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Abstract

Background: Legionella pneumophila (Lp) is a water-borne opportunistic pathogen. In water, Lp can survive for an

extended period of time until it encounters a permissive host. Therefore, identifying genes that are required for

survival in water may help develop strategies to prevent Legionella outbreaks.

Results: We compared the global transcriptomic response of Lp grown in a rich medium to that of Lp exposed to

an artificial freshwater medium (Fraquil) for 2, 6 and 24 hours. We uncovered successive changes in gene

expression required for the successful adaptation to a nutrient-limited water environment. The repression of major

pathways involved in cell division, transcription and translation, suggests that Lp enters a quiescent state in water.

The induction of flagella associated genes (flg, fli and mot), enhanced-entry genes (enh) and some Icm/Dot effector

genes suggests that Lp is primed to invade a suitable host in response to water exposure. Moreover, many genes

involved in resistance to antibiotic and oxidative stress were induced, suggesting that Lp may be more tolerant to

these stresses in water. Indeed, Lp exposed to water is more resistant to erythromycin, gentamycin and kanamycin

than Lp cultured in rich medium. In addition, the bdhA gene, involved in the degradation pathway of the

intracellular energy storage compound polyhydroxybutyrate, is also highly expressed in water. Further

characterization show that expression of bdhA during short-term water exposure is dependent upon RpoS, which is

required for the survival of Lp in water. Deletion of bdhA reduces the survival of Lp in water at 37 °C.

Conclusions: The increase of antibiotic resistance and the importance of bdhA to the survival of Lp in water seem

consistent with the observed induction of these genes when Lp is exposed to water. Other genes that are highly

induced upon exposure to water could also be necessary for Lp to maintain viability in the water environment.

Keywords: Legionella pneumophila, Survival, Freshwater, Stringent response, Transcriptome, Antibiotic

resistance, bdhA

Background
Legionella pneumophila (Lp) is a Gram-negative bacter-

ium that inhabits natural freshwater environments and

man-made water systems. Lp has a broad host range and

is able to replicate in different species of amoeba, ciliated

protozoa and slime mold [1]. Importantly, it is also able to

infect humans, resulting in a potentially fatal illness called

Legionnaires’ disease (LD) [2]. Human infection occurs

through inhalation of aerosols originating from Legion-

ella-contaminated sources, such as cooling towers, air

conditioning and heating systems, fountains and even

showers [3]. Upon entry into alveolar macrophages, Lp

prevents fusion with lysosomes, modulates host cell traf-

ficking, forms a Legionella-containing vacuole and then

starts intracellular multiplication [4]. In recent years, the

occurrence rate of LD has been reported to be on the

increase in many countries [5]. In the US, the incidence

rate of LD increased by 192 % over the last decade [6].

In Europe, France, Italy and Spain consistently have the

highest number of reported cases, with 7.06 to 11.7

cases per thousand in 2011 [7]. Most of these are spor-

adic cases, either community-acquired, nosocomial or

travel-associated [8]. Nevertheless, outbreak of LD in

which a large population gets exposed to contaminated

aerosols from a point-source is of great concern. Inves-

tigations of previous outbreaks show that the dispersal

distance of Lp from cooling towers and air scrubbers

can be greater than 10 km [9, 10].
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Many bacteria, such as Bacillus megaterium, Salmonella

enteritidis, Staphylococcus aureus and Vibrio cholera, die

steadily upon exposure to freshwater [11, 12]. Chandran et

al. [13] showed that the colony-forming units (CFU) of

Escherichia coli and Vibrio parahaemolyticus decreased by

7 logs after 27 days of exposure to lake water. In contrast,

Lp is able to survive for a prolonged period of time in

freshwater despite the lack of nutrients [14–17]. In an

earlier study, Lp exposed to drinking water and creek

water had a mere 2 log reduction in CFU counts and still

maintained 3 × 106 CFU/ml after an incubation time of

1.5 years [18]. The ability of Lp to survive in water for long

periods is essential for the colonization of water systems,

allowing it to persist until optimal conditions and permis-

sive hosts for its growth are encountered. Survival in water

is, therefore crucial for the transmission of Lp to the

human host. In turn, it is important to understand the

genetic factors of Lp that allow its prolonged survival in

water. This knowledge may allow future development of

strategies that prohibit the survival of Lp in water systems

and eventually help control Legionella outbreaks.

Lp possesses approximately 3000 genes, in which 2434

genes are commonly found in all six strains [19]. As a

human pathogen, the genes involved in virulence have

been extensively studied [20–23]. Two major secretion

systems, the Lsp type II secretion system (T2SS) and the

Icm/Dot type IVB secretion system (T4BSS), translocate

more than 300 effector proteins into the host cell and

are critical for the virulence of Lp [24]. Moreover, many

other genes act as virulence factors that directly contrib-

ute to host cell infection (e.g., mip, enhABC) or as viru-

lence regulators (e.g., rpoS, cpxR and letA) [25–29].

Apart from the virulence genes, a recent study has showed

that at least 597 genes are essential for optimal growth of

Lp in rich medium [30]. However, the functions of many

Lp genes still remains unknown. To date, only a few genes

are known to be important for the survival of Lp in water.

Söderberg et al. [17] studied the survival of lspD, lspE, lspF

and pilD mutants in tap water and concluded that the

T2SS is important for Lp to maintain survival at tempera-

tures between 4 and 17 °C. Recently, our group has shown

that the sigma factor RpoS and the stringent response

(RelA and SpoT) are required for the survival of Lp in

water [31].

Given the lack of knowledge and the associated risk to

public health, it is necessary to identify more Lp genes

that are required for survival in water. Bacteria typically

respond to environmental changes through transcrip-

tomic reorganization, where they express genes that are

essential for coping with the new condition and repress

genes that are no longer required, or that are detrimen-

tal [32, 33]. Comparison of transcriptional changes using

microarrays can be used to identify candidate genes

needed in a particular condition [34–36]. Recently, this

technique has been used to identify a new gene, iroT,

involved in ferrous ion transport based on the transcrip-

tomic profile of Lp in an iron restricted condition [37].

In this study, we use a transcriptomic approach to

identify genes that are potentially involved in the sur-

vival of Lp in water. Since bacteria tend to have imme-

diate transcriptomic responses within the first few

hours upon exposure to stressful conditions [38], the

transcriptomic response of Lp to water was studied at

an early time point (2 h), an intermediate time point

(6 h) and a late time point (24 h). Genes involved in

adaptation and regulatory functions are induced in

water, while those involved in energy metabolism and

translation are repressed. In particular, our analysis

shows that bdhA is strongly expressed upon exposure

to water, and the deletion of bdhA reduces the survival

of Lp in water at 37 °C.

Results
Survival of Lp in Fraquil

In order to ensure reproducibility, an artificial freshwater

medium was used to perform the transcriptomic analysis.

The freshwater medium Fraquil was selected for this pur-

pose since it mimics the composition of freshwater in

North America [39]. The survival of the wild-type strain

JR32 in Fraquil at 25 °C is shown in Fig. 1a. The popula-

tion of Lp in Fraquil was stable for at least five weeks.

For the transcriptomic analysis, JR32 was first cultured

in ACES-buffered yeast extract (AYE) broth to exponen-

tial phase in triplicate and 1 ml samples were harvested

to serve as controls. Then, the cells were washed three

times with Fraquil and re-suspended in Fraquil at a final

OD600 of 1.0. The three re-suspensions were transferred

to vessels of a BIOSTAT® Q Plus bioreactor to control

temperature and dissolved oxygen. Samples were taken

after 2, 6 and 24 h of exposure (treatment) and com-

pared to controls grown in AYE broth. At each time

point, we performed both CFU counts and Live/Dead

staining. Although both AYE samples and Fraquil sam-

ples were at the same optical density, the CFU counts of

JR32 exposed to Fraquil were consistently lower, albeit

by a very small margin, than JR32 from AYE broth

(Fig. 1b). There were no significant differences in CFU

counts between the Fraquil samples at the different time

points tested. Flow cytometry analysis of Live/Dead

staining was used to evaluate the percentage of viable

cells and showed that there were no differences between

samples (Fig. 1c). Taking into account CFU counts and

cell staining, Lp showed no significant survival defects

within the first 24 h of exposure to Fraquil.

Based on the flow cytometry data, a steady reduction

in the forward scatter (FSC) was observed in JR32 upon

exposure to Fraquil (Fig. 1d). The lowest average FSC
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signal was observed in Fraquil samples after 24 h (the

longest exposure time). Since the FSC signal is propor-

tional to particle size [40], this result indicates that Lp

undergoes a gradual reduction in cell size after exposure

to water.

Transcriptomic response of Lp exposed to water

In order to understand the genetic regulation of Lp during

short-term exposure to water, we performed a transcrip-

tomic analysis through DNA microarray hybridization.

RNA was extracted from exponential phase (Control) and

Fraquil-treated (Treatment) samples and the data of each

treatment was compared with the control.

Compared to JR32 growing in AYE broth, the expression

of 2080 annotated genes and 201 predicted sRNA encod-

ing sequences changed significantly (log2 ratio of Treat-

ment/Control >1 or < −1, p < 0.05), in at least one time

point (2, 6 or 24 h) after exposure to Fraquil (Additional

file 1). A progressive transcriptomic change over time is

clearly seen in the heat map showing the induction and

repression of genes (Fig. 2). The percentages of signifi-

cantly up- and down-regulated genes increased from 2 to

6 h of water exposure, while more genes were significantly

down-regulated than up-regulated after 24 h (Fig. 3a).

There were 13.1 % up-regulated genes and 15.7 % down-

regulated genes after 2 h of water exposure, demonstrating

the rapid transcriptional responses of Lp upon exposure to

Fraquil.

Genes that were differentially expressed after water ex-

posure were categorized into orthologous groups. After 2

and 6 h of water exposure, seven of the 19 orthologous

groups had a higher percentage of up-regulated genes

(Fig. 3b and c). These orthologous groups are “chemo-

taxis/motility/cell division”, “detoxification/adaptation”,

“icm/dot effector”, “signal transduction/other regulatory

Fig. 1 Lp survives well in water at 25 °C. a CFU counts of JR32 during five weeks of exposure to Fraquil. DL indicates the detection limit at

100 CFU/ml. b CFU counts of JR32 cultured in AYE broth or exposed to Fraquil. All samples were at an OD600 of 1.0. Data shows the mean +/− SD

of three biological replicates. Different letters on the bars indicate significant differences between the samples according to Tukey's test (p < 0.05).

c Percentage of live, undefined or dead JR32 cells cultured in AYE broth or exposed to Fraquil. Live/Dead staining was used with flow cytometry to

determine the status of 5000 cells in each sample. d Forward scatter (FSC) of JR32 cultured in AYE broth or exposed to Fraquil. Each sample had three

biological replicates and the mean FSC signal of 5000 cells in each replicate was detected by flow cytometry

Li et al. BMC Genomics  (2015) 16:637 Page 3 of 21



functions”, “transcription”, “unclassified/unknown/hypo-

thetical” and “viral functions/phage/transposases”. In con-

trast, all 19 orthologous groups showed major down-

regulation of genes after 24 h of water exposure (Fig. 3d).

At each time point, “energy metabolism”, “translation”

and “transport and binding” remained the top three

orthologous groups with the highest percentage of

down-regulated genes. Examples of genes in these ortho-

logous groups are listed in Table 1 and 2 and will be dis-

cussed later.

Validation of microarray results by RT-qPCR

To validate the results of the microarray analysis, the

expression profiles of ten different genes were confirmed

by reverse transcription quantitative PCR (RT-qPCR)

using 16 s rRNA as an internal control [41, 42]. These

ten genes were selected from eight different orthologous

groups.

According to the microarray data, six of the selected

genes (lpg0586, lpg0846, lpg1206, lpg1659, lpg2316

(bdhA) and lpg2524) were significantly up-regulated in

Fig. 2 Progressive transcriptomic changes of Lp in water. The global gene expression of JR32 after 2, 6 and 24 h exposure to Fraquil in

comparison with the control cultured in AYE broth is shown in the heat map. The hierarchical clustering shows the similarities between samples.

The genes that were up-regulated are shown in red and those down-regulated are shown in green
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water at two or all three time points, while the

remaining four genes (lpg0025, lpg0890, lpg1284 and

lpg2487) were significantly down-regulated (Fig. 4a). The

RT-qPCR results for these 10 genes are shown in Fig. 4b.

Despite some differences, the general expression profiles

were conserved between the microarray and RT-qPCR

data, which validates the former.

Antibiotic resistance of Lp subsequent to water exposure

Many genes involved in detoxification and adaptation

were induced in water, including some associated with

antibiotic resistance, such as an aminoglycoside 6-

adenylyltransferase, a spectinomycin phosphotransferase,

an erythromycin transporter and several efflux pumps

(Table 2). The induction of these genes may increase the

resistance of water-exposed Lp to antibiotics. To investi-

gate this hypothesis, we compared the antibiotic resist-

ance of Lp cultured in AYE broth to exponential phase

and those exposed to Fraquil for 24 h. In both cases, we

compared the CFU counts with and without the addition

of a β-lactam (ampicillin), two aminoglycosides (genta-

mycin and kanamycin) and a macrolide (erythromycin).

In order to determine the impact of temperature on anti-

biotic resistance, Lp was grown in AYE and exposed to

Fraquil at both 25 °C and 37 °C prior to testing resistance.

There were no significant differences in the CFU

counts between AYE-grown and Fraquil-exposed Lp

treated with ampicillin (Fig. 5). Lp grown in AYE at 37 °C

was more susceptible to erythromycin than Lp grown in

AYE at 25 °C or Lp exposed to Fraquil at either

temperature. Lp exposed to Fraquil was significantly more

resistant to gentamycin than Lp grown in AYE broth, re-

gardless of the temperature. Moreover, exposure to 37 °C

seems to slightly increase susceptibility to gentamycin. Lp

was more resistant to kanamycin after exposure to Fraquil

than when grown in AYE, and this difference was more

pronounced at 37 °C. Overall, Lp is more resistant to ami-

noglycosides after exposure to Fraquil, which is consistent

with our prediction based on the transcriptomic data.

Fig. 3 Many Lp genes are shut down after 24 h of exposure to water. a Percentage of genes significantly up-regulated or down-regulated after 2,

6 and 24 h of exposure to Fraquil. The numbers on the top of each bar represent the number of genes differently expressed (Log2 < −1 or >1,

p < 0.05) over a total of 2994 annotated genes from the original genome annotation. Cluster of orthologous groups analysis of JR32 genes after (b)

2 h, (c) 6 h and (d) 24 h of exposure to Fraquil is shown. Up-regulated genes are shown in red and down-regulated genes are shown in green
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Table 1 Selected genes significantly down-regulated in water

Log2 ratio
a

Functional class and protein Locus tag Gene 2 hr/C 6 hr/C 24 hr/C

Cell division

Cell division protein lpg2610 ftsA −1.12 −2.93

Cell division protein lpg2611 ftsQ −1.18 −1.28 −4.43

Cell division protein lpg2615 ftsW −2.34 −5.59

Energy metabolism

ATP synthase F0, A subunit lpg2988 atpB −1.38 −2.58 −3.49

ATP synthase F0, C subunit lpg2987 atpE −1.27 −2.58

ATP synthase F0, I subunit lpg2989 atpI −1.13 −2.51

ATP synthase F1, alpha subunit lpg2984 −1.77 −1.71

ATP synthase F1, beta subunit lpg2982 atpD −1.19 −2.53 −2.44

ATP synthase F1, epsilon subunit lpg2981 atpC −1.67 −4.33

ATP synthase F1, gamma subunit lpg2983 atpG −1.36 −2.16 −2.60

ATP synthase F1,delta subunit lpg2985 atpH −1.89 −2.15

Cytochrome c oxidase, subunit I lpg2896 −1.71 −3.10

Cytochrome c oxidase, subunit II lpg2897 −2.38 −3.10

Cytochrome c lpg2898 −1.16 −1.64

NADH dehydrogenase I, A subunit lpg2789 nuoA −1.56 −3.42 −6.44

NADH dehydrogenase I, B subunit lpg2788 nuoB2 −4.60 −6.26 −8.44

NADH dehydrogenase I, C subunit lpg2787 nuoC −1.16 −3.34 −4.65

NADH dehydrogenase I, H subunit lpg2782 nuoH −1.72 −3.71 −6.66

NADH dehydrogenase I, I subunit lpg2781 nuoI −1.00 −2.82 −4.16

Succinate dehydrogenase lpg0528 sdhC −2.94

Succinate dehydrogenase lpg0530 sdhA −2.48

Succinate dehydrogenase lpg0531 sdhB −1.01 −2.93

Ubiquinol-cytochrome c reductase lpg2704 petB −1.66 −5.08

Ubiquinol-cytochrome c reductase lpg2705 petA −1.46 −2.54

Signal transduction/other regulatory functions

Response regulator lpg1912 letS −1.15

Response regulator lpg2646 letA −4.02 −3.57 −5.46

Toxin production/other pathogen functions

Macrophage infectivity potentiator lpg0791 mip −1.22 −2.04

Transcription

DNA-directed RNA polymerase alpha subunit lpg0354 rpoA −2.70 −3.95

DNA-directed RNA polymerase beta subunit lpg0322 rpoB −1.74 −2.63

DNA-directed RNA polymerase beta' subunit lpg0323 rpoC −2.83

RNA polymerase sigma-32 factor lpg2667 rpoH −2.09

Translation

30S ribosomal protein S13 lpg0351 rpsM −2.57 −4.22 −5.00

30S ribosomal protein S20 lpg2636 rpsT −3.86 −4.43 −6.92

30S ribosomal protein S6 lpg1592 rpsF −2.99 −4.18 −4.84

30S ribosomal protein S7 lpg0325 rpS7 −2.43 −3.36 −3.89

50S ribosomal protein L15 lpg0348 rplO −1.76 −3.37 −3.21

50S ribosomal protein L16 lpg0336 rplP −2.49 −3.73 −3.21
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Table 1 Selected genes significantly down-regulated in water (Continued)

50S ribosomal protein L28 lpg0479 rpmB −2.00 −2.89 −3.40

50S ribosomal protein L6 lpg0344 rplF −2.49 −3.81 −3.47

Translation elongation factor G lpg0326 fusA −2.45 −2.59

Translation elongation factor Ts lpg1713 tsf −1.40 −1.20

Translation initiation factor IF-1 lpg1770 infA −2.47 −3.69 −5.00

Translation initiation factor IF-3 lpg2713 infC −3.20 −3.29

tRNA-Gly lpg2292 −3.05 −3.10 −3.76

tRNA-Met lpg0797 −2.99 −3.68 −5.53

tRNA-Phe lpg1929 −3.29 −3.63 −4.44

tRNA-Pro lpg1866 −3.54 −4.49 −5.83

Transport and binding

Amino acid antiporter lpg1658 −2.19 −3.66 −5.86

Amino acid antiporter lpg1691 −2.89 −3.61 −4.31

Amino acid antiporter lpg1917 −2.51 −4.11 −4.80

Amino acid permeases lpg0970 −1.91 −3.42 −5.45

Amino acid permease family protein lpg0228 −2.77 −5.41 −6.13

Amino acid transporter lpg0049 −3.27

Ferrous iron transporter lpg2658 feoA −2.56 −2.80 −4.47

Ferrous iron transporter lpg2657 feoB −3.10 −5.23

DotA lpg2686 dotA −1.35

DotC lpg2675 dotC −1.40 −2.29 −4.72

DotD lpg2674 dotD −1.46 −3.67

DotK lpg0447 lphA −2.59 −1.69 −5.16

IcmB (DotO) lpg0456 icmB −3.00

IcmC (DotE) lpg0453 icmC 1.27 −1.11

IcmF lpg0458 icmF −1.13

IcmH (DotU) lpg0459 icmH −2.95 −2.42 −5.33

IcmJ (DotN) lpg0455 icmJ −1.69

IcmK (DotH) lpg0450 icmK −2.10 −4.11

IcmL (DotI) lpg0449 icmL −1.93 −5.42

IcmL homolog lpg0708 −2.65

IcmL homolog lpg0383 −2.81

IcmM (DotJ) lpg0448 icmM −2.57

IcmO (DotL) lpg0446 icmO 2.07 −1.50

IcmQ lpg0444 icmQ −1.36

IcmR lpg0443 icmR −2.16

IcmS lpg0442 icmS −2.43

IcmT lpg0441 icmT 1.39 1.79 −1.09

IcmV lpg2687 icmV 1.00 −1.89

IcmW lpg2688 icmW −3.09

IcmX (IcmY) lpg2689 icmX −1.41

Type IV pilus biogenesis protein lpg0927 pilM −2.04

Type IV pilus biogenesis protein lpg0928 pilN −1.36 −2.74

Type IV pilus biogenesis protein lpg0930 pilP −3.66

aOnly values that were significantly different than the control are shown
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Table 2 Selected genes significantly up-regulated in water

Log2 ratio
a

Functional class and protein Locus tag Gene 2 hr/C 6 hr/C 24 hr/C

Chemotaxis/motility

Flagellar assembly protein lpg1790 fliO 5.35

Flagellar basal body rod protein lpg1221 flgG 2.38 3.01

Flagellar biosynthesis sigma factor lpg1782 fliA 3.34 1.53

Flagellar biosynthetic protein lpg1788 fliQ 2.75

Flagellar biosynthetic regulator lpg1784 flhF 3.46

Flagellar hook protein lpg1219 flgE 4.17 3.79

Flagellar L-ring protein lpg1222 flgH 2.13

Flagellar motor protein lpg2318 motA 1.63

Flagellar motor protein lpg1780 motB 2.72

Flagellar motor protein lpg1781 motC 4.02

Flagellar motor switch protein lpg1792 fliM 3.48 1.44

Flagellar P-ring protein lpg1223 flgI 2.99

Flagellin lpg1340 fliC 1.22 1.71

Detoxification/adaptation

Alkylhydroperoxidase Lpg2349 ahpD 2.63 2.25

Alkylhydroperoxide reductase lpg2350 ahpC 1.74 1.64

Alkylhydrogen peroxide reductase lpg2965 ahpC 1.62 1.85

Heat shock protein lpg2024 dnaJ 1.56 1.96

Heat shock protein lpg2817 yrfI 1.62 2.77

Aminoglycoside 6-adenylyltransferase lpg2151 1.80 3.01 2.11

Spectinomycin phosphotransferase lpg1492 1.74 1.73

Stress-induced protein lpg2011 3.81 5.97

Superoxide dismutase lpg2348 sodC 2.45 2.88

Universal stress protein A lpg0935 1.59

Icm/dot effector

Coiled-coil-containing protein lpg1488 legC5 1.75 1.05

F-box protein lpg2144 legAU13 1.07 1.74 2.11

Hypothetical lpg0096 ceg4 2.69 2.16

Hypothetical lpg2591 ceg33 3.35 4.83

Hypothetical lpg1290 lem8 1.59 2.48 2.20

Hypothetical lpg1496 lem10 1.51 2.79 3.28

Protein SdhA lpg0376 sdhA 1.31 1.60

Protein SidA lpg0621 sidA 2.47

Sid related protein-like lpg2157 sdeA 2.33 1.60

UBOX-containing protein lpg2830 legU2 1.35 2.34

UVB-resistance protein lpg1976 legG1 1.66 1.65

Lipid metabolism

3-hydroxybutyrate dehydrogenase lpg2316 bdhA 2.40 1.31

Other functions

6S RNA ssrS 3.65 3.55

RsmY rsmY 2.57

RsmZ rsmZ 1.58 1.80
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Table 2 Selected genes significantly up-regulated in water (Continued)

Signal transduction/other regulatory functions

Response regulator TutC lpg2146 2.39 1.10

Sensor histidine kinase lpg0230 pleD 2.95 2.27

Sensor protein LuxN lpg2734 1.23 1.89

Sensory box protein, GGDEF/EAL domain lpg0029 rre41 1.33 1.07

Sensory box protein, GGDEF/EAL domain lpg1025 yegE 1.37 4.85 2.16

Serine/threonine-protein kinase lpg0208 pkn5 1.25

Sigma 54 modulation protein YhbH lpg1206 3.95 4.04

Signal transduction protein lpg0156 3.11 5.19

Toxin production / other pathogen functions

Enhanced entry protein EnhA lpg1336 enhA 1.10 2.06

Enhanced entry protein EnhA lpg1386 1.28 1.31

Enhanced entry protein EnhA lpg2641 enhA 2.57 3.75

Enhanced entry protein EnhA lpg0910 enhA 1.72 3.18

Enhanced entry protein EnhB lpg2640 enhB 2.40

Enhanced entry protein EnhC lpg1172 2.58 5.87

Enhanced entry protein EnhC lpg1356 2.70 2.88

RtxA lpg0645 1.57 3.04

Transcription

DNA binding protein lpg2441 1.79

RNA polymerase sigma-54 factor lpg0477 1.44

Transcription repair coupling factor lpg0954 mfd 2.04 2.14

Transcriptional regulator lpg0586 1.24 3.75 4.48

Transcriptional regulator, ArsR family lpg2723 3.63 1.18

Transcriptional regulator, AsnC family lpg1486 2.33

Transcriptional regulator, DeoR family lpg2167 1.76

Transcriptional regulator, LuxR family lpg2524 1.52 1.73

Transcriptional regulator, LysR family lpg2138 3.58 4.21

Transcriptional regulator, MarR family lpg2140 1.80 1.90

Transport and binding

IcmC (DotE) lpg0453 icmC 1.27 −1.11

IcmC homolog (DotV) lpg0472 2.06 2.69

IcmD (DotP) lpg0454 icmD 1.25 1.77

IcmO (DotL) lpg0446 icmO 2.07 −1.50

IcmP (DotM) lpg0445 icmP 2.15 3.54

IcmT lpg0441 icmT 1.39 1.79 −1.09

IcmV lpg2687 icmV 1.00 −1.89

Erythromycin resistance protein/ABC transporter lpg1616 uup 1.86 1.61

Multidrug resistance protein/efflux pump lpg0257 2.67 3.09

Multidrug resistance protein/efflux pump lpg0429 oprM 1.12 1.65

Multidrug resistance protein/efflux pump lpg2189 ygjT 1.76 2.28 −1.85

Viral functions/phage/transposases

Prophage regulatory protein lpg2563 1.22

Transposase lpg2120 2.01

Transposase lpg2363 1.65

aOnly values that were significantly different than the control are shown

Li et al. BMC Genomics  (2015) 16:637 Page 9 of 21



Incubation temperature also seems to affect antibiotic re-

sistance, especially against erythromycin.

Importance of bdhA for the survival of Lp in water

Genes that are significantly induced upon exposure to

Fraquil may be important for Lp to survive in water.

Upon this premise, the highly up-regulated bdhA gene

was selected for further characterization. A deletion mu-

tant of bdhA (ΔbdhA) and its complement (SPF236) were

constructed. For the complementation, bdhA was cloned

downstream of the Ptac promoter on pMMB207c. The

wild-type strain KS79, ΔbdhA, SPF236 without isopropyl-

β-D-thiogalactopyranoside (IPTG) (not induced) and

SPF236 with 1 mM IPTG (induced) were exposed to

Fraquil at 25 and 37 °C. CFU counts were monitored

weekly and their survival was also assessed by Live/Dead

staining after 19 weeks of exposure, when the CFUs of all

strains at 37 °C dropped below the detection limit.

No survival defects were observed in the mutant strain

compared to the wild-type or the complements in Fraquil

at 25 °C (Fig. 6a). However, a minor reduction (1 log) in

the CFU counts was observed in all strains after 20 weeks

of water exposure. An overall faster drop in CFUs was ob-

served in all strains at 37 °C, compared to 25 °C (Fig. 6b).

Fig. 4 Microarray data is validated by RT-qPCR. Transcriptomic changes of ten selected JR32 genes upon water exposure shown by (a) microarray

analysis and (b) RT-qPCR. Results are shown as the log2 ratio between the samples exposed to Fraquil for 2, 6 or 24 h and the control cultured in

AYE broth
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The bdhA mutant strain showed a more rapid reduction

in CFUs than the wild-type strain. This phenotype was

complemented by expression of bdhA from the Ptac pro-

moter in the presence of IPTG (SPF236 with IPTG). The

CFU count of SPF236 without IPTG was similar to the

bdhA mutant strain. Therefore, bdhA seems to be re-

quired for the survival of Lp in water at 37 °C.

Since the CFU counts of all strains exposed to 37 °C de-

creased below the detection limit after 19 weeks of water

exposure, we sought to determine if the cells entered a

viable but non-culturable (VBNC) state at this time point

[43]. To this end, we used a Live/Dead staining procedure

together with flow cytometry. At 25 °C, no significant dif-

ferences in the percentage of viable cells were observed

between strains (Fig. 6c), which is consistent with the CFU

counts. On the other hand, the wild-type strain showed a

small fraction of dead cells at 37 °C, which is not signifi-

cant compared to 25 °C. In comparison, only 61 % cells of

the bdhA mutant strain were stained as viable. The com-

plemented strain exposed to water in the presence of

IPTG had a higher percentage of viable cells but was still

lower than that of the wild-type strain. Taken together

with the CFU counts, our results show that Lp enters a

VBNC state after 19 weeks of exposure to Fraquil at 37 °C.

Regulation of bdhA by RpoS

Hovel-Miner et al. [44] showed that the expression of

bdhA in a rich medium is regulated by RpoS when Lp

reaches the post-exponential phase. Moreover, transcrip-

tomic analysis of the rpoS mutant in water suggests that

the expression of bdhA is RpoS-dependant [31]. There-

fore, we investigated this possibility of RpoS regulation of

bdhA by using a green fluorescent protein (GFP) reporter

assay [45]. Briefly, a plasmid carrying the PbdhA-GFP

transcriptional fusion was constructed (pSF53) and

transformed into JR32 and the rpoS mutant (JR32 pSF53

and rpoS pSF53). JR32 harbouring the pXDC31 plasmid,

which expresses GFP from the Ptac promoter in the pres-

ence of IPTG, was used as positive control. JR32 and rpoS

mutant strains with a plasmid containing no promoter up-

stream of the GFP encoding sequence (JR32 pSF78, rpoS

pSF78) served as negative controls. Each strain was ex-

posed to AYE broth or Fraquil for 24 h and the level of

GFP in terms of green fluorescence signal was measured

by flow cytometry.

A significantly higher level of GFP was found to be

expressed in KS79 pSF53 exposed to Fraquil than that

exposed to AYE broth, suggesting that the promoter of

bdhA was more highly induced after 24 h in water (Fig. 7).

This induction is consistent with the up-regulation of

bdhA (lpg2316) observed in JR32 exposed to water for the

same period of time during the transcriptomic analysis

(Table 2). GFP expression in rpoS pSF53 was higher than

in the negative controls under both conditions, but it was

significantly lower than that of KS79 pSF53. In addition,

no significant differences were found between rpoS pSF53

in AYE broth compared to Fraquil. These findings confirm

that expression of bdhA in Lp is positively regulated by

RpoS.

Discussion
As a bacterium that lives in aqueous environments, Lp is

frequently exposed to various stresses, such as fluctuations

in temperature, pH and levels trace metals, as well as nu-

trient limitation [46]. Nutrient limitation, in particular, is a

major concern as the nutrient levels in freshwater rarely

fits the growth requirement of Lp, which is an auxotroph

for at least eight amino acids [1, 47]. In the absence of

essential nutrients or suitable hosts, Lp cannot grow, but

can still persist in water for over one year [18]. Previous

Fig. 5 Lp exposed to water is more resistant to antibiotics. CFU changes of Lp cultured in AYE broth or exposed to Fraquil at 25 or 37 °C after

antibiotic treatments. The antibiotics used include ampicillin, erythromycin, gentamycin and kanamycin, all at 100 μg/ml. 5X indicates a five times

concentration of erythromycin and gentamycin (500 μg/ml) were used as well. The data are expressed as the log transformation of CFUs in

treated wells (CFUT) divided by the CFUs in the control wells without antibiotics (CFUC). A negative value indicates a CFU reduction upon

treatment. Data shows the mean +/− SD of three biological replicates. Different letters on the bars indicate significant differences between

different samples in a particular treatment according to Tukey's test (p < 0.05). CFU changes between different treatments were not compared
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work has shown that the T2SS is important for the sur-

vival of Lp in water at low temperature [17]. However, no

studies have investigated the global transcriptomic re-

sponse of Lp to freshwater. In response to this knowledge

gap, we performed a transcriptomic analysis to study the

changes in gene expression of Lp exposed to Fraquil, an

artificial freshwater medium composed of trace amounts

of salts and metals, compared to Lp grown in rich medium

(AYE broth). Since Lp in stationary phase culture is under

nutrient limitation and stresses, using it as the control

may hinder the opportunity to identify important genes

for its survival in water. Therefore, Lp in the exponential

phase of growth was used as the control.

In Fraquil, Lp maintained a stable population for at

least 35 days and did not show any growth (Fig. 1a).

Nevertheless, a significant reduction in cell size was

found within 24 h of water exposure (Fig. 1d), which

might be an adaptative response of Lp to nutrient limi-

tation. In fact, the reduction of cell size is commonly

observed in bacteria experiencing environmental

stresses, such as nutrient limitation, suboptimal pH and

low temperatures [48–52]. For example, the cell length

of V. parahaemolyticus under starvation decreased

drastically from 3.4 to 2.0 μm within 24 h [53]. Such a

morphological change is believed to be a strategy to

minimize the metabolic requirements for cell maintenance

[54]. The mature intracellular form (MIF) of Lp, produced

after passage through HeLa cells and Tetrahymena tropi-

calis, also shows a reduction in cell size, suggesting that

this morphological change may be a response of Lp to

nutrient limitation [55, 56].

The transcriptomic study of Lp revealed significant

changes in gene expression following exposure to Fraquil.

Since Fraquil does not contain any carbon sources that

Lp can use, it is unable to grow in this medium (Fig. 1a).

Consistent with this observation, expression of several

amino acid transporters was induced in water (Table 1).

Therefore, the reduced expression of three cell division

proteins, such as ftsA, ftsQ and ftsW, was expected

(Table 1). Moreover, bacteria tend to shut down major

metabolic pathways when under starvation [57, 58].

Following exposure to water, genes involved in the elec-

tron transport chain (NADH dehydrogenase, succinate

Fig. 7 bdhA is highly induced in water and regulated by rpoS. Green

fluorescence signal of five different strains after 24 h of exposure to

AYE broth or Fraquil. JR32 pSF78, rpoS pSF78, JR32 pSF53 and rpoS

pSF53 represent SPF265, SPF221, SPF266 and SPF211, respectively.

JR32 pXDC31 was induced with 1 mM IPTG. Each sample had three

biological replicates and the mean green fluorescence signal of 5000

cells in each replicate was detected by flow cytometry

Fig. 6 bdhA is important for long-term survival of Lp in water.

Weekly CFU counts of the wild-type KS79, ΔbdhA and its

complement SPF236 with and without IPTG exposed to Fraquil at

(a) 25 °C and (b) 37 °C. 1 mM IPTG was used to induce bdhA on the

plasmid of the complemented strain. Data show the mean +/− SD

of three biological replicates. DL: Detection limit. c Percentage of

live, undefined or dead cells of KS79, ΔbdhA and its complement

SPF236 with and without IPTG. Live/Dead staining analysed by flow

cytometry was performed after the strains were exposed to Fraquil

for 19 weeks at 25 and 37 °C
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dehydrogenase, and cytochromes) and eight genes encod-

ing subunits of the ATP synthase were significantly re-

pressed (Table 1). This suggests a lower level of energy

metabolism and thus, reduced metabolic activity in Lp, as

the down-regulation of ATP synthase is usually found in

dormant bacteria with a lower cellular ATP level [59]. Fur-

thermore, compared to the control growing in AYE broth,

the total RNA extracted from Lp exposed to water

dropped markedly after 2 h and reduced to only one tenth

of the control after 24 h (data not shown). This finding is

consistent with the down-regulation of rpoA, rpoB and

rpoC, which encode subunits of RNA polymerase, poten-

tially resulting in less RNA polymerase available to bind to

DNA and initiate transcription (Table 1).

In addition, most of the genes encoding 30S riboso-

mal proteins, 50S ribosomal proteins, translation initi-

ation factors, translation elongation factors as well as

tRNAs were down-regulated in water in two or all three

time points tested (Table 1). In total, the expression of

eight rpm genes, 18 rps genes and 19 rpl genes was sig-

nificantly reduced (only some of these genes are shown

in Table 1). In addition, lpg1206 was strongly induced

in water. This gene encodes a homolog of YhbH, which

is a short hibernation promoting factor (HPF) with a

highly conserved function in γ-Proteobacteria [60].

Short HPF stabilizes the dimerization of two 70S ribo-

somes into a translationally inactive 100S ribosome by

a ribosome modulation factor, resulting in ribosome

hibernation [61]. Ribosome hibernation is commonly

found in bacteria experiencing nutrient limitation and

is rapidly reversible when nutrients become available

once again [62, 63]. In E. coli, a mutant unable to form

100S ribosomes survived poorly in the post-exponential

phase [64]. Therefore, it is possible that the up-

regulation of lpg1206 in Lp may allow the formation of

100S ribosomes to maintain long-term survival in

water, and the ability to resume growth or intracellular

multiplication.

Our findings suggest that the translational machinery

of Lp is shut down following exposure to water, which is

a typical characteristic of the bacterial stringent response

[65]. The stringent response is the reallocation of cellu-

lar resources in bacteria under nutrient limitation, by

prohibiting the synthesis of DNA, stable RNAs, riboso-

mal proteins and membrane components, and activating

the synthesis of factors involved in amino acid synthesis,

glycolysis and stress resistance [65]. The massive tran-

scriptomic changes during the stringent response are me-

diated by the synthesis and accumulation of guanosine

tetraphosphate (ppGpp) and guanosine pentaphosphate

(pppGpp), which are called (p)ppGpp collectively [65].

The stringent response in Lp has been studied in detail.

Under amino acid limitation, the binding of uncharged

tRNAs to the A site in ribosomes triggers the ribosomal-

associated RelA protein to synthesize (p)ppGpp [29, 66,

67]. SpoT, the second stringent response protein, can also

synthesize (p)ppGpp in response to other signals, such as

perturbation of fatty acid synthesis [67, 68]. SpoT pos-

sesses a hydrolase activity as well, and therefore, regulates

the level of (p)ppGpp and is necessary to terminate the

stringent response [67]. In Lp, the stringent response, and

the RelA and SpoT proteins are necessary for replication

inside host cells and initiation of the transmissive phase

[67, 68]. Our results clearly show a repression of the trans-

lational machinery, cell replication and changes in meta-

bolic processes, which are consistent with the general

transcriptional modulations caused by (p)ppGpp [69]. In

addition, we have recently shown that the stringent

response is required for the survival of Lp in water [31].

Due to the imminent shutdown of the translational

machinery following water exposure, the important

genes should be induced early on to allow the synthesis

of their products when Lp is still translationally active.

Therefore, in order to identify genes essential to main-

tain long-term survival in water, we examined those that

are highly up-regulated within 24 h, a time point when a

major metabolic shutdown started to appear. First, many

genes associated with the biosynthesis of flagella, including

different assembly, regulatory and structural proteins, are

up-regulated in Lp exposed to water (some are listed in

Table 2). This response is comparable to the response of

Lp that reaches the late replicative phase inside host cells.

Due to exploitation of host cell resources and consequent

lack of nutrients, the transmissive phase of Lp is triggered,

leading to the expression of virulence-associated traits

such as flagella formation and other factors to promote re-

lease from the host [70, 71].

Many genes induced at early time points possess a

function related to detoxification and adaptation (Fig. 3).

Genes involved in resistance to oxidative stress were in-

duced, including sodC, ahpC and ahpD. We also observed

the induction heat shock proteins in water (Table 2). In E.

coli, heat shock proteins are known to be induced by star-

vation [72]. They increase bacterial tolerance against

various stresses by degrading and reactivating damaged

proteins [73]. Therefore, it is plausible that the up-

regulation of these genes may help Lp to persist in

water under starvation conditions. In addition, many

genes involved in antibiotic resistance were induced at early

time points, including lpg1492 (spectinomycin phospho-

transferase), lpg1616 (erythromycin transporter), lpg2151

(aminoglycoside 6-adenylyltransferase), and several efflux

pumps (lpg0257, lpg0429, lpg1892, lpg2189). Increased re-

sistance to antibiotics is a hallmark of Lp MIFs [55]. This

phenomenon was also described after incubation of Lp in

Acanthamoeba castellanii buffer at pH 6.5 [74]. Antibiotic

resistance genes may be important for Lp to compete

against antibiotic-producing microorganisms residing in
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water. In water, Lp is more resistant to gentamycin and

kanamycin (aminoglycosides) than when it is cultured in

rich medium (Fig. 5). Water-exposed Lp is also more re-

sistant to erythromycin, but only at a temperature of

37 °C. Since all these antibiotics target the ribosome, it

is also possible that the increased resistance is due to a

decrease in translational activity, and not solely because

of the expression of resistance genes.

Differential expression of some genes involved in

virulence was also apparent. Despite the repression of

22 of the 26 structural genes of the Icm/Dot secretion

system (Table 1), the expression of many Icm/Dot

effectors was increased in water (Table 2). In addition,

the enhanced-entry genes enhA and enhB, and several

of the enhC homologs, as well as the rtxA toxin were

induced in water at early time points. On the other

hand, the macrophage infectivity potentiator gene, mip,

was significantly down regulated in water. It is not clear

at this point if these changes in expression of virulence

genes affect the intracellular multiplication of Lp in

host cells after incubation in water. We are currently

investigating this possibility.

Many genes involved in transcriptional regulation were

up-regulated, including numerous transcriptional regula-

tors from different families, DNA binding proteins, a

transcription repair coupling factor and the alternative

sigma factor σ54 (RpoN) (Table 2). Interestingly, RpoN is

important for the induction of fliA and other flagellar

genes [70]. Consistent with previous observations, our

results show up-regulation of both σ54 and flagellar

genes in water.

Several response regulators, sensory proteins and signal

transduction proteins involved in “signal transduction/

other regulatory functions” were also up-regulated.

Among these, many genes encoding proteins harbouring

GGDEF/EAL domains were induced in water (some are

listed in Table 2). These proteins are involved in the pro-

duction and destruction of the second messenger c-di-

GMP, and several of them have been shown to play a role

in the interaction of Lp with host cells [75]. Some of them

could play a role in sensing exposure to water and regulat-

ing the appropriate response. Moreover, expression of the

two-component system LetA/S was reduced in water,

while expression of the small RNAs RsmY and RsmZ

under its control was increased. These sRNAs are neces-

sary to relieve CsrA-mediated repression of transmissive

phase traits upon starvation inside host cells [76]. Our

results suggest that some of the genes repressed by

CsrA could be involved in the survival of Lp in water.

Interestingly, a link has been made between LetA/S,

RpoS and (p)ppGpp [31, 44, 77, 78]. It is noteworthy

that expression of the 6S RNA was also induced in

water. 6S RNA binds to the RNA polymerase (RNAP)

holoenzyme and inhibits its binding to promoters [79].

Since the affinity of 6S RNA to the RNAP depends on

sigma factors, 6S RNA can shut down specific transcrip-

tional programs. In E. coli, the σ70 regulon is turned off in

the presence of 6S RNA [80]. In Lp, deletion of 6S RNA

reduces fitness during intracellular growth [81]. Expres-

sion of 6S RNA in water could help Lp to switch between

different transcriptomic programs, but further investiga-

tion is needed to confirm its involvement. There are also

many other sRNAs that are differentially regulated, but

since their targets are unknown, it is not yet possible to

predict specific functions.

Within the highly up-regulated genes in water, we

characterized bdhA, which is involved in the polyhy-

droxybutyrate (PHB) cycle [82]. PHB is an important

storage polymer in bacteria, which is synthesized as a

carbon and energy reserve in the presence of external

nutrients and is consumed during starvation [83]. The

bdhA gene encodes 3-hydroxybutyrate dehydrogenase,

which oxidizes depolymerised PHB into acetoacetate

and produces reducing power in the form of NADH

[84]. Acetoacetate can, then, be further processed into

acetyl-CoA, which enters the tricarboxylic acid cycle

[84]. bdhA is dispensable for Lp growth in the presence

of external nutrients, as mutations in this gene do not

result in any observable growth defects in AYE broth

[30]. However, Aurass et al. [85] demonstrated that a

bdhA-patD mutant strain of Lp is defective in breaking

down PHB accumulated during growth in a rich medium,

resulting in a higher level of cellular PHB than the wild-

type. In addition, this mutant has defects in intracellular

growth in amoeba and in human macrophages [85].

Therefore, we hypothesize that bdhA is important for Lp

to survive in water, enabling the extraction of carbon and

reducing power from PHB in order to allow cell mainten-

ance in the absence of an external energy source. Our re-

sults show that the deletion of bdhA reduces the survival

of Lp in water. The ΔbdhA strain lost culturability and

seems to have entered the VBNC state earlier, resulting in

a higher percentage of mortality after 19 weeks of water

exposure at 37 °C compared to the wild-type. This survival

defect was successfully complemented, supporting the hy-

pothesis that Lp needs BdhA for the complete degradation

of PHB in order to maintain long-term survival in water.

It is noteworthy that the difference in survival between

ΔbdhA and the wild-type was only observed at 37 °C but

not at 25 °C. Since the samples were exhausted after

20 weeks of sampling, we could not determine if the ob-

served difference was eventually be mirrored at 25 °C

after a longer period of water exposure. It is possible

that survival at 37 °C requires more energy for cell

maintenance than at 25 °C because of a higher meta-

bolic rate, protein turnover and overall damage, and

thus, the advantage conferred by BdhA is more apparent

at the higher temperature.
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In addition, we investigated the regulation of bdhA

expression by RpoS when Lp is exposed to water. RpoS

is a well-known regulator of the response to nutrient

limitation [86]. Recently, we have shown that the strin-

gent response and the sigma factor RpoS are necessary

for the survival of Lp in water [31]. Based on a GFP re-

porter assay, we found that bdhA is positively regulated

by RpoS following exposure to water (Fig. 7). This is

consistent with the findings of Hovel-Miner et al. [44],

which show that, in a rich medium, bdhA in Lp is posi-

tively regulated by RpoS in the post-exponential phase.

Conclusions
Our study reveals, for the first time, the global transcrip-

tomic changes of Lp in water. Repression of major path-

ways, such as cell division, transcription and translation,

suggests that Lp enters a quiescent state in water. The

induction of the enhanced-entry genes (enh) and some

Icm/Dot effectors suggests that Lp may be primed to

infect a suitable host. Similarly, many genes involved in

resistance to antibiotics and oxidative stress, as well as

genes involved in the heat shock response were induced.

Furthermore, the bdhA gene involved in the degradation

pathway of the intracellular energy storage compound

PHB is highly expressed and positively regulated by

RpoS during short-term exposure to water. This gene

was found to be important for maintaining long-term

survival of Lp in water. There is no doubt that many of

the genes highly induced upon exposure to water are

also necessary for the short and/or long-term survival of

Lp in water.

Methods
Bacterial strains and media

The JR32 strain used in this study is a derivative of Lp

Philadelphia-1, which is a clinical isolate from the first

recognized outbreak of Legionnaires’ disease in 1976

[87]. All Lp strains used in this study were derived from

JR32 (Table 3). The rpoS mutant strain LM1376 was

constructed by Hales and Shuman [88]. Unless specified

otherwise, Lp was cultured on charcoal yeast extract

(CYE) agar at 37 °C for 3 days [89]. The media were

supplemented with 10 μg/ml gentamycin, 25 μg/ml

kanamycin, and/or 1 mM IPTG when appropriate.

Escherichia coli DH5α was used for plasmid construc-

tion. E. coli was cultured in Luria-Bertani (LB) broth or

on LB agar at 37 °C overnight, which were supplemented

with 25 μg/ml chloramphenicol when appropriate.

The artificial freshwater medium Fraquil was made

with ultra-pure Milli-Q water supplemented with salts

and trace metals, at a final concentration of 0.25 μM

CaCl2, 0.15 μM MgSO4, 0.15 μM NaHCO3, 10 nM

K2HPO4, 0.1 μM NaNO3, 10 nM FeCl3, 1 nM CuSO4,

0.22 nM (NH4)6Mo7O24, 2.5 nM CoCl2, 23 nM MnCl2,

and 4 nM ZnSO4 [39].

Transcriptomic analysis by microarray

Sample collection. JR32 was first cultured on CYE plate

at 37 °C for 3 days. The colonies were suspended in AYE

broth at an OD600 of 0.1. Three replicates of this culture

were grown under shaking (250 rpm) at 25 °C. Samples

for RNA extraction, Live/Dead staining and CFU count

were collected from each replicate when the culture

reached exponential phase (OD600 of 1.0). Then, the

remaining culture was centrifuged and washed with

Fraquil three times before re-suspending in Fraquil to an

OD600 of 1.0. Each replicate was then transferred to a

BIOSTAT® Q Plus bioreactor vessel (Satorius Stedim

Biotech). The temperature was kept constant at 25 °C.

Dissolved oxygen was kept constant at around 80 %, by

using a stirrer (100 rpm) and injection of air (0.1 bar).

Samples for RNA extraction, Live/Dead staining and

CFU counts were collected from the vessels after 2, 6

and 24 h of water exposure.

RNA purification and labelling. Cells in each sample

were pelleted and RNA was extracted using TRIzol

reagent (Ambion) according to the manufacturer’s proto-

col. RNA was then treated with Turbo DNase (Ambion)

for 30 min and purified by standard acid phenol extraction

Table 3 Bacterial strains used in this study

Name Relevant genotype Reference

Legionella pneumophila strain Phiadelphia-1

JR32 SmR, r− m+ [101]

JR32 pXDC31 JR32 pXDC31, Ptac-GFP+, CmR [102]

KS79 JR32 ΔcomR [99]

LM1376 JR32 rpoS::Tn903dGent, GmR [88]

SPF132 KS79 pXDC39, CmR This work

SPF194 KS79 ΔbdhA, GmR This work

SPF211 LM1376 pSF53, GmR CmR This work

SPF221 LM1376 pSF78, GmR CmR This work

SPF236 SPF194 pSF67, CmR This work

SPF265 JR32 pSF78, CmR This work

SPF266 JR32 pSF53, CmR This work

Escherichia coli

DH5α supE44 ΔlacU169 (Φ80 lacZΔM15)
hsdR17 recA1 endA1 gyrA96 thi-1 relA1

Invitrogen

pBBR1-MCS5 DH5α, GmR [103]

pMMB207c DH5α, pMMB207 ΔmobA, CmR [104]

pXDC39 DH5α, pMMB207c, ΔPtac, ΔlacI Xavier Charpentier

pSF53 DH5α, PbdhA-GFP in pXDC39, CmR This work

pSF67 DH5α, pMMB207c-bdhA, CmR This work

pSF78 DH5α, GFP in pXDC39, CmR This work
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[90]. Purified RNA was checked by a NanoDrop® spectro-

photometer and PCR to estimate the quantity and quality,

as well as to confirm purity. As described by Faucher and

Shuman [91], fifteen μg of purified RNA was reverse tran-

scribed into cDNA using random hexamers, aminoallyl

dUTP (Invitrogen) and Superscript II reverse transcriptase

(Life Sciences) before labeling with Alexa Fluor 647 (Invi-

trogen). gDNA extracted from JR32 was labelled with

Alexa Fluor 546 (Invitrogen) by random priming as de-

scribed previously [91].

Microarray design and hybridization. Gene-specific

50-mer oligonucleotides were designed based on the

genome of Lp strain Philadelphia-1 using OligoWiz soft-

ware version 2.2.0 [92, 93]. The probes were designed to

hybridize to the center of the target RNAs and prokary-

otic settings with default parameters were used. The

microarray was produced by photolithography by

MYcroarray [94]. Four replicates of each probe as well as

the negative and positive probes designed by MYcroarray

were included on the DNA microarray. The platform is

described in GEO accession number GPL19458. The

labelled cDNA and gDNA, used as a reference channel,

were hybridized onto the microarray as described previ-

ously [91]. The microarray was scanned with an InnoScan

microarray scanner (Innopsys) and the data collected was

normalized [95, 96]. Statistical analysis between the con-

trol (JR32 cultured in AYE broth) and treatments (JR32

exposed to Fraquil for 2, 6 or 24 h) was performed using a

paired, one-tailed Student’s t-test. The genes with a log2
ratio of Treatment/Control >1 or < −1 and p < 0.05 were

considered differentially expressed. The complete dataset

was deposited in GEO (GSE63622).

RT-qPCR

RNA was extracted and purified from JR32 exposed to

AYE broth and Fraquil as described above. Each control

or treatment consisted of three biological replicates. One

μg of RNA was used for reverse transcription reactions

along with a negative control without reverse transcript-

ase. For qPCR reactions, eleven sets of gene-specific

primers were designed with the IDT primer design soft-

ware [97] (Table 4) and their amplification efficiency were

proven to be >85 %. qPCR was performed on an iQ™5

Multicolor Real-Time PCR Detection System (Bio-Rad)

using iTaq universal SYBR green supermix (Bio-Rad)

according to manufacturer’s protocol. The 16S rRNA gene

was used as a reference to normalize the data. Fold change

was calculated as described previously [98] and then pre-

sented as a log2 ratio of Treatment/Control.

Antibiotic resistance test

Cultures of JR32 in AYE broth (OD600 of 0.1) were in-

cubated under shaking (250 rpm) at 25 and 37 °C until

they reached the exponential phase (OD600 of 1.0). For

each culture, a 21 ml sample was used for antibiotic

exposure and the remainder was centrifuged and

washed with Fraquil three times before re-suspending

in Fraquil to an OD600 of 1.0. The samples were left to

incubate in the same condition as before (250 rpm, 25

or 37 °C). After 24 h, a 21 ml sample was again col-

lected from each culture for antibiotic exposure. The

procedure of antibiotic exposure was adapted from a

previous study [74]. Briefly, one ml aliquots were put in

21 wells (triplicates for control and each of the six

treatments) of a 24-well plate (Sarstedt). No antibiotics

were added to the control. The six treatments were

100 μg/ml ampicillin, 100 or 500 μg/ml erythromycin,

100 or 500 μg/ml gentamycin and 100 μg/ml kanamy-

cin. The plate was then incubated at 37 °C for 40 min,

and the changes in CFU counts between the controls

and the treatments were calculated.

Mutant construction and complementation

For the construction of the bdhA deletion mutant,

SPF194, 1 kb of the sequences upstream and downstream

of bdhA were first amplified from KS79 using Taq poly-

merase (Invitrogen), using the primer sets bdhA_UpF/

bdhA_UpR and bdhA_DownF/bdhA_DownR, respectively

(Table 4). A gentamycin cassette was amplified from

pBBR1-MCS5 using the primer set bdhA_GnF/bdhA_GnR

(Table 4). Both bdhA_UpR and bdhA_GnF contain an

EcoRI restriction site, while bdhA_GnR and bdhA_DownF

contain an XbaI restriction site. All three fragments were

digested with EcoRI and/or XbaI (NEB) before ligating

with T4 DNA ligase (NEB). The ligation mixture was amp-

lified by PCR using Phusion taq polymerase (NEB) to

amplify the 3 kb mutant allele and the purified amplicon

was introduced into KS79 through natural transformation

[99]. KS79 is constitutively competent due to the lack of

comR, a negative regulator of competence. The recombi-

nants were selected for gentamycin resistance and suc-

cessful deletion of bdhA was validated by PCR.

For the construction of complemented strain, SPF236,

the bdhA gene was first amplified from KS79 using

primers Com_bdhA_F and Com_bdhA_R, which contain

SacI or XbaI restriction sites, respectively. The location

of SacI and XbaI restriction site in pMMB207c allowed

the bdhA gene to be inserted downstream of the Ptac

promoter, allowing the expression of bdhA to be induced

by IPTG. The amplicon and the pMMB207c plasmid

were both digested with SacI and XbaI (NEB) before

ligating with T4 DNA ligase (NEB). The ligation mixture

was transformed into competent E. coli DH5α and the

transformants were selected for chloramphenicol resist-

ance. The presence of bdhA in the plasmid extracted

from transformants was validated by PCR using the

primers PromF, which hybridizes to the Ptac promoter

in pMMB207c, and Com_bdhA_R. Subsequently, this
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plasmid pSF67 was introduced into SPF194 by electro-

poration as described by Chen et al. [100] and selected

for gentamycin and chloramphenicol resistance before

validation by PCR.

Survival in Fraquil

The wild-type strain KS79, the bdhA mutant (SPF194)

and the complemented strain (SPF236) were first sus-

pended in Fraquil to an OD600 of 0.1. One ml of this

culture was mixed with 4 ml of fresh Fraquil, trans-

ferred to a 25 cm2 plastic flask (Sarstedt) and incubated

at 25 or 37 °C. Three replicates were prepared for KS79,

ΔbdhA, the bdhA complement, as well as the bdhA

complement induced with 1 mM IPTG (Fisher Scien-

tific). The culturability of Lp in water was determined

weekly by CFU counts on CYE plates. After 19 weeks,

the viability was assessed with Live/Dead staining as de-

scribed below, using KS79 as the control.

Table 4 Primer sequences used in this study

Name Purpose Sequence (5’➔3’)a

16 s_QF 16 s rRNA qPCR AGAGATGCATTAGTGCCTTCGGGA

16 s_QR 16 s rRNA qPCR ACTAAGGATAAGGGTTGCGCTCGT

25_QF lpg0025 qPCR ATTCCCATCGCCATTTAGAG

25_QR lpg0025 qPCR CAACCCGAGAGGTAACTAATAC

586_QF lpg0586 qPCR GTGGCGTTCCAGTTTGT

586_QR lpg0586 qPCR CTGTCCAGGCAGCATAAC

846_QF lpg0846 qPCR GGTAGAAGGCGATGGTTATC

846_QR lpg0846 qPCR GCCTTCCGGTGGTAATAAA

890_QF lpg0890 qPCR CCTTCCAATCCCATGCTAAAG

890_QR lpg0890 qPCR GTCAAATCCGAGTTCAAGAGG

1206_QF lpg1206 qPCR GCGTCATGAGGATTCTATTCG

1206_QR lpg1206 qPCR GGCCTGTAAATCGTATCAGAC

1284_QF lpg1284 qPCR GTTTATCTCAGAGCGGCAAG

1284_QR lpg1284 qPCR GACATCCTCCAAAGGCTTATC

1659_QF lpg1659 qPCR CGGTCACTCTTTGGTATATGTC

1659_QR lpg1659 qPCR CTGATTGACTGGATCGAACATC

2316_QF lpg2316 qPCR GCCATGTAGCAGAGGAAATC

2316_QR lpg2316 qPCR CTTTATCCACGCCCTGATTG

2487_QF lpg2487 qPCR TCTGTATCTCGGAGCCTATG

2487_QR lpg2487 qPCR GTGGCCTAAACCTGATCTTG

2524_QF lpg2524 qPCR CGCCTGGTATAAAGAACTGC

2524_QR lpg2524 qPCR GAGGCGAAGGTAACCATTTC

bdhA_UpF Mutant AGTTCAATACAATCCTTGGTCGC

bdhA_UpR Mutant CACGAATTCCTTTTACTATCCTTGTCATTG

bdhA_GnF Mutant CGCGAATTCAACGGCATGATGAACCTGAAT

bdhA_GnR Mutant CACTCTAGATTAGGTGGCGGTACTTGGGTC

bdhA_DownF Mutant CGCTCTAGAACAACCATGACTCGAACTAAAAAATCT

bdhA_DownR Mutant CTTTTGAAGACAATTCCGTTTCAT

Com_bdhA_F Complement CGCGAGCTCGACAAGGATAGTAAAAGAATGAAACTGAAG

Com_bdhA_R Complement CGCTCTAGATCATGGTTGTTTACTCCATGAACC

PromF Complement CGTATAATGTGTGGAATTGTGAG

pXDC39-F GFP assay GCTTCCACAGCAATGGCATCC

GFP-R GFP assay TGTCGACAGGTAATGGTTGTC

GFP_bdhA_F GFP assay CGCTCTAGACATAGGGATATCAACCACTACG

GFP_bdhA_R GFP assay CGCTCTAGATCTTTTACTATCCTTGTCATTG

aThe underlined bases indicate different enzyme restriction sites
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Live/Dead staining

The BacLight™ LIVE/DEAD® bacterial viability kit (Life

Technologies) was used to stain the controls and sam-

ples according to the manufacturer’s protocol. The

Guava easyCyte flow cytometer (EMD Millipore) was

used for data acquisition and analysis. Stained Fraquil

was used as a blank for instrument setting. Freshly cul-

tured JR32 was used as the live control and JR32 boiled

in a water bath for 10 min was used as the dead control

for data analysis. Both controls and samples were diluted

to an OD600 of 0.01 before staining and flow cytometry

analysis.

GFP reporter assay

The JR32 strain carying pXDC31 containing the Ptac pro-

moter upstream of the GFP encoding sequence was used

as the positive control. For the construction of negative

control strains, the plasmids pXDC39 (pMMB207c with-

out Ptac) and pXDC31 were first extracted from SPF132

and JR32 pXDC31, respectively, before digesting with SacI

and XmnI (NEB). The GFP encoding sequence from

pXDC31 was gel purified and ligated with the digested

pXDC39 using T4 DNA ligase (NEB). The ligation mix-

ture was transformed into competent E. coli DH5α and

the transformants were selected for chloramphenicol re-

sistance. The presence of the GFP sequence in the plasmid

extracted from transformants was validated by PCR using

the primers pXDC39-F and GFP-R. Subsequently, this

plasmid, pSF78, was introduced into JR32 and LM1376

(rpoS mutant) by electroporation to produce SPF265 and

SPF221, respectively. Because of the lack of a promoter

upstream of the GFP encoding sequence, these two strains

do not express GFP.

For the construction of GFP reporter strains, the 500 bp

sequence upstream of bdhA, containing the promoter

region, was first amplified from KS79 using the primer set

GFP_bdhA_F/GFP_bdhA_R with an XbaI restriction site

at the 5’ ends. The amplicon and the plasmid pSF78 were

digested with XbaI (NEB) and ligated with T4 DNA ligase

(NEB). The ligation mixture was transformed into E. coli

DH5α and the transformants were selected for chloram-

pheniol resistance. The presence and correct orientation

of the inserted promoter in plasmid extracted from trans-

formants were validated by PCR using GFP_bdhA_F and

GFP-R. Subsequently, this plasmid, pSF53, was introduced

into KS79 or LM1376 by electroporation to produce

SPF266 and SPF211, respectively. The location of the XbaI

restriction site in pSF78 allowed the promoter region of

bdhA (PbdhA) to be inserted upstream of the GFP encod-

ing sequence, thus the induction of PbdhA would result in

GFP expression.

For the GFP reporter assay, JR32 pXDC31, SPF265,

SPF221, SPF266 as well as SPF211 were suspended in

AYE broth at an OD600 of 0.1 and in Fraquil at an

OD600 of 1.0. IPTG (1 mM) was added to the JR32

pXDC31 cultures. All cultures, with three biological rep-

licates each, were incubated at 25 °C and 250 rpm for

24 h, at which point those in AYE broth had reached the

exponential phase (OD600 of around 1.0). All samples

were diluted to an OD600 of 0.01 before measuring the

green fluorescence signal by flow cytometry.
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