets. This

signature has the potential to be trialed as a biomarker in clinical

monitoring programs and may help in early identification of

patients who may or may not benefit from adjuvant therapies.
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