
RESEARCH ARTICLE Open Access

Transcriptomic and phylogenetic analysis of a
bacterial cell cycle reveals strong associations
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Abstract

Background: The genetic network involved in the bacterial cell cycle is poorly understood even though it

underpins the remarkable ability of bacteria to proliferate. How such network evolves is even less clear. The major

aims of this work were to identify and examine the genes and pathways that are differentially expressed during the

Caulobacter crescentus cell cycle, and to analyze the evolutionary features of the cell cycle network.

Results: We used deep RNA sequencing to obtain high coverage RNA-Seq data of five C. crescentus cell cycle

stages, each with three biological replicates. We found that 1,586 genes (over a third of the genome) display

significant differential expression between stages. This gene list, which contains many genes previously unknown

for their cell cycle regulation, includes almost half of the genes involved in primary metabolism, suggesting that

these “house-keeping” genes are not constitutively transcribed during the cell cycle, as often assumed. Gene and

module co-expression clustering reveal co-regulated pathways and suggest functionally coupled genes. In addition,

an evolutionary analysis of the cell cycle network shows a high correlation between co-expression and co-evolution.

Most co-expression modules have strong phylogenetic signals, with broadly conserved genes and clade-specific genes

predominating different substructures of the cell cycle co-expression network. We also found that conserved genes

tend to determine the expression profile of their module.

Conclusion: We describe the first phylogenetic and single-nucleotide-resolution transcriptomic analysis of a bacterial

cell cycle network. In addition, the study suggests how evolution has shaped this network and provides direct

biological network support that selective pressure is not on individual genes but rather on the relationship

between genes, which highlights the importance of integrating phylogenetic analysis into biological network

studies.

Keywords: Cell cycle phylogenomics, Caulobacter crescentus, Co-expression network, Functional modules, Selective
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Background
Advances in next-generation sequencing methodologies

have significantly reduced the time and cost constraints of

determining genome-wide expression levels of various or-

ganisms, including bacteria. These technologies present

major advantages over hybridization-based microarrays

[1,2]. Along with high throughput, they allow single-

nucleotide resolution as well as quantification of absolute

RNA abundance. These benefits combined with strand-

specificity and greater dynamic range in gene expression

measurement have provided great insight into the tran-

scriptional landscape of various bacteria under different

growth conditions [2]. However, no deep RNA sequencing

(RNA-Seq) studies have so far reported a transcriptome

analysis of a bacterial cell cycle, which would provide an

important step toward understanding the genetic pathways

involved in bacterial multiplication.
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The ease of obtaining synchronized cell populations of

the Gram-negative bacterium Caulobacter crescentus

through a physical method [3] has made this organism a

prominent bacterial model for analyzing the cell cycle

[4]. The cell cycle of C. crescentus has also generated

interest because of its inherent association with a devel-

opmental process [5,6]. Each division produces two dis-

tinct daughter cells: a flagellated and piliated “swarmer”

(SW) progeny and a slightly longer, stalk-containing

“stalked” (ST) progeny (Figure 1). SW cells, which can

be isolated from an asynchronous culture using a simple

gradient centrifugation method [3], are in G1 phase as

they cannot replicate their single chromosome until they

grow to a similar size to their ST siblings [7]. Following

flagellum ejection and pili retraction, DNA replication

initiates and a polar stalk develops to produce a ST cell

(Figure 1). After some growth, cell constriction is initi-

ated and a new flagellum is built at the pole opposite to

the stalk. Completion of cytokinesis followed by cell

separation results in the production of the SW and ST

progeny. The SW cell then reiterates the aforementioned

cell cycle whereas the ST cell skips the G1 phase and ini-

tiates the S phase immediately.

Decades of single-gene studies in C. crescentus have

uncovered regulatory components and molecular mech-

anisms that govern the cell cycle and the spatial and

temporal biogenesis of different organelles and molecu-

lar machineries. Following the resolution of the C.

crescentus genome [8,9], a variety of “omics” and model-

ing studies have been undertaken to understand the C.

crescentus cell cycle at a system level [10-17]. Important

studies have led the way to understanding the transcrip-

tional cascades generated by the oscillatory expression of

cell cycle master regulators [10,12,18-20].

In this work, we took advantage of the benefits of RNA-

Seq to provide absolute measures of gene expression

during the C. crescentus cell cycle, using biological repli-

cates for each cell cycle stage. We uncovered novel prop-

erties of gene expression and regulation, identified over

1,500 cell cycle-regulated genes, and organized them into

a co-expression network. Furthermore, we expanded

phylogenomics [21] to co-expression network study by

comparing network and gene evolutionary properties, and

discovered strong correlations between co-expression and

evolution.

Results and discussion
Single-nucleotide resolution whole-genome mapping of

RNA-Seq

To examine the cell cycle transcriptome of C. crescentus,

cells grown in the M2G minimal medium were subjected

to Ludox (percoll) density centrifugation to isolate

swarmer (G1 phase) cells, which were then re-suspended

in M2G medium to resume cell cycle progression syn-

chronously. Samples were collected for RNA extraction

at 5 different time points (0, 30, 60, 90, and 120 min)

following synchronization, with each time point corre-

sponding to a different cell cycle stage referred to as

swarmer (SW), stalked (ST), early predivisional (EPD),

predivisional (PD), and late predivisional (LPD) (Figure 1).

By performing synchronies on different days, we obtained

a total of three biological replicates of each cell cycle stage.

The extracted RNAs were labeled in a strand-specific

manner and sequenced using the SOLiD platform. In

total, we obtained over 600 million (M) SOLiD RNA-Seq

reads. Fifty bp-long reads were trimmed of 10 bp from the

3′ end, and 300 M of these reads were mapped on the

genome of C. crescentus NA1000 (also known as CB15N).

This resulted in a single nucleotide resolution transcrip-

tome composed of 15 sets of mappings with a sum of

962x coverage per nucleotide. Figure 2A shows a bird’s

eye view of the whole transcriptome, and Figure 2B shows

the RNA-Seq mapping details of the two asparagine

tRNAs, both using the SW cell stage as an example. When

comparing biological replicates, we found that, in some

regions, the mapping was less consistent than in others,

and that the regions of low consistency were correlated

with enriched GC content (data not shown), as previously

reported [1]. Since the C. crescentus genome is GC-rich

(67%), traditional quantitative methods such as calculating

mean coverage on genes or RPKM (Reads Per Kilobase

per Million mapped reads) may reduce the accuracy of

gene expression quantification [1]. Therefore, we em-

ployed a dynamic segmentation algorithm based on coeffi-

cient of variation (CV; standard deviation/mean) analysis

of the replicates to locate and discard low consistency

mapping regions, and we only used the highly reliable

mapping regions to calculate gene expression values

(Figure 2C; see methods). The level of gene expression

was then calculated as the average coverage of retained

G1 S

Swarmer 

(SW)

Stalked 

(ST)

Early PD

(EPD)

Predivisional

(PD)

Late PD

(LPD)

Stalked  

progeny

Swarmer 

progeny

Figure 1 The C. crescentus cell cycle. Cartoon showing the

different stages of the C. crescentus cell cycle: swarmer (SW), stalk

(ST), early predivisional (EPD), predivisional (PD), and late

predivisional (LPD). Each stage corresponds to the time point (0, 30,

60, 90 or 120 min following the cell synchrony) taken for

RNA-Seq analysis.
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nucleotides within the gene. With this quantification

method, we obtained an average coverage of 278x (mean of

replicates) for gene expression. We found that the distribu-

tion of gene expression for each cell cycle stage follows a

power-law distribution (Figure 2D and Additional file 1:

Figure S1), in agreement with the evolutionary conserved

power-law organization of genome-wide expression levels

[23]. The whole transcriptome data, with raw mapping re-

sults and normalized gene expression values, are provided

in Additional files 2, 3, 4: Table S1a-c.

Genes cluster into three groups according to their

expression level

Past RNA-Seq studies have shown that the distribution

of expression levels in bacteria is continuous, without an

obvious breaking point between background transcrip-

tion and biologically relevant expression [24,25]. While

this continuum in gene expression levels was confirmed

in our study (Additional file 1: Figure S1), we found that

CV analysis of replicates as a function of gene expression

can identify global patterns of gene expression and
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Figure 2 RNA-Seq mapping results. (A) A bird’s eye view of global RNA-Seq mapping on each strand using the SW time point as an example.

Spikes are mostly non-coding RNAs (ncRNAs). (B) Example of a normalized RNA-Seq mapping. Two annotated tRNA-Asn are represented by the

green and cyan boxes. The two DNA sequences of tRNA-Asn are identical, which leads to RNA-Seq reads being “ambiguously” mapped to two

locations. Therefore, the expression value was calculated by dividing the amount of reads by two. (C) Scheme illustrating the gene expression

quantification algorithm. RNA-Seq coverage (the red curve) and CV (blue curve) per nucleotide are plotted. The colored vertical bars border the

dynamic programming segmentations based on the CV curve. In this particular case, CV is divided into 42 segments. We adopted a threshold of

CV =1.0 (horizontal dotted blue line) to filter out segments with CV<1.0, allowing us to keep quality segments for gene expression quantification.

(D) Distribution of gene expression values (using the SW cell as an example) follows a power-law distribution. The probability density p(e)∽ e− a,

where e is gene expression, is best fitted with α=1.74 (according to Clauset et al’s algorithm [22]). This panel shows the cumulative distribution Pr

(E>e) of gene expression along with the power law fit exponent -α+1=−0.74. Genes with expression ranging from 15x to about 1000x (indicated

by the slant) fall into the power-law distribution, in good agreement with a previous report [23].
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regulation (Figure 3A). The CV, which is defined as the

ratio of the standard deviation to the mean, was used

here as a convenient way to quantify both “signal”, from

regulated expression, and “noise”, from background

transcriptional activity. Background transcription due to

random binding of the RNA polymerase is expected to

generate low amounts of RNA and to be poorly consist-

ent across replicates, thereby generating a high CV

value. Conversely, transcription that is biologically rele-

vant should have higher expression and lower CV value,

the latter because of a higher reproducibility between

biological replicates. Plotting the CV values for all genes

as a function of their average expression (Figure 3A) re-

veals that the genes fall into three groups. The first

group consists of 738 genes, or almost a fifth of the gen-

ome, that have a low expression level (with the maximal

expression being below 5x) and an average CV value of

0.38. In this group (expression <5x), the CV negatively

correlates with expression (Figure 3A, red line). This

negative correlation no longer exists for other genes with

expression values above 5x. The enrichment of high CV

values for genes with expression values below 5x sug-

gests that it includes transcriptional noise. While small

integers tend to generate higher CV values, gene phyl-

ogeny and essentiality analyses (see below) further sup-

port the notion that this first group primarily includes

background transcription. In Figure 3A, the CV curve

reaches a plateau at about 0.23 for expression values be-

tween 5x and 1000x. This plateau defines the second

group of genes, which consists of 3,136 genes or 79% of

the C. crescentus genome. The constant low CV value

suggests that expressions of most genes follow the same

shape of distribution and are under precise biological

regulation. Interestingly, the CV curve slightly increases

A B

C

Figure 3 Relationship between gene expression, essentiality and persistence. (A) Genes are classified into three groups based on their

expression levels and CV. Here data from 5 cell cycle time points were pooled for the analysis of gene expression and CV from 3 replicates. The

background hexbin density plot describes the relationship between CV and expression values for all genes. The red curve is a local regression of

CV values as a function of expression (using the LOESS R package). Based on this fitting, genes are classified into three groups indicated by

different colors. Most genes fall into the group in the middle, where their average CV remains constant at 0.23 (the blue dotted arrow). The

group on the left has, on average, high CV, and shows negative correlation between CV and expression. This group is suggested to include

background transcription noise. The group on the right consisting of highly expressed genes also shows significantly higher CV. (B) Gene

expression versus essentiality. Box and whisker plot of expressions grouped by essential, high-fitness-cost and nonessential genes. (C) Hexbin plot

showing genes expression versus persistence. The red trend curve is a local regression of median expression versus PI (LOESS R package). The

horizontal bar distinguishes the highly expressed genes (>1,000x) from the others, whereas the vertical bars delineates less conserved (PI < 50)

genes from persistent (PI >150) genes.
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when the expression levels rise above 1000x. This third

group of genes, which consists of 90 highly expressed

genes (2.3% of the genome), had an average CV of 0.29.

A statistical test (t-test, p<1e-10) confirmed that this

group of genes indeed had higher CV values than the

second group, which includes the majority of genes.

Fifty-four of the 90 highly expressed genes are non-

coding RNAs (including 48 tRNAs). When we consid-

ered these 54 RNAs alone, their average CV increased to

0.31, suggesting that these highly expressed RNAs may

be under less stringent regulation than most genes; while

they have strong promoters, the cells may not (or may

not need to) have an efficient mechanism to maintain

the precise amount of such RNA species within the cell.

A recent genome-wide transposon insertion study in

C. crescentus has identified 480 essential or high-fitness-

cost genes [14]. As shown in Figure 3B, we found that

gene essentiality is correlated with gene expression as the

essential genes generally had higher expression values

(median = 52x) than non-essential genes (median = 15x),

with the high-fitness-cost genes having intermediate

values (median = 31x, ANOVA test, p<1e-10). Only 4

essential and 6 high-fitness-cost genes fell to the group

of poorly expressed genes (Additional file 5: Table S2).

Their essentiality was determined based on colony forma-

tion on solid rich growth medium [14]. The low expression

levels of these genes under our experimental conditions

(exponential-phase liquid cultures in minimal medium)

suggests that their essentiality may be specific to growth

conditions.

Gene essentiality as determined by laboratory muta-

genesis are dependent on experimental contexts, and

only identifies genes whose inactivation results in rapid

lethality or high-fitness cost under the tested conditions.

On the other hand, gene persistence, which measures

how widely conserved a gene is among extant species

[26], informs about the importance of a gene in natural

environments, with competitions, under harsh condi-

tions, and over 3 billion years of natural evolution [27].

Therefore, we also compared the gene expression levels

with evolutionary gene persistence. To obtain a persist-

ence index (PI) [26] of each C. crescentus gene, we first

determined the distribution of orthologs among 236 bac-

terial species selected to represent an unbiased phylo-

genetic tree (see methods). The expression level of each

gene was then plotted as a function of its PI (Figure 3C),

with PI>150 and PI<50 used as borders to distinguish

“persistent” genes that have been retained in most spe-

cies during evolution (with over 150 orthologs among

the 236 selected genomes) from the “less conserved”

genes (with less than 50 orthologs). We found that

poorly expressed genes, as a group, have been poorly

conserved during evolution as among the 738 genes with

low expression (<5x), 675 of them (92%) had PI<50, and

only 6 poorly expressed genes had a PI>150 (Additional

file 5: Table S2). When considering all genes, chi-square

test clearly showed that as expected [27], the persistent

genes overall display a higher expression than less con-

served genes (p<1e-10). The positive correlation between

expression and persistence in very broadly conserved

genes (PI>200, Figure 3C) is in good agreement with the

toolbox model of bacterial evolution [28]. Interestingly,

however, we observed a few highly expressed (>1000x)

genes that were present almost equally among both per-

sistent and poorly conserved genes (Figure 3C). In fact,

when we only examined highly expressed (>1000x)

genes, there was no longer a correlation between PI

values and expression levels (i.e., t-test of gene expres-

sions from the two groups PI<50 and PI>150 shows

no difference). This indicates once again that highly ex-

pressed genes tend to behave distinctly from the rest of

the genome; they are under different regulatory and evo-

lutionary constraints than most genes.

Identification of 1,586 differentially expressed genes

To identify cell cycle-regulated (CCR) genes, we used

the baySeq package. This program took the gene expres-

sion values from the biological replicates across the 5

cell cycle time points, and estimated posterior likeli-

hoods of differential expression via an empirical Bayes-

ian method [29]. Through this analysis (see methods),

we identified 1,586 genes (Additional file 6: Table S3)

that we will hereafter refer to as CCR genes. We note

that a small fraction of our CCR genes are likely to be

false positives due to the potential stresses (e.g., cold

shock) associated with the cell cycle synchronization

technique (see Additional file 7: SI and Additional file 8:

Table S9). Most genes whose transcription is induced

with the method are expected to display a peak expres-

sion in the first time point (i.e., the SW/G1 cell stage)

with a lower expression profile in subsequent time point

samples. The presence of these method-induced genes

does not, however, affect our conclusions because we

obtain similar results when the whole set of SW/G1-spe-

cific genes is excluded from all the analyses (including

those described below, see Additional file 7: SI).

A variety of cell cycle expression patterns were ob-

served among the 1,586 CCR genes (see Figure 4A for 6

examples, and Additional file 9: Figure S2 for all the

other CCR genes). For verification, we used 47 experi-

mentally identified CCR genes as a gold reference

(Additional file 10: Table S4). All of these genes were

correctly assigned as CCR genes in our analysis. We also

compared our list of CCR genes with two previously

reported CCR gene sets obtained from DNA microarray

studies that used the same synchronization technique

[10,11]. These two sets include 551 and 433 genes, with

an overlap of 138 genes. The reason of the relatively
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small gene overlap between these two sets is unclear and

may be attributed to differences in methods used, or to a

lack of experimental replicates in these studies. Combin-

ing these two CCR gene lists results in a set of 846

genes, and 543 (64%) of them are reported in our new

CCR list. Importantly, because our study includes bio-

logical replicates, the baySeq likelihood value from 0 to

1 provides a measure of confidence in cell cycle expres-

sion for each CCR gene (Additional file 6: Table S3).

This information is useful because, while there is a posi-

tive correlation between the fold of change in expression

and the likelihood, small differences in expression level

during the cell cycle can be associated with high likelihood

values (Figure 4B), indicating that they are highly reliable.

In general, the level of peak gene expression does not

appear to influence the baySeq likelihood values

(Figure 4C). Among the 1,586 CCR genes that we identi-

fied, 84% (1,331) of them had expression changes > 2

fold (Figure 4D). The maximal fold of change in cell-

cycle expression was over 229, and the mean was 8.2. In

terms of peak expression, 96% (1,521) CCR genes had

coverage > 5x (Figure 4D) and therefore, are likely above

background transcription.

Among the CCR genes, 21 were annotated non-coding

RNAs (ncRNA) (Additional file 6: Table S3). For ex-

ample, the expression of CCNA_R0092 varies by 23-fold

during the cell cycle, with a peak expression of ~1550x

(Additional file 9: Figure S2, Additional file 6: Table S3).

The remaining CCR genes (1,565) were predicted to

encode proteins whose ontology we surveyed. Using

the UniProt-GOA data set, which includes 2,564 C.

crescentus NA1000 genes [30], we obtained the gene

ontology (GO) annotation for 1,024 protein-encoding

CCR genes (Figure 5A, Additional file 6: Table S3). In a

previous microarray study, 101 metabolism-related genes

had been reported to change their expression during the

C. crescentus cell cycle [10]. In our CCR gene dataset, 473

genes were assigned under primary metabolic process cat-

egory, and 490 genes were annotated as cellular metabolic

process. These two GO terms included a total of 541 CCR

genes, indicating that over one third of all CCR genes are

related to metabolic functions. A total of 1,337 genes of the

A

B C D

Figure 4 Cell cycle regulation. (A) Examples of expression profiles across the 5 cell cycle time points (red, SW; green, ST; dark blue, EPD; light

blue, PD; and purple, LPD). (B) Plot showing fold changes in expression during the cell cycle as a function of the baySeq likelihood. Each spot

represents a gene. (C) Plot showing peak expression levels as a function of the baySeq likelihood. The dotted line is due to the log scale. (D) Plot

showing peak expression levels as a function of fold changes in expression during the cell cycle. The dotted line is due to the log scale.
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C. crescentus genome are classified under primary and

cellular metabolic processes based on UniProt-GOA [30].

Thus, over 40% of them display differential cell cycle

expression under our conditions. This is surprising as

metabolic genes are often thought of as housekeeping genes

and as such, are expected to be constitutively expressed

during the cell cycle. Their cell cycle regulation suggests

potential fluxes of primary metabolites during the cell cycle.
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GO term enrichment analysis that compares CCR

with non-CCR genes revealed over-representations and

under-representations of genes with particular GO terms

(Additional file 11: Figure S3, Additional file 12: Table

S5). For example, genes associated with flagellar motility,

chemotaxis, division and DNA synthesis were enriched

among CCR genes, consistent with their known cell

cycle regulation. Genes encoding two-component signal

transduction proteins (response regulators and histidine

kinases) were also significantly enriched among CCR

protein-encoding genes, while genes encoding sequence-

specific DNA-binding proteins (e.g., transcriptional

regulators) were overall under-represented. In addition,

this analysis showed that some metabolic pathways (e.g.,

nitrogen and sulfur compound metabolic processes)

were over-represented in terms of cell cycle regulation

while others (e.g., respiration) were under-represented.

Five-hundred forty-one CCR genes did not have a GO

term and these genes were in general less conserved

across the phylogenetic tree than the 1,024 CCR genes

with GO terms based on PI distributions (Figure 5B).

However, a subset of them (22) were subject to strong

selective pressure with PI > 50 (Figure 5C, KS test,

p<1e-3). These conserved genes are interesting candi-

dates for future cell cycle studies.

Cell cycle co-expression network and modules

Since genes with correlated expression profiles can sug-

gest correlations in biological function or regulatory

mechanism, we used Weighted Gene Correlation Net-

work Analysis (WGCNA) [31-33] to determine co-

expression profiles among the 1,586 identified CCR

genes. From this analysis, we were able to cluster the

CCR genes into 76 modules. Each module contains genes

with similar cell cycle expression profiles, and the overall

expression profile of each module can be represented by

the first eigenvector of the module. On average, the first

eigenvector was able to explain over 85% of the total vari-

ance, with even the worst case (the maroon module) still

explaining 78% of the total variance (Additional file 13:

Figure S4, see Eigen_varExplained.txt file).

Figure 6A shows one of the modules as an example,

with each node representing a specific gene of the mod-

ule and with the size of the node being proportional to

its contribution to the module (see methods; Figure 6B

lists the contribution of each gene in forming the mod-

ule, and Additional file 14: Table S6a provides gene

contributions in all modules). The edges between genes

(nodes) indicate connectivity; wider lines indicate

stronger connectivity and are indicative of greater simi-

larity in cell cycle expression profile between the two

connected genes. All 76 modules are displayed in

Additional file 13: Figure S4. We used the eigenvectors

to cluster the 76 modules according to their cell cycle

expression profiles to examine the relationship between

the 76 modules (Additional file 15: Figure S5). This clus-

tering analysis, by and large, resulted in three large

groups with peak expression primarily at the SW, ST or

PD cell cycle stage (Additional file 16: Table S6b).

Individual modules can be searched for functional

relationships among genes, and this search can be

broadened to modules with similar expression profiles

(Figure 6C) to identify functionally related genes. For ex-

ample, genes involved in the assimilation of sulfur into

cysteine are among the strongest contributors of the ma-

genta module (Figure 6B), with changes in expression up

to 130-fold and with peaks of expression in the ST and

EPD cell cycle stages (Figure 7). Aside from its use in

protein synthesis, cysteine is the primary donor of sulfur

in the metabolism of a variety of sulfur-containing com-

pounds, including methionine, S-adenosylmethionine

(SAM), coenzyme A, glutathione, thiamine, lipoic acid,

cobalamin, biotin, molybdenum cofactor, and iron-sulfur

clusters [34,35].

When we examined co-expression modules that clus-

ter with the magenta module because of their similarity

in cell cycle expression pattern, we identified genes from

pathways tangential to cysteine synthesis. Using this

strategy, we were able to identify the metabolic network

involved in cysteine, methionine, serine, glycine, gluta-

thione, and SAM synthesis (Figure 7). The entire net-

work is created from 38 genes, expressed from at least

25 transcriptional units (the genes had to be separated

by at least 2 kb or had to be transcribed in opposite di-

rections to be considered as distinct transcription units).

Of these 38 genes, 31 display differential cell cycle ex-

pression, and most are up-regulated at the ST and/or

EPD cell time point (Figure 7). Thus, gene and module

(See figure on previous page.)

Figure 6 WGCNA co-expression modules. (A) WGCNA modules were constructed based on the Topological Overlap Matrix. This is an example

displaying the topology of the magenta module. Nodes are genes, and the size of node is proportional to its contribution in forming this

module. Width of the edges is proportional to strength of correlation between two connected genes. (B) Table showing the contribution of all

member genes to the formation of the magenta module. (C) Clustering of the 76 modules shows as a 76 by 76 heat map matrix resulted from

bi-clustering based on the module eigenvectors. The eigenvector of the expression matrix for each module was used to represent its expression

profile. Each row or column is one module, and the color in each small cell describes the relationship between two modules. Yellow shades

indicate positive correlations (i.e., similar expression profiles) between two modules, whereas blue shades mean anti-correlations. Black indicates

no correlation.

Fang et al. BMC Genomics 2013, 14:450 Page 9 of 15

http://www.biomedcentral.com/1471-2164/14/450



clustering can be used to infer functional coupling be-

tween genes and pathways.

Cell cycle transcriptome analysis from an evolutionary

perspective

In terms of gene persistence, CCR genes and non-CCR

genes showed no differences (Additional file 17: Figure

S7). However, the contribution of each CCR gene in

forming a co-expression module was not equal, with the

persistent genes (PI≥150) being more prone to be major

contributors compared to the rest of CCR genes (KS

test, p<1e-5). In other words, CCR genes that are widely

conserved across bacterial phyla tend to determine the

expression profile of their module, suggesting that

evolution plays a role in shaping gene co-expression

networks.

Previous studies have shown a correlation between co-

expression and co-evolution by examining conserved

synteny and/or co-expression of conserved gene pairs

across different organisms, [36-40]. We were therefore

interested in understanding the link between co-

expression and evolutionary relatedness from the per-

spective of a model organism’s biological network by

leveraging our co-expression modules. For each module,

we computed the phylogeny clustering of its member

genes (see methods) using the K-statistics [41] in the pi-

cante package [42]. Sixty-nine (91%) modules had strong

phylogenetic signals (p < 0.05, Additional file 18: Table

S7); that is, the genes in these 69 modules are phylo-

genetically clustered (see methods). To more precisely

study this phylogenetic clustering, we calculated the

mean pairwise distance (MPD) and mean nearest taxon

distance (MNTD) values using picante. The MPD

value can provide a measure of the phylogenetic tree-

wide patterns of clustering. MNTD is, on the other

hand, more sensitive to clustering closer to the tips of

the phylogenetic tree [43]. For example, some genes

may be randomly distributed across the tree, but

phylogenetically clustered near the tips. MNTD would

show a significant value for such clustering. Genes that

are specific to species or to narrow clades will also

show significant MNTD values. The distribution of

MPD and MNTD z scores are shown in Figure 8A. We

found that values ≤ −2 for both MPD and MNTD z

scores are significant (with p=0.01; Figure 8A). Hence,

we divided the MPD and MNTD coordinates into 4

quadrants using the cut-off value −2 (Figure 8A).

Forty-nine (64%) modules in quadrants 2 and 3 display

tree-wide clustering; the salmon module is such an ex-

ample (Figure 8B). Eleven modules in quadrant 4 are

A

Figure 7 Correlated cell cycle expression of the sulfur metabolic network. (A) Every reaction performed by a predicted enzyme has the

gene name and mRNA expression profile flanking the reaction arrow. Dotted arrows indicate that no C. crescentus gene has been predicted to

perform this specified reaction. The color of protein names corresponds to the color of the expression profile. Protein and expression profiles in

grey indicate that they were not identified as cell cycle-regulated because of the variance between biological replicates. Genes in yellow box are

major contributors of the magenta module (see Figure 6B) and are involved in sulfur import and assimilation to cysteine. The expression data

used to build the cell cycle profiles are provided in Additional file 3: Table S1b.
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more likely to be clade- or species-specific modules;

the yellowgreen module provides an example (Figure 8B).

The evolutionary profile of each module is provided in

Additional file 19: Figure S6, whereas the MPD and

MNTD z scores are listed in Additional file 18:

Table S7.

Collectively, these phylogenetic analyses suggest that

gene conservation and co-expression are highly corre-

lated: broadly conserved genes presumably organized

into functional modules in ancestral species and have

co-evolved as groups into many extant organisms,

whereas narrowly conserved genes tend to be co-

expressed together as clade- or species-specific modules.

Understanding the mechanism that drives co-expressed

genes to co-evolve, or co-evolved genes to be co-

expressed, will be of great interest, as it is beyond the in-

fluence of operon organization [26,44].

Conclusion
In this work, we leveraged the CV analysis of biological

replicates to refine our expression measurements and to

correct systematic biases associated with GC-rich ge-

nomes. Using this strategy, we identified three global

patterns of gene expression that appear to be under dis-

tinct regulatory constraints. By integrating two popular

tools, WGCNA and baySeq, we generated a list of CCR

genes and identified previously unknown relationships

between these CCR genes. Through phylogenetic analysis

of expression network modules, we found a correlation

between stronger co-expression and broader conservation

of genes. By investigating the evolutionary profiles of the

modules and their MPD/MNTD coordinates, we found

that most (64%) modules with strong tree-level clustering

were dominated by widely conserved genes, and that 11

modules with strong tip-level clustering were dominated

by clade-specific genes. In total, this accounted for 79%

of the 76 modules, which argues that evolutionary profiles

are highly related to gene co-expressions and that evolu-

tion has shaped the cell cycle expression network. This

further implies that selective pressure is not on single

genes but rather on the relationships between genes (i.e.,

the biological network), emphasizing the value of including

phylogenetic analysis to the study of gene co-expression

networks.

Methods
Bacterial growth and RNA collection

C. crescentus NA1000 (also known as CB15N) was grown

at 30°C in M2G until the exponentially growing culture

reached an OD660 of about 0.3. Cell synchronization, which

includes a centrifugation in a density gradient of silica

(Ludox) at 4°C, was performed as previously described [13],

using 1 L of culture. After synchronization, the purified

swarmer cell population was resuspended in pre-warmed

M2G medium. A total of 5 synchronies were done to ob-

tain 3 time points such that, in total, we obtained three rep-

licates (50 ml aliquots of cells) at 0, 30, 60, 90 and 120 min

following synchronization. Total bacterial RNA was isolated

using phenol-chloroform extraction, as described previously

[45]. The quality of the extracted RNA was assessed by

agarose electrophoresis; rRNA bands appeared intact and

no RNA smear was apparent. RNA samples were immedi-

ately frozen and stored at −80°C. RNA samples were later

enriched for mRNA using the Invitrogen Ribominus

Transcriptome Isolation Kit (Yeast and Bacteria) to remove

ribosomal RNA per the manufacturer’s protocols except for

the use of custom-made nucleic acid probes (Invitrogen)

designed against C. crescentus ribosomal sequences. All

RNA samples were tested for integrity on a BioRad

Experion capillary electrophoresis system. Possible residual

DNA was removed by addition of Ambion Turbo DNase.

Library preparation, sequencing and mapping

Fifteen sequencing libraries for Applied Biosystems SOLiD

system sequencing were created using the Applied Bio-

systems Whole Transcriptome Library Preparation for

SOLiD Sequencing, and individual samples were barcoded

using Applied Biosystems Small RNA Expression Kit

(SREK) barcodes (per the manufacturer’s protocols). Tran-

scriptome library preparation was performed for labeling in

a strand-specific manner. Samples were run on the Applied

Biosystems SOLiD 3 Platform using Shotgun Sequencing

(50 base pair reads) using standard sequencing protocols.

Each experimental time point was run on an individual

flow cell containing the 3 biological replicates with different

barcodes. Raw color space data from SOLiD sequencing

was mapped to the C. crescentus NA1000 chromosome

(NC_011916) (plus and minus strands, separately)

(See figure on previous page.)

Figure 8 Phylogenetic analysis of co-expression modules. (A) Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were

used to measure the tree-wide and tip-level clustering of each module, respectively. The two small panels on the left show that −2 is a

significant threshold (with p=0.01) for both MPD and MNTD z scores. In the right panel, modules (red dots) are displayed in 4 quadrants. Modules

in the 2nd and 3rd quadrants have significant low MPD values (< −2), indicating that their genes display tree-wide clustering. Modules in the 4th

quadrant have significantly low MNTD (<−2) but not significant MPD values, indicating that their genes exhibit tip-level clustering. (B)

Phylogenetic profiles showing the distribution of the member genes of the salmon and yellowgreen modules shown here as examples. The

dendrogram on the top of the module profile is the phylogenetic tree based on 16 s rRNA of 236 species selected in an unbiased fashion (see

methods). The solid vertical red line corresponds to C. crescentus.
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using SOCS software with a mismatch cutoff of 5 nu-

cleotides [46], which discards about half of the reads.

We assigned weights of 1, 0.95, 0.9, 0.85, 0.8 and 0.75

to reads with 0 to 5 mismatches, respectively, when

summing them together.

RNA-Seq normalization

From the bird’s eye view of raw RNA-Seq mapping

(Figure 2A), we observed some spikes, indicating large

concentrations of RNA-Seq reads at those locations.

From Figure 2D, we also detected tails of highly

expressed genes, which did not follow the major power-

law distribution of the genome. Furthermore, a Chi-square

test confirmed that the amount of reads mapped to highly

expressed genes (>1000x) did not follow the same distribu-

tion than those mapped to the bulk of genome (p<1e-8).

Hence, samples with ≤1000x and >1000x were normalized

by the sum of each replicate separately.

Quantification of gene expression

We employed a dynamic programming segmentation

algorithm from the tillingArray package [47] to divide

the CV curve into segments, as shown in Figure 2C. We

removed segments with CV >1 before quantifying gene

expression. We then calculated the weighted mean

coverage in the remaining segments that fell within an-

notated CDS or RNA coordinates as gene expression

value.

Gene ontology analysis

GO (gene ontology) annotation was downloaded from

EBI UniProt-GOA [30], which included 2,564 C. crescentus

NA1000 genes. We mapped our CCR genes to this dataset

and obtained the GO for 1,024 protein-encoding CCR

genes, and their biological process (level 3) GO terms dis-

tribution (Figure 5A) was summarized and drawn by

Blast2GO [48]. GO terms enrichment analysis was also

carried out using Blast2GO, and significant GO terms

were reported in Additional file 18: Table 5S with their

Fisher’s exact test p-value < 0.01. We also provided FDR

corrected p-values for reader’s reference.

Identification of cell cycle-regulated genes and

construction of the WGCNA co-expression network

construction

The baySeq package [29] was used to identify CCR

genes. Based on baySeq minimum requirement, we as-

sumed two conditions for each gene, up or down regu-

lated. We enumerated all possible combinations of the

up and down regulation across 5 time points (each with

three identical replicates), and included no expression as

well as constant expression without changes, as the

models to be evaluated by baySeq for each gene. baySeq

considered the variance in the three biological replicates

when estimating the likelihood, and assigned genes into

the model that best described their cell cycle expression

profile. Genes that were assigned to models with differ-

ential expressions were considered as CCR genes. Simi-

lar to our normalization procedure, we ran the baySeq

workflow for the highly expressed genes and for the bulk

genome separately. To construct the gene co-expression

modules, we first followed WGCNA’s data filter sugges-

tion and removed one replicate from each of the SW, ST

and EPD time points. We then constructed signed

network with β=36 and minimum module size of 5

using the WGCNA default Topological Overlap Matrix

(TOM) [33]. The eigenvector of each module’s expres-

sion matrix was used to represent the expression profile

of the module, and scaled gene expression profiles were

projected onto this eigenvector to calculate contribu-

tions from the member genes. Cytoscape was used to

draw the network topology of the module [49].

Phylogenetic signal and evolutionary profiles of

co-expression modules

We used 1 or 0 to represent whether or not a CCR gene

is conserved in a species. For each module, we summed

the conservation values of all member genes in each of

the 236 species to obtain a distribution profile across the

selected species. This distribution profile was then

treated as the trait data, and the K-statistic and the asso-

ciated p-value were calculated according to Blomberg

et al’s algorithm [41]. MPD and MNTD values were cal-

culated based on the same species-distribution profiles

for each module, and null model used in the calculation

was generated by randomizing the species-distribution

of each module 9,999 times, while maintaining the

phylogenetic relationships [42].

Orthology and gene persistence

The large 16 s rRNA phylogenetic tree from Greengenes

[50], which covers over 800,000 bacterial species, was

first cut into about 300 evenly speciated clades. We se-

lected all fully sequenced bacterial genomes with >

1.5 M from EMBL, and mapped them into 236

Greengenes clades. From each clade, we randomly se-

lected one species as representative (Additional file 20:

Table S8). The persistence index (PI) of a C. crescentus

gene was defined by the number of orthologs found in

the 236 selected species. Orthology was acquired by bi-

directional best hits with protein sequences similarity

over 40% and protein length difference under 20%

[26,51]. In addition to obtaining the PI value for each C.

crescentus gene, we used a set of less stringent criteria to

identify all proteins (referred to as homologs) with over

40% of similarity and less than 50% of length difference.

The results are documented in Additional file 15: S1 and

Additional file 21: Table S10.

Fang et al. BMC Genomics 2013, 14:450 Page 13 of 15

http://www.biomedcentral.com/1471-2164/14/450



Availability of supporting data
The data set supporting the results of this article is avail-

able in the NCBI Gene Expression Omnibus (GEO) re-

pository, with access number GSE46915 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46915).

Additional files

Additional file 1: Figure S1. Frequency distribution of gene

expression values.

Additional file 2: Table S1a. Is a zipped csv file of the raw single-

nucleotide resolution RNA-Seq mappings of three replicates from five cell

cycle time points.

Additional file 3: Table S1b. Is a table listing gene expression values

after CV correction, for each replicate.

Additional file 4: Table S1c. Is a table of gene expression values for

each cell cycle time point.

Additional file 5: Table S2. Is the list of lowly expressed genes that are

either essential or persistent genes.

Additional file 6: Table S3. Is a table of detailed annotations of the

1,586 identified CCR genes.

Additional file 7. Additional discussions are in the file of

Supplemental Information (SI). Additional files also include

supplemental figures S1-S7 with figure legends in file SI.

Additional file 8: Table S9. Lists the potential method-introduced

CCR genes.

Additional file 9: Figure S2. Expression profiles of all identified CCR

genes.

Additional file 10: Table S4. Is a list of well-studied CCR genes

collected from the literature used here as ‘gold standard’.

Additional file 11: Figure S3. Directed acyclic graph (DAG) of over-

and under-represented gene ontology (GO) terms in CCR genes.

Additional file 12: Table S5. Is the result of GO term enrichment

analysis of CCR genes.

Additional file 13: Figure S4. Co-expression network topologies of

all 76 modules.

Additional file 14: Table S6a. Details how each co-expression

module is conserved.

Additional file 15: Figure S5. Module expression profile

represented by its 1st eigenvector.

Additional file 16: Table S6b. Is the hierarchical clustering of

co-expression modules based on their expression profiles.

Additional file 17: Figure S7. Persistent index distributions.

Additional file 18: Table S7. Shows phylogeny values (K, MPD and

MNTD) for each module.

Additional file 19: Figure S6. Phylogenetic profiles and positions in

MPD and MNTD coordinates for all modules.

Additional file 20: Table S8. Lists the selected bacterial species

used to evaluate the conservation of co-expression modules across

bacterial phyla.

Additional file 21: Table S10. Shows the less stringent PI for each

gene.
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