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Abstract

Background: Widespread and more frequently occurring drought conditions are a consequence of global warming
and increase the demand for tolerant crop varieties to feed the growing world population. A better understanding
of the molecular mechanisms underlying the water deficit response of crops will enable targeted breeding
strategies to develop robust cultivars.

Results: In the present study, the transcriptional response of maize (Zea mays L.) primary roots to low water potentials
was monitored by RNA sequencing (RNA-Seq) experiments. After 6 h and 24 h of mild (-0.2 MPa) and severe (-0.8 MPa)
water deficit conditions, the primary root transcriptomes of seedlings grown under water deficit and control conditions
were compared. The number of responsive genes was dependent on and increased with intensification of water deficit
treatment. After short-term mild and severe water deficit 249 and 3,000 genes were differentially expressed, respectively.
After a 24 h treatment the number of affected genes increased to 7,267 and 12,838 for mild and severe water deficit,
respectively, including more than 80% of the short-term responsive genes. About half of the differentially expressed
genes were up-regulated and maximal fold-changes increased with treatment intensity to more than 300-fold.
A consensus set of 53 genes was differentially regulated independently of the nature of deficit treatment.
Characterization revealed an overrepresentation of the Gene Ontology (GO) categories “oxidoreductase activity”
and “heme binding” among regulated genes connecting the water deficit response to ROS metabolism.

Conclusion: This study gives a comprehensive insight in water deficit responsive genes in young maize
primary roots and provides a set of candidate genes that merit further genetic analyses in the future.
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Background

Population growth and global warming are major chal-

lenges for global food security. It is estimated that the

demand for agricultural products will increase by ~50%

until 2030 [1]. This requires historically unprecedented

annual production growth rates [2]. Worldwide, about

70% of the food production is provided by cereals [3].

Maize (Zea mays L.) outcompeted all other cereals with

an estimated global yield of 863 million tons in 2012/2013

[4]. While cereal production needs to be significantly

increased, climate change adversely affects global maize

production with an estimated loss of ~4% relative to what

could have been achieved without the climate trends [5].

Poor soil moisture is widespread among arable land and

as a consequence of global warming more areas are af-

fected by drought conditions each year [6]. Since water

availability is the most critical environmental factor for

plant growth [7], drought can limit crop productivity more

than any other abiotic stress. Furthermore, variations in

water availability within fields can result in uneven crop

stands that cause yield losses [8].

Under drought conditions, when water loss through

transpiration is high, it is essential that roots maintain the

capacity to acquire soil water and nutrients. This is

reflected by the ability of roots to continue elongation even

under severe water deficit conditions albeit at a slower rate

[9]. From a physiological perspective, root growth mainten-

ance is predominantly regulated by the plant hormone

abscisic acid (ABA). Accumulation of ABA suppresses ex-

cessive ethylene production and thereby prevents growth
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inhibition. ABA is further involved in the processes leading

to osmotic adjustment as it promotes the transport of pro-

line to the root apex. At the more basal regions of the root,

hexoses are the predominant solutes providing osmotic ad-

justment and maintaining turgor pressure [reviewed in

10]. From a cellular viewpoint, the processes related to

the water deficit response begin with stress perception,

followed by signal transduction, and a change in gene

expression that finally confers the complex metabolic

and physiological alterations necessary to gain stress

tolerance [11,12]. On the molecular level, genes regu-

lated by water deficit can be grouped into two categor-

ies. The first group of genes encodes proteins providing

direct stress tolerance such as chaperones, transporters,

osmolytic and detoxifying proteins, and repair-enzymes

[13]. The second category includes proteins involved in

stress response by regulating signal transduction and gene

expression for instance transcription factors, protein ki-

nases and phosphatases, and other signaling molecules

[13]. The high quantity of genes regulated upon water def-

icit reflects the complexity of the stress response [14].

Nevertheless, details of the translation of environmental

changes to metabolic responses i.e. the adjustment of tran-

scriptional and post-transcriptional modifications of meta-

bolic enzymes still remains unclear [12].

In the past, microarray chip hybridization experiments

monitored gene expression profiles of maize leaves and

roots to elucidate the transcriptional changes upon water

deficit [14-19]. Recently developed next-generation se-

quencing approaches such as RNA sequencing (RNA-Seq)

allow fully quantitative gene expression analyses [20] of all

39,656 (FGSv2; [21], release 5b.60) high-confidence maize

gene models currently annotated [22]. The digital nature

of the method enables the detection of a large dynamic

range of expression levels with absolute values and the

capture of even subtle gene expression changes [23,24].

In the present study, a tightly controlled, reproducible

experimental setup was applied to expose maize seedlings

to water deficit conditions. Young seedlings were grown

in paper rolls soaked with polyethylene glycol (PEG) solu-

tions. Previously, it was demonstrated that PEG treatment

is an effective way to simulate drought stress conditions

occurring in drying soil [14]. Water potentials of -0.2 MPa

and -0.8 MPa were used for mild and severe water deficit

treatments, respectively. At -0.2 MPa root growth is not

or only slightly affected while shoot growth is reduced by

half [25]. The lower water potential of -0.8 MPa com-

pletely inhibits elongation of maize shoots and leaves

while roots continue to elongate consistently [9,25,26].

This maintenance of root growth in drying soil is benefi-

cial to plants as they can reach deeper water resources. As

top soil layers are prone to drying, it is particularly im-

portant for seedlings to adapt to low water potentials [9].

Although maize is most susceptible to drought stress

during the flowering period [27], drought conditions dur-

ing the seedling stage can negatively affect its yield [28].

To gain a better understanding of the early molecular

responses to water deficit we utilized an RNA-Seq ap-

proach and compared the root transcriptomes of stressed

and control maize seedlings. Seedlings were subjected to

mild and severe water deficit conditions for 6 h and 24 h.

The overall goal of this study was to identify a set of genes

involved in initial water deficit responses in maize primary

roots. Furthermore, application of mild and severe water

deficit conditions at two time points aimed at detecting

specifically and commonly regulated genes across treat-

ment intensities and time. This data set will be a resource

for future genetic analyses of candidate genes involved in

water deficit response in young maize primary roots.

Results

Characterization of water deficit treatment and

phenotypic responses

Kernels of the maize inbred line B73 were germinated

in paper rolls soaked with distilled water until seedlings

had a primary root length of 2 to 4 cm (Figure 1A). For

mild and severe water deficit conditions, seedlings were

transferred to PEG8000 solution with water potentials

of -0.2 MPa and -0.8 MPa, respectively (see Methods).

Water deficit treatment was applied for 6 h and 24 h.

Each treatment was performed in four biological repli-

cates each consisting of 10 roots.

To analyze phenotypic stress responses, primary root

length was measured before and after treatment (Figure 1B).

Short-term water deficit did not affect root elongation

significantly. On average roots elongated 0.75 cm in 6 h.

Similarly, after 24 h of water deficit treatment no differ-

ences of root growth between control and mildly stressed

seedlings were observed (2.5 cm). However, severe water

deficit significantly reduced root elongation (1.8 cm in

24 h) by almost 30% (p <0.001).

RNA sequencing and mapping of maize primary root

transcriptomes

To identify genes responsive to water deficit in young

maize primary roots, global gene expression was sur-

veyed by Illumina RNA-Seq. On average, the RNA-Seq

experiments yielded between 20 and 34 million reads

per sample. The raw sequencing data has been deposited

at the NCBI sequencing read archive (SRA, [29], Accession:

SRP032921). Among all reads, 83 to 90% mapped to unique

positions in the maize reference genome (ZmB73_Ref-

Gen_v2; Additional file 1). After removal of redundant

reads sharing the same start and end coordinate, sequen-

cing direction, and sequence (“stacked reads”), 76 to 78% of

the remaining reads mapped uniquely to the “filtered gene

set” (FGSv2, release 5b.60; Additional file 1), a set of 39,656

high confidence gene models predicted by a combination of
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evidence-based and ab initio approaches followed by strin-

gent TE filtering [21,22]. A gene was declared expressed if a

minimum of five reads mapped in all four replicates of a

sample. As a result, 25,570 genes (64%) of the FGSv2 were

expressed in at least one of the experimental conditions. A

complete list of expressed genes with normalized expres-

sion values is provided in Additional file 2.

Exploration of differentially expressed genes in response

to water deficit

To determine genes differentially expressed between

control and water deficit conditions four pairwise com-

parisons of control groups versus the different water def-

icit treatments (mild deficit, 6 h (1), severe deficit, 6 h

(2), mild deficit, 24 h (3), and severe deficit 24 h (4))

were performed. When controlling false discovery rate

(FDR) at 5%, 249 and 3,000 genes were differentially

expressed in response to 6 h mild and severe water def-

icit, respectively. After 24 h, the number of differentially

expressed genes increased to 7,267 and 12,838 genes for

mild and severe water deficit, respectively (Figure 2,

black bars; Additional file 2). Small fold-changes (Fc)

dominated among differentially expressed genes as about

three-quarters of all affected genes display a |Fc| ≤2

(Additional file 3). To specifically focus on genes with a

strong response to water deficit only genes with a |Fc| ≥2

were considered in subsequent analyses. This arbitrary

cutoff reduced the numbers of differentially expressed

genes to 74 (vs. 249) and 669 (vs. 3,000) for 6 h mild

and severe water deficit and 1,346 (vs. 7,267) and 3,006

(vs. 12,838) for 24 h mild and severe deficit, respect-

ively (Figure 2, gray bars; Additional file 2).

In summary, the results demonstrated that the duration

and intensity of water deficit conditions significantly influ-

ence the number of responsive genes and the intensity of

the response. In line with that observation, the maximal

absolute Fc detected increased from 10-fold after short-

term mild water deficit to 304-fold after 24 h severe water

deficit. However, the average |Fc| was similar under all

conditions and ranged between 2.8 and 3.6-fold.
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Figure 2 Number of differentially expressed genes. Bars represent
up and down-regulated genes in the four pairwise comparisons of control

groups and water deficit treatments.

Figure 1 Root length measurement. A, Maize (B73) seedlings
before treatment. B, Primary root length of seedlings before treatment
(black bars) and after 6 h and 24 h of control or water deficit treatment

(gray bars; water potential of -0.2 MPa: mild deficit, water potential
of -0.8 MPa: severe deficit); n = 40, error bars: standard deviation;

***p-value <0.001.
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The gene expression patterns in response to short-

term mild water deficit differed from the patterns in re-

sponse to the more intense or longer stress treatments.

After 6 h of mild stress 46% of differentially expressed

genes were up-regulated. In contrast, in the other three

comparisons 72 to 82% of the water deficit responsive

genes were up-regulated (Figure 2).

The overlap between the gene sets of the four compari-

sons is visualized in Figure 3A. Cross-comparison of re-

sponsive genes showed that 83% of genes responding to

short-term mild water deficit and 81% of genes respond-

ing to short-term severe water deficit are also responsive

after 24 h of water deficit. Similarly, 96% and 90% of genes

responding to 6 h and 24 h mild water deficit were also re-

sponsive to severe water deficit. A set of 53 genes was dif-

ferentially expressed (|Fc| ≥2) independently of water

deficit level and treatment period. Among those, 30 were

down and 23 up-regulated in all treatments. Such con-

servation of regulation direction was observed for most

(99%) of the differentially expressed genes overlapping

between two or more treatments. All 53 consistently

responding genes were included in the set of 74 genes

responsive to 6 h mild stress. Only 3 of 74 genes that

were differentially regulated after 6 h of mild water def-

icit were specific for this treatment. After short-term

severe water deficit and long-term mild water deficit

175 and 177 genes were uniquely affected, respectively.

The highest number of uniquely affected genes was de-

tected for 24 h severe water deficit (1,750, 58% of all re-

sponsive genes).

Besides the pairwise comparisons a two-way analysis

of variance was performed to determine treatment main

effects, time main effects, and treatment by time interac-

tions. This analysis yields genes differentially regulated
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Figure 3 Overlap between different sets of water deficit responsive genes. A, Overlap between differentially expressed genes responsive to
6 h mild water deficit, 6 h severe water deficit, 24 h mild water deficit, and 24 h severe water deficit. (The total number of affected genes is given in

brackets). B, Overlap between differentially expressed genes identified as time main effect, treatment main effect, and treatment by time interaction.
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in response to both water deficit levels, both treatment

periods, and to the combination of treatment intensity

and duration, respectively. The latter gene set includes

genes whose expression does not change initially but

changes over time and treatment intensity [30]. As a re-

sult of this survey, 6,266 and 15,575 genes displayed

treatment main effects and time main effects, respectively.

Moreover, 23 genes displayed treatment by time interac-

tions (Additional file 4). Between the three gene sets some

overlap was identified: 15 genes were present in all data

sets representing 65% (15/23) of the genes that displayed

treatment by time interactions. Furthermore, 75% of the

genes that showed treatment main effects were among the

genes displaying time main effects (Figure 3B).

Functional categorization of stress responsive genes

An overview of the metabolic processes regulated by

water deficit was generated with Mapman [31] (Figure 4).

Only few of the 6 h mild water deficit responsive genes

(FDR <5%, |Fc| ≥2) were included in the metabolic path-

ways overview, mainly in minor CHO metabolism (sugar

and sugar derivate metabolism) and amino acid metabol-

ism (Figure 4A). In response to more intense water deficit

treatment, genes involved in major CHO metabolism (bio-

synthesis and degradation of starch and sucrose), cell wall

metabolism and secondary metabolism were differentially

regulated (Figure 4B). 24 h of treatment increased the

number of responsive genes in all pathway categories with

many differentially regulated genes annotated in major
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Figure 4 Overview of metabolic responses to water deficit. Genes differentially regulated (FDR <5%, |Fc| ≥2) in response to A, 6 h mild water

deficit, B, 6 h severe water deficit, C, 24 h mild water deficit, and D, 24 h severe water deficit as visualized by Mapman. 74, 669, 1,346, and 3,006
differentially expressed genes corresponded to 80, 715, 1,431, and 3,210 unique transcript identifiers imported in Mapman [31]. Among those, 9, 66,

131, and 380 entities are visible in metabolic overviews. Transcripts which were up and down-regulated are represented in red and blue, respectively.

Opitz et al. BMC Genomics 2014, 15:741 Page 5 of 13

http://www.biomedcentral.com/1471-2164/15/741



and minor CHO metabolisms, cell wall metabolism, lipid

metabolism, and secondary metabolism (Figure 4C, D).

An additional biochemical pathway analysis with Plant

MetGenMAP [32] classified water deficit responsive

genes into analogical pathways. In total, responsive

genes were involved in 187 different pathways

(Additional file 5). Among those, 126 describe bio-

synthetic processes, primarily biosynthesis of amino

acids, carbohydrates, hormones, lipids, and cell wall

compounds. The remaining pathways include deg-

radation/assimilation (39; mainly carbohydrates and

amino acids), energy generation (17; e.g. TCA cycle,

glycolysis), detoxification (1), or a combination of these

(10). Of the only four common pathways between the

data sets, three describe down-regulation of proline

degradation and one up-regulation of methylglyoxal

degradation (Additional file 5).

Differentially expressed genes (FDR <5%, |Fc| ≥2) were

further functionally classified according to Gene Ontol-

ogy (GO) terms using agriGO [33]. For 65% (48/74) of

the genes responding to short-term mild water deficit

and 52% (351/669) of the genes responsive to severe

water deficit, at least one GO term was identified. In the

24 h water deficit treatments, GO terms were identified

for 46% (622/1,346) of mild deficit and 52% of (1,551/

3,000) severe deficit responsive genes (Additional file 2). A

singular enrichment analysis (SEA) was performed to dis-

cover significantly overrepresented functional categories

(FDR <5%) by comparing each annotated gene set to all

expressed genes (for 13,618 of the 25,570 expressed genes

GO terms were available). The analyses revealed enrich-

ment of terms related to biological processes and molecu-

lar function but not of cellular components. In the two

6 h treatment groups one and seven terms were enriched

in the molecular function category (Additional file 6).

After 24 h of mild and severe water deficit, 15 and 23 GO

terms were overrepresented, respectively (Additional

file 6). All commonly and uniquely enriched GOs are

summarized in Figure 5. The GO term “oxidoreductase

activity” (GO:0016491) was overrepresented in all data sets

and was the only significant term among 6 h mild deficit

responsive genes. Other commonly overrepresented GO

terms included the molecular functions “binding” (“iron

ion binding” GO:0005506, “heme binding” GO:0020037,

“tetrapyrrole binding” GO:0046906), “monooxygenase

activity” (GO:0004497), and “electron carrier activity”

(GO:0009055). These covered almost all additionally

enriched categories of the short-term severe water deficit

regulated genes. Most overrepresented GO terms among

the genes responding to 24 h mild water deficit were iden-

tical to those responding to 24 h severe water deficit in-

cluding two terms related to hydrolase activity, “peroxidase

activity” (GO:0004601), and “oxidoreductase activity”

(GO:0016684). After 24 h of severe water deficit treatment

10 additional GO terms were enriched among responsive

genes; three categories related to stimulus responses (“re-

sponse to stimulus” GO:0050896, “response to stress”

GO:0006950, “response to chemical stimulus” GO:0042221),

four terms referring to C compound metabolism (“car-

bohydrate metabolic process” GO:0005975, “disaccha-

ride metabolic process” GO:0005984, and “glycoside

metabolic process” GO:0016137, “photosynthesis, light

reaction” GO:0019684), two categories describing tran-

scriptional regulation (“transcription factor activity”

GO:0003700, “transcription regulator activity” GO:0030528),

as well as the molecular function “antioxidant activity”

(GO:0016209).

GO enrichment analyses were also performed for treat-

ment and time main effects and treatment by time inter-

action specific genes. For 8,609 (55%) of 15,575 time main

effect, 3,826 (58%) of 6,266 treatment main effect genes,

and 14 (61%) of 23 treatment by time interaction genes at

least one GO term was assigned (Additional file 4). In

contrast to the analysis of pairwise comparisons, compari-

son of these gene sets with the set of all expressed genes

by SEA yielded many overrepresented cellular component

categories. Among the treatment by time interaction

genes no enriched term was found. Among treatment

main effect and time main effect genes 10 and 16 categor-

ies were overrepresented, respectively (Additional file 7).

Each of the terms enriched among treatment main effect

genes was included in the enriched time main effect

terms. Four terms were connected to protein synthesis

(“translation” GO:0006412, “structural constituent of ribo-

some” GO:0003735, “ribonucleoprotein complex” GO:00

30529, and “ribosome” GO:0005840). Further categories

were “structural molecule activity” (GO:0005198), the

cellular components organelles (“intracellular non-

membrane-bounded organelle” GO:0043232, “non-

membrane-bounded organelle” GO:0043228), cytosol

(“cytoplasmic part” GO:0044444, “cytoplasm” GO:0005737),

and “macromolecular complex” (GO:0032991). Further-

more, the time main effect terms included five transport-

related terms (“hydrogen ion transmembrane transporter

activity” GO:0015078, “monovalent inorganic cation trans-

membrane transporter activity” GO:0015077, “inorganic

cation transmembrane transporter activity” GO:0022890,

“proton-transporting ATP synthase complex” GO:0045259,

“proton-transporting two-sector ATPase complex GO:00

16469) and the nucleosome (GO:0000786) as additional

cellular compartment.

Validation of differentially expressed genes by qRT-PCR

To independently confirm the RNA-Seq results a subset of

nine genes differentially regulated in response to all treat-

ments was selected for quantitative real-time PCR (qRT-

PCR) analyses (Additional file 8). As a result, 30 of 36

RNA-Seq expression patterns were confirmed i.e. trends of

Opitz et al. BMC Genomics 2014, 15:741 Page 6 of 13

http://www.biomedcentral.com/1471-2164/15/741



gene expression were identical in the sequencing and

qRT-PCR approach. For nine of the 30 data points the

analysis did not have enough statistical power to detect

significant differences while for 21/30 data points statisti-

cally significant differences (Student’s t-test: p-value <0.05)

were measured.

Discussion

To promote plant survival, roots are often able to con-

tinue growth at low water potentials that completely in-

hibit shoot elongation [9,25,26]. As a result, roots might

escape dry soil layers and reach deeper water resources.

When water availability is so low to be life threatening,

yield will be very low even if plants survive. Thus, from an

agronomic viewpoint, mere survival of grain crops is irrele-

vant [34]. Therefore rather moderate water deficits were

chosen for the present study. Water potentials of -0.2 MPa

and -0.8 MPa were used to simulate mild and severe water

deficit conditions, respectively. Short-term (6 h) water def-

icit treatment did not affect root elongation in the present

study. This was expected as marked differences in steady

maize root elongation rates between control conditions

and low water potentials were observed only after 10 h of

treatment [9]. Similarly, 24 h of mild water deficit did not

noitpircseDmreTOG
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Figure 5 Cross-comparison of enriched GO terms among differentially expressed genes in response to 6 h mild water deficit, 6 h

severe water deficit, 24 h mild water deficit, and 24 h severe water deficit by single enrichment analysis (SEA). Different colors in the

right columns represent the different significance levels of the overrepresentation; yellow: FDR <0.05, orange: FDR <0.01, red: FDR <0.001.
Superscript letters indicate higher-ranking GO terms (GO level 2); aCatalytic activity (GO:0003824); bBinding (GO:0005488); cAntioxidant activity
(GO:0016209); dMetabolic process (GO:0008152); eResponse to stimulus (GO:0050896).
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impair primary root growth, while severe water deficit sig-

nificantly reduced primary root elongation. These findings

are comparable to results by Sharp and co-workers [9,25]

whereas Westgate and Boyer [26] measured consider-

able growth reduction only at water potentials lower

than -0.8 MPa. This discrepancy might at least in part

be explained by the different maize genotypes that were

analyzed in these studies. Since 6 h of water deficit treat-

ment did not affect root growth this experimental period

was used to monitor gene expression changes at the initial

phase of the water deficit response. Long-term treatment

with mild water deficit had likewise no primary root

growth effect suggesting that the root is able to tolerate

this mild drought. In contrast, severe water deficit deceler-

ated primary root elongation implying that the root had

adapted by metabolic alterations.

RNA-Seq technology was utilized to compare the pri-

mary root transcriptomes of seedlings treated with low

water potentials to those grown under control conditions.

The seedlings used for the experiment were selected by

their root length rather than by age minimizing variability

of gene expression due to developmental differences [35].

In total, 25,570 genes were expressed under at least one of

the time/treatment combinations. In the present study, 74

and 669 genes were identified that responded with expres-

sion changes to 6 h of mild and severe water deficit, re-

spectively (|Fc| ≥2). After 24 h, 1,981 and 3,006 genes

were differentially expressed (|Fc| ≥2) in response to mild

and severe water deficit, respectively, reflecting complex

acclimatization processes. A similar pattern of an in-

creased number of responsive genes following more in-

tense stress treatment has been reported for maize

(Han21) seedling roots by Zheng, et al. [14], who consid-

ered 190 uniquely expressed sequence tags, and also for

the whole maize (SRG-200) root system [15]. Comparative

analyses in this study revealed that most (≥80%) of the

short-term water deficit responsive genes were a subset of

the long-term water deficit responsive genes. Similarly, a

large overlap (≥90%) between mild and severe water def-

icit responsive genes was detected. An analogous pattern

was observed for drought-stressed maize (SRG-200) and

barley root systems although stress treatment was more

intense in these studies [15,36]. However, neither maize

nor barley leaves showed this pattern [15,19,36]. This indi-

cates a root-specific response that is already established

after the short period and low intensity of water deficit

used in this study. Besides, there is further indication that

the drought stress response is organ-specific. A micro-

array analysis of maize root, leaf, and shoot gene expres-

sion changes in response to drought stress revealed only a

rather limited overlap between stress regulated genes [15].

In line with that observation the functional categories af-

fected by the transcriptional changes were very distinct

across tissues [15]. Similarly, a comparison of differentially

expressed genes identified in the present study to genes

identified by Kakumanu, et al. [37] via Illumina sequencing

of RNAs isolated from basal leaf meristem tissues of maize

plants grown under drought stress yielded very little over-

lap both on gene and functional category level. However,

plant developmental stages (seedlings vs. adult plants, re-

productive stage) and treatment period (24 h vs. 4 d) were

quite different.

Among the water deficit responsive genes identified in

this study several GO categories were overrepresented in

comparison to all expressed genes. Cross-comparison of

these categories resulted in one commonly enriched term,

“oxidoreductase activity”. Its child term “monooxygenase

activity” was also enriched among three of the four gene

sets. Several previous studies detected differential expres-

sion of oxidoreductase and monooxygenase genes in re-

sponse to water deficit in maize, barley, and soybean

[14,18,36,38-40]. However, the complexity of these studies

was limited to a few hundred or thousand entities and

only individual genes or proteins of the oxidoreductase

category were identified along with other differentially

expressed genes. The reactions catalyzed by oxidoreduc-

tases can result in scavenging as well as in the generation

of reactive oxygen species (ROS). Differential expression,

including both up and down-regulation, of ROS scaven-

gers in response to drought stress has also been shown in

Arabidopsis [reviewed in 41]. While ROS can cause cellu-

lar damage [42], they also play an important role as signal-

ing molecules [reviewed by 43] and are associated with

growth and development [reviewed in 44]. For instance,

the expression and protein abundance of an oxalate oxi-

dase that produces hydrogen peroxide increased in stressed

maize roots [18,40] and is probably involved in root growth

regulation upon water deficit [45]. Other commonly

enriched GO terms among water deficit responsive genes

in the present study were “heme binding”, its ancestor term

“tetrapyrrole binding” and the functionally related category

“iron ion binding”. Likewise, genes annotated in the Map-

man category “metal handling” were commonly up-

regulated in response to water deficit (data not shown). In

wheat roots an increase in total iron content during

drought stress was detected [46]. Besides, the level of

bound iron in soybean roots was substantially higher

under water stress due to sequestration by ferritin proteins

[10]. The expression of these and other metal-chelating

proteins was also up-regulated in stressed maize roots

[18]. Sequestration of metal ions is beneficial as it prevents

the formation of the highly toxic hydroxyl radicals via the

metal-dependent Haber-Weiss reaction or the Fenton re-

action [41]. Additional studies are needed to fully eluci-

date the complex interaction of ROS metabolism and

regulation of gene expression upon water deficit.

After 24 h of both mild and severe water deficit treat-

ment, further enrichment of GO terms related to sugar
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and general carbohydrate metabolic processes (“carbohy-

drate metabolic process”, its child terms “polysaccharide

metabolic process”, “polysaccharide catabolic process”,

and “disaccharide metabolic process” as well as “glycoside

metabolic process” and its child term “hydrolase activity”)

was detected. Accordingly, many of the long-term water

deficit responsive genes were annotated in pathways of C

compound metabolisms. Accumulation of carbohydrates

in response to water deficit has been reported in several

species and plant organs [reviewed in 47]. In maize pri-

mary roots, soluble carbohydrates together with proline

account for osmotic adjustment which has an essential

role in maintenance of root elongation at low water poten-

tials [48,49]. It has been reported that both increases in

proline synthesis and decreases in proline oxidation occur

in response to low water potentials to increase proline

concentrations [49]. Accordingly, three of four biochem-

ical pathways conserved among water deficit responsive

genes to all treatments included down-regulated proline

oxidases. Besides functioning in osmotic adjustment, C

compounds also participate in signaling and transcrip-

tional and post-translational regulatory processes in meta-

bolic and developmental programs [47] and the regulation

of their synthesis/degradation is therefore tight and com-

plex in response to environmental stresses.

An analysis of variance yielded differentially expressed

genes in treatment main effect, time main effect, and

treatment by time interactions. The highest number of

genes (15,575) appeared in time main effect including

more than half of all expressed genes. This suggests strong

differences between root transcriptomes of seedlings dif-

fering in age as seedlings after long-term experiments

were 18 h (about 20%) older and on average 1.6 cm (about

42%) longer than seedlings after short-term experiments.

This is in accordance with the report of differences in pro-

tein abundance between two early stages (5 and 9 DAG)

of maize root development in the inbred line B73 [50]

which was also studied in the present survey. As most of

the treatment-specific genes (4,662 of 6,266) are included

in time effect genes, the pairwise comparisons between

treatments within each time period might be more accur-

ate. The test for treatment by time interaction could iden-

tify genes that do not differ across water deficit conditions

initially but develop differences across conditions with

longer treatment periods [30]. A comparable low number

of 23 genes were assigned to this category. Hence, only a

minor fraction of all water deficit responsive genes changed

their expression from one time point to the other. This is

in line with the large overlap observed between mild and

severe deficit as well as between short and long-term treat-

ment responsive genes in the pairwise comparisons.

A GO analysis revealed largely the same overrepre-

sented categories among genes that display time main

effects and treatment main effects. About one quarter

and one half of the enriched GO terms, respectively, are

related to protein biosynthesis including the biological

process translation and the ribosome as cellular compo-

nent. This points to a developmental function of these

genes specific for time and for treatment effects as ribo-

somes are generally considered as housekeeping compo-

nents of the cell and are involved in growth processes.

Genes encoding ribosomal proteins are highly expressed

in proliferating, elongating, and differentiating cells [51].

However, it was demonstrated for Arabidopsis that ex-

pression of these genes changes in response to abiotic

stress [52,53]. Furthermore, a study in maize indicated

that modifications of the translational machinery emerge

in response to hypoxic stress [54]. In the present study

the same genes functionally related to ribosomes were

identified for time main effects and treatment main ef-

fects. This supports the concept of these genes playing a

double role in normal development/growth and in water

deficit response.

Conclusions

In the present study, hundreds of genes were identified

that are differentially expressed in response to water def-

icits in maize seedling primary roots. The number of re-

sponsive genes was dependent on water deficit condition

and duration and increased with intensification of treat-

ment. The products of the differentially expressed genes

are known to be involved in perception and signal trans-

duction or confer adaptation and tolerance to low water

potentials. Analyses of associated GO categories and

underlying biochemical pathways connect the water def-

icit response to ROS and carbohydrate metabolisms and

signaling, revealing their complex transcriptional regula-

tion. Further functional analyses of these genes will pro-

mote our understanding of the molecular mechanisms

underlying root adaptation to water deficit and enable

targeted breeding strategies. Thus, more tolerant crop

varieties, that can be cultivated with stable yield in dry

regions as well as on fields with uneven soil moisture,

might be generated.

Methods

Plant material and water deficit stress treatment

Seeds of the maize inbred line B73 were surface sterilized

and germinated in paper rolls as described in Ludwig,

et al. [55]. Four to 5 days (16 h light, 28°C; 8 h dark, 21°C)

after germination seedlings with a primary root length of

2 to 4 cm were transferred to new paper rolls soaked with

polyethylene glycol (PEG8000 Mr 7,300-9,000; Roth,

Karlsruhe, Germany) solutions with a water potential

of -0.2 MPa and -0.8 MPa for mild and severe water def-

icit, respectively, or distilled water for control experi-

ments. Because manufactured PEG8000 includes a range

of molar masses water potentials could not be calculated
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directly. Osmolyte concentrations (mol*l−1) of PEG solu-

tions with defined mass concentrations (g*l−1) were mea-

sured with an osmometer (OSMOMAT 030-D, Gonotec

GmbH, Berlin, Germany). This data was used to estimate

water potentials (water potential [MPa] = concentration

[mol*l-1] * gas constant [8.314 Pa*l*mol-1*K-1] * temperature

[298.15 K]). Paper rolls with seedlings were incubated in

aerated PEG solutions or distilled water for 6 h and 24 h

(24°C, 24 h included 8 h darkness, 18°C). Before and after

treatment, seedlings were photographed and primary

root length was measured using WinRHIZO (http://

www.regent.qc.ca/). Whole primary roots were har-

vested, immediately frozen in liquid nitrogen and

stored at -80°C until RNA isolation. Experiments were

performed in four biological replicates each consisting

of 10 pooled roots.

RNA isolation and sequencing library preparation

Pooled primary roots were ground in liquid nitrogen, and

RNA was extracted as previously described [56]. RNA

quality was assessed via agarose gel electrophoresis and a

Bioanalyzer (Agilent RNA 6000 Nano Chip, Agilent Tech-

nologies, Santa Clara CA, USA). Only samples with an

RIN [RNA integrity number; 57] ≥9.1 were used for down-

stream analyses. The cDNA libraries for Illumina sequen-

cing were constructed in accordance with the protocol of

the manufacturer (TruSeq RNA Sample Preparation,

Illumina, San Diego CA, USA). For sequencing, four librar-

ies were pooled in one lane of a flow cell. Each library per

lane was indexed by one of the adapters AR001, AR008,

AR010, or AR011 (Additional file 1). The indexed libraries

were loaded onto a flow cell according to an incomplete

block design (generated with CycDesigN, http://www.vsni.

co.uk/software/cycdesign; Additional file 1). Cluster prep-

aration and single read sequencing were performed ac-

cording to the manufacturer’s instructions (HiSeq 2000,

Illumina, San Diego CA, USA).

Processing and mapping of Illumina sequencing reads

Raw sequencing reads generated by the Illumina HiSeq

2000 system were initially processed and quality trimmed

with SHORE (http://1001genomes.org/software/shore.

html). Reads with more than 2 or 5 bases having quality

scores ≤3 in the first 12 or 25 bases, respectively, were

rejected [58]. Bases with quality scores ≤5 at the 3’ end

were trimmed until two succeeding bases with higher

quality scores. Reads with ≥2 mismatches in adapter se-

quences were excluded. Only reads ≥40 bp were retained

for subsequent analyses. Finally, adapter sequences were

removed. Resulting reads had a length of 40 to 100 bp

(≥60% of all reads were 100 bp long) and quality scores of

26 or higher at all base positions. Read mapping was per-

formed with CLC Genomics Workbench (http://www.

clcbio.com/products/clc-genomics-workbench/). All high

quality reads were mapped to the maize B73 reference

genome [RefGen_v2; 21,22] allowing large gaps of up to

50 kb to span introns. At least 75% of each read had to fit

with 90% similarity to the reference to be mapped. Stacked

reads i.e. redundant reads sharing the same start and end

coordinate, sequencing direction, and sequence were

merged into one. The remaining reads were projected to

the filtered gene set (FGSv2; [21], release 5b.60) of the B73

reference genome derived from the maize genome sequen-

cing project (MGSP) allowing a maximum of two mis-

matches for reads ≤56 bp. Longer reads had to fit at least

with 80% of their length thereby comprising 90% similarity.

Only those reads uniquely mapping to the reference data

set were subsequently used for analyses.

Statistical procedures for analyzing differential gene

expression

The read counts were normalized to RPKM (reads per

kilobase of exon model per million mapped reads) values

[59] and log2 transformed to meet the assumptions of

linear models. Further statistical analysis followed the

empirical Bayes approach of Smyth [60]. The mean-

variance trend for log-counts was estimated and a

weight assigned to each observation based on its pre-

dicted variance. The weights were then used in the linear

modeling process to adjust for heteroscedasticity [61].

To borrow strength across genes in the estimation of the

residual error variance, the empirical Bayes approach of

Smyth [60] implemented in the R-package limma was

used. A linear mixed model with lane effect was applied

accounting for the lanes as incomplete blocks. The lane

effect is considered as random effect, thus allowing the

recovery of the inter-block information. The experimen-

tal setup allowed four comparisons of control groups

against different water deficit levels: mild deficit, 6 h (1),

severe deficit, 6 h (2), mild deficit, 24 h (3), and severe

deficit 24 h (4). After computing these contrasts, result-

ing p-values of each contrast were corrected for

multiplicity using the FDR-approach of Benjamini and

Yekutieli [62]. Additionally, a two-way analysis of

variance (ANOVA) was performed with treatment main

effect, time main effect and treatment by time interaction

according to the empirical Bayes approach of Smyth [60]

implemented in the R-package limma. Computed

p-values were corrected for multiplicity using the positive

false discovery rate [pFDR; 63].

Gene Ontology (GO) and metabolic pathway analyses

GO functional categories were assigned to differentially

expressed genes using the web-based agriGO software

[33]. Enriched categories were computed using singular en-

richment analysis (SEA) by comparing the list of differen-

tially expressed genes to all expressed genes as described in

Du, et al. [64]. Multiple comparison correction [62] was

Opitz et al. BMC Genomics 2014, 15:741 Page 10 of 13

http://www.biomedcentral.com/1471-2164/15/741

http://www.regent.qc.ca/
http://www.regent.qc.ca/
http://www.vsni.co.uk/software/cycdesign
http://www.vsni.co.uk/software/cycdesign
http://1001genomes.org/software/shore.html
http://1001genomes.org/software/shore.html
http://www.clcbio.com/products/clc-genomics-workbench/
http://www.clcbio.com/products/clc-genomics-workbench/


performed and FDR controlled at 5%. Through the

SEACOMPARE tool analysis results were combined for

cross-comparisons. Differentially expressed genes were

assigned to metabolic pathways and subsequently

visualized using the Mapman software [31,65] based on

the functional annotation file ZmB73_5b_FGS_cds_2011

[65]. Additionally, genes were assigned to biochemical

pathways with the web-based Plant MetGenMAP [32,66]

software according to the MaizeCyc database [version

2.1; 67].

Quantitative real-time PCR (qRT-PCR) analysis

To confirm gene expression levels detected by RNA-Seq,

quantitative real-time PCR was performed in a Bio-Rad

CFX 384TM Real-Time System (Bio-Rad, Munich,

Germany) using gene-specific oligonucleotides (Additional

file 9). The cDNA for qRT-PCR analyses was synthesized

from 1 μg total RNA with the qScript cDNA SuperMix

(Quanta Biosciences, Gaithersburg, MD, USA) using the

same RNA samples as for the cDNA library construction.

Each PCR reaction contained 4 μl MESA Blue qPCR™

Mastermix Plus for SYBR Assay no ROX (Eurogentec,

Cologne, Germany), 1 μl cDNA sample and 100 nM gene-

specific oligonucleotide primers to a final volume of 8 μl.

The primer efficiency of each oligonucleotide was calcu-

lated using the following dilution series: 1, 1/2, 1/4, 1/8, 1/

16, 1/32, 1/64, and 1/128. The relative expression levels of

the transcripts were calculated with reference to the

housekeeping gene myosin (Genbank AC: 486090G09.x1).

Significant differences in gene expression levels were de-

termined by a two-sided Student’s t-test.
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