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Abstract

Background: This investigation offers insights into system-wide pathological processes induced in response to 

cigarette smoke exposure by determining its influences at the gene expression level.

Methods: We obtained genome-wide quantitative transcriptional profiles from 1,240 individuals from the San Antonio 

Family Heart Study, including 297 current smokers. Using lymphocyte samples, we identified 20,413 transcripts with 

significantly detectable expression levels, including both known and predicted genes. Correlation between smoking 

and gene expression levels was determined using a regression model that allows for residual genetic effects.

Results: With a conservative false-discovery rate of 5% we identified 323 unique genes (342 transcripts) whose 

expression levels were significantly correlated with smoking behavior. These genes showed significant over-

representation within a range of functional categories that correspond well with known smoking-related pathologies, 

including immune response, cell death, cancer, natural killer cell signaling and xenobiotic metabolism.

Conclusions: Our results indicate that not only individual genes but entire networks of gene interaction are influenced 

by cigarette smoking. This is the largest in vivo transcriptomic epidemiological study of smoking to date and reveals the 

significant and comprehensive influence of cigarette smoke, as an environmental variable, on the expression of genes. 

The central importance of this manuscript is to provide a summary of the relationships between gene expression and 

smoking in this exceptionally large cross-sectional data set.

Background
Tobacco use is responsible for more than 5 million deaths

per year [1] and is the leading preventable cause of pre-

mature death worldwide. Smoking is known to have a

major impact on human health, adversely affecting

almost every organ. Exposure to cigarette smoke

increases the risk of many diseases, including a wide

range of cancers (from lung to pancreatic cancer), cardio-

vascular diseases (including atherosclerosis and coronary

heart disease), a range of respiratory diseases (including

chronic obstructive pulmonary disease and pneumonia),

as well as various other adverse health effects such as

increased risk of cataracts, infection and poor wound

healing, and is generally detrimental to the overall health

of individuals who smoke [2-8].

Investigating the influence of cigarette smoke exposure

on health is a highly complex problem. The particulate

and vapor phase of cigarette smoke contains in excess of

4,000 compounds, including five known human carcino-

gens and many toxic agents [9,10]. These toxins enter the

bloodstream, via the pulmonary alveoli, and are distrib-

uted throughout the body. The widespread organ damage

in active smokers reflects the systemic distribution of

these compounds and the variety of cell types that are

exposed. Studies of the effects of cigarette smoking have

employed a variety of approaches to reduce the complex-

ity of the problem, such as studying animal models or

individual cell types in vitro that are exposed to 'standard-
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ized' measures of cigarette smoke, or to individual com-

ponents of the particulate or vapor phases. However, no

one model is able to capture the biological heterogeneity

of the effects.

This study utilized large-scale genome-wide expression

profiling as an alternative approach to determine the sys-

temic influence of cigarette smoke, as an environmental

exposure, on human physiology and health. Previous

studies of gene expression as influenced by smoking have

been seriously limited in size [11-21] with the largest of

the in vivo studies including only 42 smokers and 43 non-

smokers [15]. The small sample sizes and general lack of

power have resulted in little concordance between these

studies. Our hypothesis was that, given a sufficiently large

set of related individuals, a stable and interpretable pat-

tern of gene expression alterations attributable to ciga-

rette smoke exposure may be obtained. In addition, a

large and complex dataset allows for both the investiga-

tion of significant results at the individual gene level and

provides the ability to determine elaborate networks of

alteration. Studying these patterns of expression altera-

tion in response to cigarette smoke exposure may provide

the key to understanding the pathogenesis of many of the

adverse health effects attributable to smoking and the

interactions between them.

Methods
Ethics statement

All protocols were approved by the Institutional Review

Board of the University of Texas Health Science Center at

San Antonio. Participants gave informed consent and all

investigation were conducted according to the principles

expressed in the Declaration of Helsinki

Study population

This investigation was conducted as part of the SAFHS,

initiated in 1992 to investigate the genetics of cardiovas-

cular disease and its risk factors in Mexican Americans

[22]. Ascertainment occurred by way of adult probands

selected at random, without regard to presence or

absence of disease, from the Mexican American commu-

nity in San Antonio, Texas. To ensure large, multigenera-

tional pedigrees, probands had to have at least 6 age-

eligible offspring and/or siblings living in San Antonio.

All first, second, and third degree relatives of the proband

and of the proband's spouse, aged 16 years or above, were

eligible to participate in the study. More than 1,400 indi-

viduals from 42 extended families were recruited [22].

Reported family relationships were verified using the

computer program PREST [23], based on autosomal gen-

otype data, and corrections to the familial relationships

were applied where required. Existing blood samples and

phenotype data from the SAFHS were utilized in this

investigation.

Assessment of smoking status

Smoking status was assessed by structured interview con-

ducted during the first clinic visit between 1991 and 1995,

the same time point as the lymphocyte collection for the

expression profiling. Data collected included current

smoking status (smoker or non-smoker) as well as an esti-

mate of cigarettes smoked per day, all by self report. No

data were available on duration or former smoking status.

In addition, serum cotinine levels were measured using a

commercially available ELISA assay (BioQuant, San

Diego, California). Serum for the cotinine assay was

obtained during the first clinic visit but was only available

for 981 of the 1,240 individuals with expression profiles.

Expression profiling

The expression profiling methodology is described, in

detail, in Göring et al. (2007) [24]. In brief, frozen lym-

phocyte samples were available from 1,240 individuals,

collected during their first clinic visit between 1991 and

1995, after an overnight fast, in EDTA tubes. Lympho-

cytes were isolated from a 10 ml sample using Histopaque

(Sigma Chemical Co., St. Louis, MO), following the sug-

gested protocol of the manufacturer, washed, and stored

in a freeze media in liquid nitrogen.

Total RNA was isolated using a modified procedure of

the QIAGEN RNeasy® 96 protocol for isolation of total

RNA from animal cells using spin technology (QIAGEN

Inc., Valencia, CA), and a total of 500 ng total RNA dried

down and stored at -20°C. Anti-sense RNA (aRNA) was

synthesized, amplified and purified using the Ambion

MessageAmp II Amplification Kit (Ambion, Austin, TX)

following the Illumina Sentrix Array Matrix 96-well

expression protocol (Illumina Inc., San Diego, CA). Syn-

thesized cDNA samples were purified using QIAGEN's

QIAquick 96 PCR purification supplementary protocol

for spin technology (QIAGEN document QQ01.doc,

October 2001). Biotin-16-UTP (Roche, Germany) labeled

aRNA was synthesized using Ambion's proprietary

MEGAscript® in vitro transcription (IVT) technology and

T7 RNA Polymerase. Purification of aRNA samples was

performed using QIAGEN's RNeasy® 96 protocol for RNA

cleanup using spin technology, and a total of 1.5 μg aRNA

was dried and stored at -20°C prior to sample hybridiza-

tion.

Hybridization of aRNA to Illumina® Sentrix® Human

Whole Genome (WG-6) Series I BeadChips and subse-

quent washing, blocking and detecting were performed

using Illumina's BeadChip 6 × 2 protocol, as described in

Göring et al. [24]. Samples were scanned on the Illumina®

BeadArray™ 500GX Reader using Illumina® BeadScan

image data acquisition software (version 2.3.0.13). Illu-

mina® BeadStudio software (version 1.5.0.34) was used for

preliminary data analysis, with a standard background

normalization, to generate an output file for statistical
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analysis. In total we interrogated 47,289 unique tran-

scripts: 22,151 probes (47%) are targeted at Reference

Sequence (RefSeq) transcripts, and the remaining 25,128

probes (53%) correspond to other, generally less well

characterized transcripts (including predicted genes)

[24].

Identification of expressed transcripts

In order to identify transcripts that exhibited sufficient

quantitative expression in lymphocytes, the distribution

of expression values for a given transcript was compared

to the distribution of the expression values of the controls

that are imbedded in each chip. For each transcript, we

performed a χ2 "tail" test of whether there was a signifi-

cant excess of samples with values above the 95th percen-

tile of the control null distribution. This test was used

because it allows detection of even those transcripts that

are clearly present above baseline levels in only a subset

of individuals, while not being detectable above baseline

levels in most individuals. Using a false discovery rate of

0.05, we identified 20,413 transcripts that exhibited sig-

nificant expression by this criterion.

Standardization of expression values

To minimize the influence of overall signal levels, which

may reflect RNA quantity and quality rather than a true

biological difference between individuals, abundance val-

ues of all 20,413 retained transcripts were first standard-

ized by z-scoring within individuals (using decile

percentage bins of transcripts, grouped by average log-

transformed raw signals across individuals), followed by

linear regression against individual-specific average log-

transformed raw signal and its squared value. Lastly, for

each transcript, we directly normalized these residual

expression scores by employing an inverse Gaussian

transformation across individuals, to ensure that the

assumptions underlying variance components-based

analyses were not violated. This conservative procedure

results in normalized expression phenotypes that are

comparable between individuals and across transcripts.

Statistical Analyses

All statistical analyses on related individuals were per-

formed using variance components-based methodology

and software package SOLAR 4.1 [25]. To ensure that the

assumption of a multivariate normal phenotypic distribu-

tion was not violated, we subjected all phenotypes to an

exact inverse normalization procedure prior to analysis.

We tested for association between smoking and gene

expression levels using a regression model that allows for

residual genetic effects, as implemented in SOLAR. In

this approach, smoking was treated as a covariate for a

given transcript's expression level. A likelihood ratio sta-

tistic was used to formally test the hypothesis that smok-

ing was correlated with gene expression levels. This test

was performed conditionally upon other covariate effects

including those of sex, age, and their interactions. A false

discovery rate approach [26] was utilized to deal with the

major issue of multiple testing. We employed a rigorous

FDR of 0.05 for all analyses.

We used combined discrete-continuous bivariate mod-

eling analysis [27] to determine the environmental and

genetic correlations between smoking (as a discrete trait)

and expression of any given transcript (as a quantitative

trait). Formal likelihood-based tests were used to test the

difference of the genetic (ρg) and environmental correla-

tion (ρe) from zero.

Pathway and Networking Analysis

The 342 transcripts meeting the FDR of 0.05 criteria were

analyzed using Ingenuity Pathways Analysis version 6.3

(Ingenuity® Systems, http://www.ingenuity.com). There

were 322 transcripts that mapped to known genes,

including two cases where three significant transcripts

corresponded to one gene (GNLY and PID1) and fifteen

cases where there were two significant transcripts within

a gene (BCN2, C9ORF142, CDH23, CLEC10A, FLJ16686,

LGR6, LMNA, LYPD2, MMP25, NCF4, SH2D3C, SNTB2,

SSBP3, TCF7L2, TRA@ and ZAK). In total there were 303

unique smoking correlated genes identified by IPA from

the list of 342 significant transcripts. There were 20 tran-

scripts that were unidentified and not included in the

analyses, predominantly because their identifier had been

retired or corresponded to a pseudogene (entrez gene IDs

28804, 80022, 255519) or hypothetical protein not yet

described in the literature. All 323 unique identifiers (303

known and 20 unknown) are shown in Additional File 1.

The right-tailed Fisher's exact test was used to calculate

a p-value determining the probability that each biological

function and/or disease assigned to that dataset was due

to chance alone. This p-value is calculated by comparing

the number of user-imported genes in a given function or

pathway relative to the total number of occurrences of

these genes in all functional/pathway annotations stored

in the knowledge base for the reference set. We used the

entire set of 20,413 transcripts that were significantly

detected in lymphocytes in our study [24] as the reference

set for this investigation.

Our genes of interest were overlaid onto a global

molecular network developed from literature reported

connectivity recorded in the Ingenuity Pathways Knowl-

edge Base, allowing the generation of gene networks;

graphical representation of the molecular relationships

between genes/gene products. All interactions between

genes and other molecules in these networks are sup-

ported by peer reviewed publication.

http://www.ingenuity.com


Charlesworth  et al. BMC Medical Genomics 2010, 3:29

http://www.biomedcentral.com/1755-8794/3/29

Page 4 of 11

Accession Number

Raw expression values (of all transcripts on the microar-

ray) and normalized expression values (of all 19,648 ana-

lyzed autosomal transcripts), along with information on

sex and age are available under accession number E-

TABM-305 on the ArrayExpress website http://

www.ebi.ac.uk/arrayexpress/.

Results
Study Summary

For this study, transcriptional profiles were obtained

from 1,240 Mexican American individuals from the San

Antonio Family Heart Study (SAFHS). This dataset con-

tained 1,154 individuals from 46 pedigrees and an addi-

tional 86 singletons. There were 734 females and 506

males in the sample, with a mean age of 39.3 years (SD =

16.7 years). Ages ranged between 16 and 94 years. For

each sample, 47,289 transcripts were interrogated using

the Sentrix Human-6 expression BeadChip supplied by

Illumina (San Diego, CA). We were able to significantly

detect 20,413 expressed transcripts in lymphocytes,

62.5% of these corresponding to known genes [24].

The prevalence of smoking in the dataset was 24%, with

297 current smokers. Using the genome-wide transcrip-

tional profile dataset, we tested for correlations of gene

expression in lymphocytes with a discrete measure of

current smoking behavior, assessed by questionnaire.

With a conservative false-discovery rate of 5%, corre-

sponding to an observed nominal p-value of < 0.001, we

identified 342 transcripts whose expression levels were

significantly correlated with smoking, 110 (32.2%) with

positive correlations and 232 (67.8%) negatively corre-

lated. These 342 transcripts correspond to 323 unique

genes. Details of this set of genes and the correlation of

expression with smoking are provided in Additional File

1. Increasing the FDR to 10% increased the number of

significant transcripts to 474, corresponding to an

observed nominal p-value of < 0.0028.

Validation of the phenotype

A quantitative measure of average cigarettes per day was

available in this study, but was deemed less-reliable than

the discrete trait, owing to bias introduced by self-report

[28]. However, analyses using the quantitative measure

did validate the set of smoking-correlated transcripts

identified using the more conservative discrete trait, with

a tetrachoric correlation of 0.905 ± 0.012 between tran-

scripts significantly correlated with each measure at a 5%

FDR.

In addition, plasma cotinine levels were available for a

subset (79.1%) of the 1,240 studied individuals. Cotinine

is a nicotine metabolite that is often used as a quantitative

measure of cigarette smoking; however cotinine levels are

subject to both genetic and environmental variation [29].

Using a plasma cotinine level of ≥20 for smoking and

≥300 for heavy smoking we only identified 17 individuals

whose self-reported smoking status was clearly misclassi-

fied. The tetrachoric correlation between plasma cotinine

levels and self-reported smoking status was extremely

high (0.979 ± 0.007).

Functional Annotation Analysis

In order to identify specific pathways and functional

assignments involved in the response to smoking, we per-

formed a series of formal pathway analyses. The 342 tran-

scripts meeting the FDR of 0.05 criteria were analyzed

using Ingenuity Pathways Analysis (IPA) version 6.3

(Ingenuity® Systems, http://www.ingenuity.com). A total

of 214 of the smoking-correlated genes included informa-

tion on functions and/or canonical pathways from the

published literature, which was used to identify overrep-

resentation of smoking correlated genes within known

categories of functional assignments (such as immune

response), and to develop hypotheses of gene action in

the context of wider biological relationships. The most

significant functional assignments included cell cytotox-

icity (p = 3.7 × 10-10), immune response (p = 2.2 × 10-7),

and tumorigenesis (p = 1.2 × 10-6). The most significant

functional assignments are shown in Table 1, along with

the p-value for the significance of each assignment and

the total number of smoking correlated genes within each

category. These are documented in more detail in Addi-

tional File 1, which includes the functional and canonical

pathway assignments for each individual transcript

within the dataset.

There were several highly significant functional catego-

ries involved in various aspects of cell death, including 17

genes involved in cell cytotoxicity (CD38, CD300A,

FASLG, FCGR3A, FCGR3B, GZMA, GZMB, KLRB1,

KLRD1, KLRF1, KLRK1, PRF1, PTGDR, PTPN6,

SLAMF7, SPN, TNFRSF8; p = 3.7 × 10-10) and 11 in cell

lysis (ABCB1, CX3CR1, FASLG, FCGR3A, GNLY, GZMA,

GZMB, KLRB1, KLRD1, KLRK1, PRF1; p = 1.2 × 10-7)

that were all significantly negatively correlated with

smoking. In total there were 66 significant transcripts for

genes involved in various aspects of cell death (p = 1.1 ×

10-6), 47 negatively correlated and 19 positively correlated

with smoking.

There were 38 smoking-correlated genes involved in

immune response (p = 2.2 × 10-7), including 30 negatively

correlated with smoking (ADA, C3, CD38, CD247,

CD300A, CST7, CTSC, CTSL1, CTSW, CX3CR1, FASLG,

FCGR3A, FCGR3B, GFI1, GNLY, GZMA, GZMB,

IL18RAP, IL2RB, ITGAX, KLRD1, KLRF1, KLRK1,

PIK3CG, PRF1, SPN, SPON2, TGFBR3, TNFRSF14 and

TRG@) and eight positively correlated genes (CLEC5A,

EBI2, IGHE, MGST1, NCF4, RNASE2, SLAMF1 and

TPSAB1).

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
http://www.ingenuity.com
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In addition, in the cell proliferation category there were

27 smoking-correlated genes related to lymphocyte pro-

liferation, all but three of which were negatively corre-

lated (p = 5.2 × 10-7). Twenty-one inflammatory response

associated genes were significantly correlated with smok-

ing (p = 3.4 × 10-4), including fourteen that were nega-

tively correlated (ADA, ADRB2, C3, CD38, CHST2,

FASLG, GLNY, GZMA, IL18RAP, KLRG1, PIK3CG,

PTGDR, PTPN6, SPON2 and TNFRSF14) and seven that

were positively correlated with smoking (CLEC5A, IGHE,

PLA2G7, RNASE2, S100A8, S100A12 and SERPINF1).

There was evidence of overrepresentation of cancer

related functional assignments, including 72 smoking-

correlated genes that were associated with tumorigenesis

(p = 1.2 × 10-6), 23 of which were positively correlated

with smoking and 49 negatively correlated genes. There

were also 64 genes associated with cancer (p = 4.9 × 10-6),

21 positively correlated with smoking (ACOX2, AQP3,

CANX, CLEC10A, CYP1B1, EBI2, EPB41L3, GPR177,

IGL@, IL13RA1, LDHA, MGST1, MMP25, MTHFD2,

NRG1, PAICS, S100A8, SERPINF1, TFDP1, UGCG and

VCAN) and 43 negatively correlated genes (ABCB1,

ADA, ADRB2, AKR1C3, ARIH2, AXIN1, C3,

CACNA2D2, CD247, CDKN1C, CST7, CTSC, CTSL1,

EBF4, FASLG, FCGR3A, GZMA, HMOX1, IL2RB,

KLRK1, MT2A, NCAM1, ND3, NEURL, PALLD,

PGLYRP2, PIK3CG, PODN, PPP2R2B, PRF1, PRSS23,

PTGDS, PTPN6, RASSF1, RHOC, RRAS, SLC1A7, SSBP3,

TGFBR3, TRA@, TRG@, TTC38 and UBE2C).

In relation to respiratory-relevant pathologies, there

were three genes associated with lung related cardiovas-

cular disorder that were all negatively correlated with

smoking (FASLG, HMOX1, PRF1; p = 1.4 × 10-4) and nine

genes involved in asthma (p = 5.9 × 10-4) including six

negatively correlated with smoking (ADRB2, CX3CR1,

GZMB, HMOX1, PTGDR and TNFRSF8) and three posi-

tively correlated (IGHE, NRG1 and PLA2G7).

There was also some over-representation of free-radical

related functional assignments, including two genes

involved in mitochondrial perturbation (GZMB and

PRF1; p = 2.7 × 10-4) and eight genes associated with free

radical scavenging (p = 3.1 × 10-3); seven negatively corre-

lated (FASLG, GZMA, GZMB, HMOX1, PIK3CG, PRF1,

RRAS) and one (IGHE) positively correlated with ciga-

rette smoking.

There were five significant canonical pathway catego-

ries of smoking correlated genes that also relate well to

known smoking pathologies, shown in Table 2. The most

Table 1: The most highly significant functional assignments for the set of smoking correlated genes

Function Annotation P-value Number of genes

Cell cytotoxicity 3.7 × 10-10 17

Proliferation of cells 2.1 × 10-9 65

Activation of cells 1.7 × 10-8 31

Cell movement 2.9 × 10-8 35

Lysis of cells 1.2 × 10-7 11

Immune response 2.2 × 10-7 38

Mobilization of calcium 4.0 × 10-7 19

Adhesion of cells 7.8 × 10-7 29

Cell death 1.1 × 10-6 66

Tumorigenesis 1.2 × 10-6 72

Binding of cells 2.9 × 10-6 21

Viral elimination 4.3 × 10-6 3

Cancer 4.9 × 10-6 64

Inflammatory disorder 5.3 × 10-6 44

Cell growth 5.6 × 10-6 50

Cardiovascular disorder of lung 1.4 × 10-4 3

Perturbation of mitochondria 2.7 × 10-4 2

Inflammatory response 3.4 × 10-4 18

Asthma 2.5 × 10-3 9

Free radical scavenging 3.1 × 10-3 8
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significant of these canonical pathways assignments was

for eleven genes involved in the natural killer cell signal-

ing pathway, all of which were negatively correlated with

smoking (CD247, CD300A, FCGR3A, FCGR3B, KLRB1,

KLRD1, KLRK1, PIK3CG, PTPN6, RRAS and SH2D1B; p

= 7.9 × 10-7).

There were ten genes involved in the xenobiotic metab-

olism signaling pathway in our dataset (p = 5.9 × 10-3),

eight negatively correlated (ABCB1, CHST2, CHST12,

HMOX1, PIK3CG, PPP2R2B, PPP2R5A and RRAS) and

two that were positively correlated with smoking

(CYP1B1 and MGST1). There were also four smoking-

correlated genes in the related metabolism of xenobiotics

by cytochrome P450 canonical pathway (p = 9.6 × 10-3),

including three positively correlated (CSGALNACT1,

CYP1B1 and MGST1) and one negatively correlated with

smoking (AKR1C3). Cigarette smoke is a significant

source of xenobiotics (chemicals foreign to the biological

system) and these potentially damaging compounds are

detoxified through such pathways.

Network Analysis

There were 243 smoking-correlated genes with known

connectivity information from published literature stored

in the Ingenuity Knowledge Base. We used this published

interaction information to determine whether our smok-

ing-correlated expression signatures are tightly con-

nected at the molecular level. This analysis is therefore

restricted to interactions derived from the published lit-

erature and does not identify novel interactions between

these genes. Network analysis was used to determine

whether our smoking-correlated expression signatures

are tightly connected at the molecular level, based only

on these known interactions, by generating graphical rep-

resentations of the interactions between genes and/or

gene products in our dataset. Network analysis was used

to connect 49 of the smoking correlated genes into a sin-

gle network of gene/gene product interaction (Figure 1).

This network includes a clear sub-network of 28 genes

known to be involved in immune and inflammatory

response (outlined in orange). Given their relevance to

cigarette smoke exposure, we included the external toxi-

cants nicotine and reactive oxygen species in the net-

work.

Genetic and Environmental Correlations of Expression with 

Smoking Behavior

Observed correlations between smoking behavior and a

given gene's expression level may be due to the causal

environmental effect of smoking on expression, the

shared genetic determinants that jointly influence tran-

scription level and the propensity to smoke, or a combi-

nation of these two influences. In order to assess the

relative importance of environmental versus genetic

sources of phenotypic covariation between expression

levels and smoking status, we performed bivariate quanti-

tative genetic analysis to decompose the observed pheno-

typic correlation of the 50 most significantly correlated

transcripts. Because of our large pedigree-based study

design, it is possible to directly estimate both the genetic

and environmental correlations between expression lev-

els and smoking status. Our results, documented in Addi-

tional File 2, clearly indicate that for all but one of the

transcripts tested (98%) we saw no evidence for genetic

correlation between smoking behavior and expression

levels as would be expected if the observed correlation

was the result of a genetic predisposition to smoking

behavior. Given the strength of the estimated environ-

mental component of covariation between smoking

behavior and expression levels, our observed correlations

most likely reflect the causal influence of smoking on

transcription levels, which suggests that smoking is act-

ing as a direct environmental mediator of transcription.

Discussion
This study is the largest investigation of gene expression

alterations in response to cigarette smoke exposure in

human subjects in vivo to date. The results clearly reveal

the broad influence of smoking, as an environmental

influence, on the lymphocyte transcriptome. The results

include a wide-ranging negative influence on the immune

system, and strong involvement in a range of other rele-

vant functional categories including cancer, cell death

and xenobiotic metabolism. It is likely that this observed

Table 2: The most highly significant canonical pathway assignments for the set of smoking-correlated genes

Canonical pathway P-value Number of genes

Natural killer cell signaling 7.9 × 10-7 11

CTLA4 Signaling in cytotoxic T 

lymphocytes

1.2 × 10-4 8

SAPK/JNK signaling 5.7 × 10-3 6

Xenobiotic metabolism signaling 5.9 × 10-3 10

Metabolism of xenobiotics by cytochrome 

P450

9.6 × 10-3 4
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effect of smoking on transcription has larger implications

for human disease risk, especially in relation to the

increased risk of a wide variety of cancers throughout the

body as a result of cigarette smoke exposure.

Peripheral lymphocytes appear to be an excellent surro-

gate tissue for investigating the effect of smoking on

health by transcriptomic epidemiology. Not only are they

one of the most readily and easily available tissues for

gene expression analysis, they have also been shown to be

a good surrogate for other tissue types in the case of envi-

ronmental exposures, such as cigarette smoke, polyaro-

matic hydrocarbons and radiation [30-32]. The biological

value of the lymphocyte as a surrogate for another more

directly involved tissue (e.g., lung tissue) does not require

that similar expression patterns be expressed between

lymphocytes and the more focal tissue. It merely requires

that, for a given gene, there is a phenotypic correlation

between expression levels in the two tissues, which is

much less restrictive than the requirements of similar

absolute patterns of expression. Absolute levels are

immaterial to our central hypothesis. It is highly likely

that the regulatory machinery across tissue types is

Figure 1 A gene/gene product interaction network of smoking correlated genes. Networks of gene/gene product interaction were generated 

using IPA (Ingenuity® Systems, www.ingenuity.com). Genes or gene products are represented as nodes, and the biological relationship between two 

nodes is represented as an edge (line). All edges are supported by at least one published reference. Solid edges represent a direct relationship and 

dashed edges represent an indirect relationship. Node color represents the correlation of expression level with smoking, and the color intensity indi-

cates the degree of correlation (red represents positive correlation while green represents negative correlation). The shape of each node represents 

the functional class of the gene product, as shown in the key. Yellow nodes indicate exogenous toxicants manually added to the network. Genes 

known to be involved in immune/inflammatory response are highlighted in orange.

www.ingenuity.com
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altered by mechanisms of attenuation or amplification

which would lead to dramatically different absolute levels

but still generate correlations between tissue types. If the

attenuation/amplification mechanism has a linear com-

ponent, then correlations will obligately result. Therefore,

any regulatory feature that is shared across tissues will

generate a correlation between tissues. Thus, a gene may

be very highly expressed in one tissue and lowly

expressed in a different tissue and still exhibit correlation

between tissues. Such correlations are beginning to be

demonstrated across a number of tissues [26].

Lymphocytes may be directly relevant for assessing the

damaging effects of cigarette smoke. Thousands of ciga-

rette smoke constituents are rapidly absorbed into the

bloodstream, through the pulmonary alveoli, where they

rapidly achieve systemic distribution. Oxidative damage

and polycyclic hydrocarbon adducts have been readily

detected, not only the respiratory epithelium and other

first sites of exposure in cigarette smokers, but also in the

blood and peripheral lymphocytes [33,34]. In addition, of

the 47,289 transcripts interrogated in our study, we were

able to significantly detect 20,413 expressed transcripts in

lymphocytes, including both known and predicted genes

[24]. This is an impressive level of diversity for any tissue,

and allows the flexibility to identify signatures of gene

expression correlated with a range of traits. Finally, since

smoking is a major risk factor for a wide variety of can-

cers and diseases in a range of tissue types, it is important

to understand its influence at the gene level outside of a

selected cancer model.

All of the most significant functional groupings of

smoking correlated genes identified in this study are

directly relevant to well known smoking related disease

processes. Cell death and proliferation, immune

response, cancer, inflammatory disease and xenobiotic

metabolism are all relevant groupings for smoking corre-

lated genes, given known smoking related pathologies.

However, the extent of these relevant groupings and the

number of correlated genes whose expression is influ-

enced by smoke exposure within each group is striking.

Various aspects of depressed immune function have

been well documented in smokers [9,35-40]. We identi-

fied sets of smoking correlated genes corresponding to

immune system components that fit with this profile of

wide-spread immune alteration and suppression. For

example, all 17 genes associated with cell cytotoxicity

were negatively correlated with smoking; of the 29 genes

involved in immune response (Table 1), the expression

levels of 23 were negatively correlated with smoking; and

of the sixteen genes involved in inflammatory response,

twelve were negatively correlated with smoking. All

eleven genes in the natural killer (NK) cell signaling path-

way (Table 2), involved in cytotoxicity and cytokine

secretion, were also negatively correlated with smoking.

This wide-ranging negative influence on the immune sys-

tem is one of the clearest pictures to emerge from our

transcriptional profiling of smoking and gene expression.

This comprehensive influence on immune related gene

expression may go a long way towards explaining the pro-

cesses behind the depressed immune system related

pathologies exhibited by smokers.

As mentioned above, the expression levels of eleven

genes in the natural killer (NK) cell signaling pathway

were negatively correlated with smoking (CD247,

CD300A, FCGR3A, FCGR3B, KLRB1, KLRD1, KLRK1,

PIK3CG, PTPN6, RRAS and SH2D1B). NK cells are lym-

phocytes of the innate immune system involved in early

defense against foreign cells and stressed autologous cells,

and their cytotoxic activity is known to be decreased in

smokers [36]. In addition, NK cell tumor immune surveil-

lance was recently shown to be decreased in response to

smoke exposure in a murine lung metastatic tumor

model [41]. Our findings corroborate this negative influ-

ence of cigarette smoke on NK cell activity, and reveal

some of the gene level alterations that may influence NK

cells in smokers.

Another striking finding of this study was the over-rep-

resentation of functional groupings relevant to cancer

and cancer relevant processes such as cell death, prolifer-

ation and signaling. Cigarette smoking is a recognized

risk factor for a wide variety of cancers, not only at the

sites of contact such as the lungs and esophagus, but also

throughout the body such as pancreatic, kidney, colon

and bladder cancer. Correlations between expression of

genes in lymphocytes and cigarette smoking in this study

provide insight into the cancer relevant biological pro-

cesses occurring throughout the body in response to

smoke exposure, and hopefully serve to highlight the

complexity of these processes.

We constructed a complex network based on published

interaction between genes and/or gene products for 49 of

the transcripts that were significantly correlated with

smoking (Figure 1) including a clear sub-network of 28

genes known to be involved in immune and inflammatory

response (outlined in orange). A portion of this network

is also clustered around the exogenous toxicants nicotine

and reactive oxygen species, with most of these genes

involved in xenobiotic metabolism and free radical scav-

enging (FASLG, GZMA, GZMB, HMOX1, IGHE,

PIK3CG, PRF1 and RRAS). The network displayed in Fig-

ure 1 clearly reveals the massive scale of influence that

cigarette smoke, as an environmental variable, exerts over

the lymphocyte transcriptome; however we are unable to

determine which genes are directly influenced by smoke

exposure, given that alteration of the expression level of

one gene can alter the transcription of other genes in

these networks. These interactions are made even more

complex by the diversity of cigarette smoke components,
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and the variability of this constitution, in that we cannot

identify which component(s) of cigarette smoke are

exerting the most influence over gene expression. In

addition, the network analysis is dependent on published

connectivity information and as such cannot fully reflect

the complexity of the interactions or reveal any novel

connectivity. The literature reported interaction direc-

tionality is also of limited use in interpreting the empiri-

cal data, since our results reflect the state of the whole

living organism. The observed correlations may reflect a

large number of mediating factors including complex

feedback loops that could easily be missed using classical

in vitro cell-based models of cause and effect. However,

this network does show that the genes whose expression

is altered in response to cigarette smoke are tightly con-

nected at the molecular level, and gives some indication

of the pathways through which cigarette smoke influ-

ences known smoking related pathologies such as inflam-

mation.

Although smoking has long-term adverse effects, cessa-

tion has some immediate, as well as long-term benefits,

which may be due to a reversal of these transcriptomic

alterations. Many of the negative health effects have been

shown to be reversed or at least improved soon after ces-

sation [4,41,42], for example elevation of NK activity

(which is suppressed in smokers) is detectable within one

month of smoking cessation [43]. This further supports

the implication that at least part of the NK cell activity

suppression is due to gene-level alterations in expression

induced by smoke exposure, which may be reversed as

the exposure is removed. However, a study comparing

transcriptional profiles of 34 smokers, 23 non-smokers

and 18 former smokers revealed that, while the majority

of smoke exposure related gene expression alterations

return to normal in former smokers, there were a set of

transcripts that appeared to retain altered expression pat-

terns two-years after smoking cessation [16]. Similarly,

Beane et al. showed that 16% of the 175 differentially

expressed genes identified in airway epithelial cells

between smokers and non-smokers were irreversibly

altered in former smokers [12]. Therefore, while it

appears that the majority of gene expression alterations

attributable to smoke exposure may be reversible, there

may also be a subset of genes for which the expression

changes are permanent or at least altered in the long

term.

This study has some intrinsic limitations that should be

noted. The study was conducted in a population of Mexi-

can American individuals and it is difficult to determine

what proportion of the expression changes would be rep-

licated in other populations. While results obtained from

within a subset of the population may not necessarily be

relevant to all subsets of the population, in general it is

highly likely that the majority of genes whose expression

is altered in Mexican American individuals in response to

smoke exposure are the same genes susceptible to altera-

tion in other population groups. Transcriptional altera-

tions are likely more robust to population differences

than studies of individual genetic variants. However, a

subset of the genes identified in this study may only be

relevant to the Mexican American population. It is also

important to note that, while not likely, it is possible that

cigarette smoking is a surrogate for some other influence

that is initiating the transcriptional alterations in this

study.

Conclusions
The results of this investigation offer insights into ciga-

rette-smoke related pathological processes by determin-

ing its influences at the gene expression level. Never

before has such a clear link between smoking and tran-

scriptomics been revealed, and the scale at which expo-

sure to cigarette smoke appears to influence the

expression levels of our genes is sobering.
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