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RESEARCH ARTICLE Open Access

Transcriptomic profiles of aging in purified
human immune cells
Lindsay M Reynolds1, Jingzhong Ding2, Jackson R Taylor3, Kurt Lohman4, Nicola Soranzo5, Alberto de la Fuente6,

Tie Fu Liu2, Craig Johnson7, R Graham Barr8, Thomas C Register9, Kathleen M Donohue8, Monica V Talor10,

Daniela Cihakova10, Charles Gu11, Jasmin Divers4, David Siscovick12, Gregory Burke1, Wendy Post10, Steven Shea8,

David R Jacobs Jr13, Ina Hoeschele14, Charles E McCall2,15, Stephen B Kritchevsky2,3, David Herrington2,

Russell P Tracy16 and Yongmei Liu1*

Abstract

Background: Transcriptomic studies hold great potential towards understanding the human aging process.

Previous transcriptomic studies have identified many genes with age-associated expression levels; however, small

samples sizes and mixed cell types often make these results difficult to interpret.

Results: Using transcriptomic profiles in CD14+ monocytes from 1,264 participants of the Multi-Ethnic Study of

Atherosclerosis (aged 55–94 years), we identified 2,704 genes differentially expressed with chronological age (false

discovery rate, FDR≤ 0.001). We further identified six networks of co-expressed genes that included prominent genes

from three pathways: protein synthesis (particularly mitochondrial ribosomal genes), oxidative phosphorylation, and

autophagy, with expression patterns suggesting these pathways decline with age. Expression of several chromatin

remodeler and transcriptional modifier genes strongly correlated with expression of oxidative phosphorylation and

ribosomal protein synthesis genes. 17% of genes with age-associated expression harbored CpG sites whose degree of

methylation significantly mediated the relationship between age and gene expression (p < 0.05). Lastly, 15 genes with

age-associated expression were also associated (FDR≤ 0.01) with pulse pressure independent of chronological age.

Comparing transcriptomic profiles of CD14+ monocytes to CD4+ T cells from a subset (n = 423) of the population, we

identified 30 age-associated (FDR < 0.01) genes in common, while larger sets of differentially expressed genes were

unique to either T cells (188 genes) or monocytes (383 genes). At the pathway level, a decline in ribosomal protein

synthesis machinery gene expression with age was detectable in both cell types.

Conclusions: An overall decline in expression of ribosomal protein synthesis genes with age was detected in

CD14+ monocytes and CD4+ T cells, demonstrating that some patterns of aging are likely shared between different

cell types. Our findings also support cell-specific effects of age on gene expression, illustrating the importance of using

purified cell samples for future transcriptomic studies. Longitudinal work is required to establish the relationship

between identified age-associated genes/pathways and aging-related diseases.
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Background
Identifying molecular features that vary with chrono-

logical age has critical implications for our understand-

ing of aging and the development of age-associated

diseases. A number of previous studies have performed

systematic investigations of the relationship between age

and gene expression in various human tissues, including

T cells [1-3], whole blood [4], peripheral blood mono-

nuclear cells (PBMCs) [5], brain [6-8], and muscle tissue

[7,9]. Although very few individual genes with age-

associated expression have been identified across studies

or tissues [8], similar gene functions/pathways have been

reported. For instance, pathway analyses of age-associated

genes identified an enrichment of immune function and

inflammation genes in various mixtures of blood cells

[2-5]. Other aging-associated pathways/processes found to

be enriched in blood as well as brain and muscle tissues

include RNA processing [6-8,10] and chromatin remodel-

ing [6,7,10], while mitochondrial pathways [6,8] and more

specifically the oxidative phosphorylation/electron trans-

port pathway [7,9] were detectable in studies of skin,

brain, and muscle tissues. However, interpretation of these

findings is limited by small sample sizes and often hetero-

geneous cellular composition of the samples investigated.

Currently, there is a lack of well-powered transcriptomic

studies of aging using homogeneous cell samples.

CD4+ T cells and CD14+ monocytes are excellent cell

types for transcriptomic studies of aging in humans. T

cells and monocytes can be isolated from an easily ac-

cessible tissue (blood), and both have known roles in the

development of age-related diseases. T cells are well

known to exhibit numerous functional impairments with

advanced age and have been implicated in the age-

dependent decline in immune function, commonly known

as immunosenescence [11]. To date, the largest aging

transcriptomic study of CD4+ T cells included 31 individ-

uals, aged 25 – 81 years, from the Baltimore Longitudinal

Study of Aging. Comparison of T cell expression profiles

from individuals less than 65 years of age to those age 65

and older revealed 264 genes associated with age (p < 0.05,

FDR < 0.3) [3]. Monocytes have also been shown to exhibit

phenotypic and functional changes in the elderly [12], and

are key cells of innate immunity and major contributors to

the pathogenesis of inflammatory and degenerative dis-

eases [13]. To our knowledge the effect of aging on the

monocyte transcriptome has not yet been investigated.

Previously, we purified CD14+ monocytes from the

peripheral blood of 1,264 participants of the Multi-

Ethnic Study of Atherosclerosis (MESA). We measured

both genome-wide gene expression and DNA methyla-

tion in these purified monocyte samples using microar-

rays, and identified cytosine-guanine dinucleotides

(CpGs) whose degree of methylation was associated with

cis-gene expression (FDR < 0.001) [14]. Given that DNA

methylation can vary with age [15-20], we also investi-

gated the relationship between age and DNA methyla-

tion in the 1,264 MESA monocyte samples [21], and

identified 1,794 CpGs whose degree of methylation was

associated with age and cis-gene expression (FDR <

0.001) [21]. However, it remains unknown to what

extent age-related variations in the methylome may me-

diate the overall effect of age on gene expression.

In response to these uncertainties, here we present a

comprehensive analysis of age and gene expression in

the CD14+ monocyte samples from 1,264 MESA partici-

pants ranging in age from 55 to 94 years. Additionally,

we present an analysis of age and gene expression in circu-

lating CD4+ T cells from a subset of 423 MESA partici-

pants. This cohort study offers the unique opportunity to

1) better understand the effect of aging on gene expression

in CD14+ monocytes and CD4+ T cells, 2) compare the

aging transcriptome measured in two cell types from the

same individuals, 3) investigate CpG methylation as a po-

tential mediator of age-associated variations in the tran-

scriptome, and 4) characterize the relationships between

chronological age-associated gene expression and a clin-

ical measure of vascular age, pulse pressure.

Results and discussion
The overall study design and results are summarized in

Figure 1, and the population characteristics are de-

scribed in Additional file 1: Table S1.

Transcriptomic profiles associated with age in 1,264

monocytes samples

Transcriptomic profiling of CD14+ monocytes using mi-

croarrays (Illumina HumanHT-12 v4 Expression Bead-

Chip) revealed 10,898 expressed genes, of which 25%

had expression significantly (FDR ≤ 0.001, p < 9.0×10−4)

associated with chronological age (Figure 1A, and

Additional file 1: Figure S1) after adjusting for appro-

priate biological and technical covariates including

race, gender, study site, and estimates of residual

sample contamination with non-targeted cell types

(see Methods). The effect size of a ten-year difference in

age for individual gene expression was modest (up to

10%). The majority of the associations with age remained

significant in the “disease free” (no report of diabetes, can-

cer, or cardiovascular diseases; n = 839), sex- and ethnic-

specific subgroups (Additional file 2: Table S2).

Gene set enrichment analysis [22,23] identified the ribo-

nucleoprotein complex, mitochondrial ribosome, and oxi-

dative phosphorylation pathway genes enriched among

age-associated genes. After stratifying by the effect direc-

tion of age on expression, the genes with expression nega-

tively associated with age were found to be enriched with

ribosomal/translation and mitochondrial/oxidative phos-

phorylation genes (Additional file 1: Table S3). In contrast,
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genes with expression positively associated with age were

enriched with pathways relating to regulation of transcrip-

tion, the cytoskeleton, protein phosphorylation, and re-

sponse to insulin.

Co-expression network analysis

To identify consensus networks of genes with coordinated

expression profiles associated with age, we used a weighted

gene co-expression network analysis [24] (WGCNA), com-

bined with a stability analysis (see Methods), and examined

an expanded set of 4,502 genes associated with age at a

more liberal FDR threshold of ≤ 0.01 (Figure 1A and

Additional file 2: Table S2). Six mutually exclusive gene

network modules were identified, labeled as colors: ‘black’,

‘blue’, ‘turquoise’, ‘brown’, ‘yellow’, and ‘green’. Net-

work modules ranged in size from three to 1,466

genes, and had significant module eigengene (1st eigen-

vector) associations with age with p ranging from

1.8×10−30 to 1.3×10−6 (Figure 2 and Additional file 1:

Table S4). Genes assigned to the same module had

moderately to strongly correlated expression (absolute

median r ranging 0.41 – 0.62). To better understand

the relationships between modules, we examined the

correlations between eigengenes of each module, and

found a very strong negative correlation between the ‘blue’

and ‘turquoise’ module eigengenes (correlation = −0.90;

Additional file 1: Figure S2).

Gene set enrichment analysis revealed significantly

(FDR < 0.05) enriched pathways within two of the six

modules, relative to all monocyte expressed genes (Table 1).

The 217 genes assigned to the ‘blue’ module, all with ex-

pression negatively associated with age, were enriched with

1) ribonucleoprotein complex genes (including translation,

ribosome biogenesis, and RNA processing genes) and 2)

mitochondrion genes (including oxidative phosphorylation

and mitochondrial ribosome genes). The largest gene net-

work module, the ‘turquoise’ module, was assigned 1,466

genes which were significantly enriched with nuclear

Figure 1 Study design and results summary. A) CD14+ monocytes were purified from 1,264 peripheral blood samples by magnetic bead

selection, and gene expression levels were measured using microarray. Age-associated expression (FDR≤ 0.01) was detected for 4,502 genes,

which were further analyzed using the indicated in silico approaches to identify and investigate potential age-related pathways. Results support a

potential transcriptomic decline in ribosomal protein synthesis machinery, as well as declines in oxidative phosphorylation and autophagy gene

expression with age. Measures of DNA methylation and pulse pressure were incorporated to investigate DNA methylation as a potential mediator

for the effect of age on gene expression, and to prioritize age-associated gene expression for potential relevance to vascular age. B) CD4+ T cells

were purified in a subset of the peripheral blood samples by magnetic bead selection, and gene expression levels were measured using microarray.

Age-associated genes (FDR < 0.01) were identified, revealing 30 genes with expression significantly associated with age in both monocytes and T cells

from the same individuals. No pathways were significantly (FDR < 0.05) enriched among age-associated genes in T cells; however, suggestive evidence

was observed for the ribonucleoprotein complex and immune response pathways.
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lumen genes, many of which with known roles in RNA

splicing and the regulation of transcription.

The other four co-expression network modules

(shown in Figure 2 as ‘black’, ‘brown’, ‘yellow’, and

‘green’) were found to have weakly to moderately corre-

lated eigengenes (Additional file 1: Figure S2) which

were positively associated with older age. No signifi-

cantly enriched pathways were detected within these

four modules with a false discovery rate of 5%; however,

there were pathways enriched with nominal significance

among these modules, including insulin signaling

(‘brown’, fold enrichment = 19.9, p = 8.88×10−4), immune

response (‘yellow’, fold enrichment = 5.1, p = 1.97×10−4),

and regulation of apoptosis (‘green’, fold enrichment 3.9,

p = 1.12×10−3).

Autophagy-related gene expression

Autophagy is a degradation pathway that utilizes

double-membrane vesicles, termed autophagosomes, to

engulf long-lived proteins, damaged organelles, and

Figure 2 Co-expression network modules associated with chronological age. Six mutually exclusive gene network modules with coordinate gene

expression profiles associated with chronological age were identified in 1,264 monocyte samples (using WGCNA), ranging in size from 3 to 1,466

genes. For each module (x-axis), the partial correlation between age and the module eigengene is shown (y-axis); covariates included race, sex,

site of data collection, and residual sample contamination with non-targeted cells. Below each module is the number of genes assigned to the

module, and the direction of expression association with age; network modules discussed in further detail include the ‘black’ module (containing

three genes: MCL1, TSC22D3, and CEBPD), and the ‘blue’ and ‘turquoise’ modules (which were significantly enriched with age-related pathways

shown in Table 1). The significance of the module eigengene association with age is denoted as: * p < 0.008 (Bonferroni adjusted significance

threshold for testing six modules, alpha = 0.05), and ** p≤ 1x10−6.

Table 1 Significantly enriched Gene Ontology terms among co-expression network modules in CD14+ monocytes

Gene Ontology term Gene Count Direction of age effect Fold Enrichment Nominal P-value FDR

‘Blue’ network module (217 genes; 217↓0↑)

Ribonucleoprotein complex: 58 (58↓0↑) 5.6 5.71E-29 7.40E-26

Translation 41 (41↓0↑) 6.9 3.48E-23 5.20E-20

Ribosome biogenesis 16 (16↓0↑) 7.1 4.57E-09 6.84E-06

RNA processing 26 (26↓0↑) 2.8 5.25E-06 7.86E-03

Mitochondrion: 61 (61↓0↑) 3.2 5.67E-18 7.36E-15

Oxidative phosphorylation 15 (15↓0↑) 10.0 1.57E-10 2.35E-07

Respiratory chain complex I 8 (8↓0↑) 11.3 4.55E-06 5.90E-03

‘Turquoise’ network module (1,466 genes; 501↓965↑)

Nuclear lumen: 199 (48↓151↑) 1.4 9.05E-07 1.32E-03

RNA splicing 59 (17↓42↑) 1.8 1.43E-05 2.54E-02

Results from gene set enrichment analysis are presented (from DAVID) for co-expression network modules with significantly enriched Gene Ontology (GO) terms

(FDR < 0.05). No significant enrichment was observed among the ‘black’ , ‘brown’ , ‘yellow’ , or ‘green’ network module genes; background genes included all

10,898 genes with expression detectable in 1,264 CD14+ monocyte samples.

↑ genes with expression positively associated with age; ↓ genes with expression negatively associated with age.
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invasive pathogens, and to transport these cargos to the

lysosomes for degradation [25]. In the aging field, im-

paired autophagy is considered one of the principal de-

terminants of cellular aging, which is supported by

in vitro and animal study findings that autophagy de-

clines with age [26]. However, studies of autophagy and

age in humans are sparse.

One of the most significant age-gene expression asso-

ciations we observed in monocytes from 1,264 individ-

uals was with MCL1 (myeloid cell leukemia sequence 1;

FDR = 7.6×10−16). MCL1, a known inhibitor of autophagy

and apoptosis, is a member of the Bcl-2 (B-cell CLL/

lymphoma 2) family, which includes many other proteins

known to regulate autophagy and apoptosis [27-29]. The

positive relationship between MCL1 expression and age

tends to be linear across the range of ages (55 – 94 years)

in this population (Additional file 1: Figure S3). We con-

firmed an age-associated increase in MCL1 mRNA expres-

sion in a subset of the population using RNA sequencing

technology (n = 373; p = 2.98×10−5; Additional file 1: Figure

S4). MCL1 gene expression was also significantly correlated

with MCL1 protein expression measured in a subset of the

population using Western Blot for (n = 30, r = 0.42;

p-value = 0.02; Additional file 1: Figure S5).

MCL1 was assigned to the co-expression network

module whose eigengene was most significantly asso-

ciated with age (‘black’, peigengene = 1.79×10−30). In

addition to MCL1, the ‘black’ module contained two

other genes with expression positively associated with age –

TSC22D3 (TSC22 domain family, member 3; FDR =

6.69×10−24) and CEBPD (CCAAT/enhancer binding pro-

tein, delta; FDR = 3.82×10−15), which encode transcription

factors involved in the suppression of inflammation

and apoptosis [30,31]. While a common regulator for

these three ‘black’ module genes has not been identi-

fied, the limited literature available points towards cy-

tokines such as IL-2 (Interleukin 2) and IL-6 in the up-

regulation of ‘black’ module gene expression, possibly

through the activation of STAT proteins [30,32-34].

Notably, STATs 1, 3, 4, and 5A were also found in our

list of genes that increase expression with age (FDR =

3.59 ×10−6, 5.40 ×10−7, 6.46 ×10−5, and 2.49×10−3,

respectively).

Given the limitation of the WGCNA network ana-

lysis (hierarchical clustering only allows single module

membership), and the known role for MCL1 in the

inhibition of autophagy [29], we next examined the

relationship between age and expression for key au-

tophagy genes disregarding network module member-

ship. The associations of age and gene expression, as

well as the previously characterized protein-protein

interactions [35], are shown for key autophagy genes

in Figure 3. Among the well-known regulators of

autophagy within the Bcl-2 family [36], age was positively

associated with expression of inhibitors of autophagy (i.e.

MCL1, BCL2, and BCL2L2; FDR: 7.60×10−16 – 1.15×10−3),

and negatively associated with expression of activators of

autophagy (i.e. BAD and BID; FDR: 8.28×10−7 and

1.18×10−4, respectively). Negative effects of age on gene

expression were also observed for genes which encode

proteins critical for autophagosome formation [26], in-

cluding autophagy machinery genes ATG3, ATG5, ATG7,

and GABARAPL2 (FDR ranging 3.48×10−4 – 1.8×10−3).

Additionally, we observed a positive effect of age on the

expression of autophagy inhibitors belonging to the PI3K/

Akt signaling pathway (MTOR, IL10RA, STAT3, JAK1,

PDPK1, IL2RB; FDR ranging 1.45×10−8 - 9.88×10−4), while

negative effects of age were observed for a PI3K/Akt sig-

naling pathway gene important for autophagy activation

[37,38], AMPK (PRKAG1, FDR = 4.87x10−7). However, ex-

ceptions to the apparent age-dependent transcriptional de-

cline of autophagy gene expression were also observed,

such as increasing expression of pro-autophagy genes [39],

BECN1 (Beclin-1, autophagy related; FDR = 1.33×10−4)

and ULK1 (unc-51-like kinase 1; FDR = 9.97×10−5) with

older age.

The protein networks that regulate autophagy and

apoptosis are highly interconnected, and crosstalk has

been observed, particularly among Bcl-2 family mem-

bers [36]. However, an overall transcriptional decline

in apoptosis gene expression with age was not appar-

ent, as other key regulators of the apoptotic pathway,

such as pro-apoptotic CASP2, CASP8, and FOXO3, had

increasing expression associated with older age (FDR =

3.9×10−4, 4.5×10−3, and 6.0×10−8, respectively).

In vitro and animal studies have reported a decline in

autophagy with age [26,36,40-43]; however, to our

knowledge, only one other publication has reported

an age-associated decline in expression of autophagy

genes, which was carried out in a small number of

human brain tissue samples [44]. Overall, these find-

ings for major components of core autophagy ma-

chinery and upstream regulators provide evidence for

a transcriptional decline in autophagy gene expression

with age in human monocytes. The identification of

key genes contributing to a decline in autophagy are

of great interest, as pharmacologic activation of au-

tophagy has been linked with increasing lifespan in

animal models, including mice [45]. Further, dysfunc-

tional autophagy is now widely implicated in patho-

physiological processes of many age-related diseases

such as cancer, Alzheimer’s, diabetes, and cardiovas-

cular diseases [46]. However, longitudinal studies are

necessary to validate the age-related transcriptional

decline of autophagy gene expression in human

monocytes, and to investigate the relationship be-

tween these age-related patterns and the development

of age-associated diseases.
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Oxidative phosphorylation and protein synthesis

machinery gene expression

According to the mitochondrial theory of aging, mito-

chondria are among the key players contributing to the

aging process, whose dysfunction is linked with aging

[47] and age-related diseases [48,49]. Consistent with

previous findings from multiple human tissues and

across species [50], our data revealed a pattern of de-

creasing expression of mitochondrial oxidative phos-

phorylation (OXPHOS) genes with age in monocytes,

particularly among genes within the ‘blue’ network mod-

ule (Table 1). The ‘blue’ module genes were also

enriched with ribonucleoprotein complex genes. Upon

examining ‘blue’ module genes for previously character-

ized protein-protein interactions (Figure 4), two sub-

networks were identified: one relating to the mitochon-

drial electron transport chain, and the other composed

of ribonucleoprotein complex genes. The majority of the

ribonucleoprotein complex genes were ribosomal pro-

tein synthesis machinery genes.

To better understand the relationship between age and

global expression of OXPHOS and ribosomal protein

synthesis genes, we examined the associations between age

and expression of all OXPHOS (54 genes, GO:0006119),

ribosome (204 genes, GO:005840), and mitochondrial ribo-

somal genes (51 genes, GO:0005761) expressed in mono-

cytes, disregarding network module membership. Overall,

we found almost two-thirds of the expressed OXPHOS

genes (61%) and ribosomal genes (67%) had expression

negatively associated with age (FDR ≤ 0.01, Additional file

2: Table S5 and Additional file 2: Table S6). Among the

mitochondrial ribosomal genes, 80% had expression nega-

tively associated with age (FDR ≤ 0.01) (Additional file 2:

Table S7). Using western blot to measure the protein levels

of one mitochondrial ribosomal protein (MRPS12) in a sub-

set of our samples (n = 28), we found protein levels of

MRPS12 tended to correlate with mRNA expression levels

(r = 0.29, p = 0.14; Additional file 1: Figure S6).

The declining expression of oxidative phosphorylation

genes in monocytes is consistent with previous findings

across species [50-53], and from previous transcriptomic

studies of aging in human muscle [7,9], and brain [7] tis-

sues. Mitochondrial dysfunctional has been widely re-

ported with aging [54] and many age-related diseases

Figure 3 Age-associated expression pattern for the Bcl-2 family and other key autophagy genes suggest autophagy declines with age. The ‘black’

co-expression network module gene - MCL1 (circle), and other key genes (diamonds) encoding autophagy machinery and autophagy inhibitors/activators

(related to the Bcl-2 family and the PI3K/AKT signaling pathway) are shown, with edges representing previously characterized protein-protein interactions

(STRING v9.05). Color denotes the direction and significance resulting from the association of age and gene expression in 1,264 CD14+ human monocyte

samples, adjusting for race, sex, study site, and residual cell contamination with other cell types.
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[49]. A major finding of this work is the coordinated

down regulation of many oxidative phosphorylation and

protein synthesis machinery genes with age in mono-

cytes. However, the potential upstream mechanisms re-

sponsible for down-regulation of OXPHOS and protein

synthesis genes with age are unclear.

Potential drivers of an apparent age-related decline in

oxidative phosphorylation and protein synthesis machinery

gene expression

Six genes with reported regulatory roles for mitochon-

drial gene expression [55,56] were detectable in our

monocyte samples (PGC-1α, TFB2M, TFAM, MTERF,

NRF-2, POLRMT), two of which had expression signifi-

cantly and negatively associated with age (TFB2M - tran-

scription factor B2, mitochondrial, FDR = 9.94×10−9; and

MTERF - mitochondrial transcription termination factor,

FDR = 1.44×10−4). However, there were no detectable

transcriptional changes with age for PCG-1α, a master

regulator of mitochondrial biogenesis, which indirectly

up-regulates expression of nuclear OXPHOS genes,

mitochondrial protein synthesis machinery, and mito-

chondrial protein import genes [57].

To identify potential transcriptional regulators for the

coordinated expression of oxidative phosphorylation and

protein synthesis machinery genes observed in mono-

cytes, we next looked for enrichment [22] of transcrip-

tion factor binding sites (TFBS) among genes assigned

to the ‘blue’ co-expression network module. No TFBS

were significantly (FDR < 0.05) enriched among ‘blue’

module genes compared to all monocyte expressed

genes. The ‘turquoise’ module on the other hand, which

was strongly and negatively correlated with the ‘blue’

module (r < −0.90; Additional file 1: Figure S2), con-

tained a large number of genes (1,466 genes) which were

enriched with binding sites for over 50 different transcrip-

tion factors compared to all monocyte expressed genes

(Additional file 2: Table S8). Further, the ‘turquoise’ mod-

ule included 238 genes with known roles in regulation of

transcription (GO:0045449), including a number of tran-

scription factors with expression increasing with older age

(FOXO4, YY1, NFKB1, AHR; FDR ranging 1.48×10−7 –

Figure 4 Protein functions and interactions between co-expressed genes assigned to the ‘blue’ network module. In 1,264 monocyte samples,

older age was associated with lower expression of 217 co-expressed genes assigned to the ‘blue’ network module, 77 of which (shown as diamonds)

have experimental evidence for interaction with other ‘blue’ module genes (interactions shown as edges, from STRING v9.1). Color denotes gene

membership to Gene Ontology (GO) pathways enriched in the ‘blue’ module relative to all monocyte expressed genes (FDR < 0.05), including the

electron transport chain/oxidative phosphorylation pathway (blue) and ribonucleoprotein complex pathway (green, purple, and yellow) – comprised of

protein synthesis machinery genes from the mitochondrial ribosome (green), the ribosome (purple), and RNA processing genes (yellow). Genes relating

to other cellular processes (white) include mitochondrial protein import genes (TOMM20, TOMM22) and DNA damage response genes (NSMCE2,

SUMO2, SUMO1, TDP2); ‘blue’ module genes without reported protein-protein interactions are not shown (140 genes).
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6.50x10−4) and chromatin remodelers which increased with

older age (SWI/SNF family genes: ARID1A, SMARCA4,

SMARCA2, SMARCC2; FDR ranging 1.10×10−5 –

5.94×10−4) (Additional file 2: Table S9). Future studies

may benefit from our identification of several chroma-

tin remodeler and transcriptional modifier genes with

expression profiles strongly correlated with an apparent

coordinated transcriptional decline of key genes re-

quired for mitochondrial biogenesis.

Paradoxically, inhibition of autophagy should reflect

an anabolic state and increasing rates of protein synthe-

sis and oxidative phosphorylation [58]; however, in the

aging monocyte transcriptome we observed a potential

transcriptional decline in autophagy, and a concomitant

decline in OXPHOS and protein synthesis gene expres-

sion with age. Intriguingly, a decline in AMPK activity

with age could potentially explain this paradox, given

the dual role of AMPK to activate autophagy and mito-

chondrial biogenesis [37,57,59]. Similar to the decline in

AMPK activity that has been previously reported in aged

mice [54], here, we reported decreased expression of the

regulatory subunit of AMPK (PRKAG1). These results

provide clues for further investigations of the role of

AMPK dysfunction in aging, and identify potential tran-

scriptional regulators of an age-related decline in oxida-

tive phosphorylation and ribosomal protein synthesis

machinery gene expression.

Epigenomic regulation of age-associated gene expression

To investigate DNA methylation as a potential regulator

of the aging transcriptome, we performed lookups using

the list of expression-associated methylation sites (eMS)

that we recently reported from the same 1,264 mono-

cyte samples [14]. We identified 48% of age-associated

genes (1,304 genes, FDR ≤ 0.001) harboring eMS.

Methylation profiles were both negatively correlated

(69%; range: −0.77, −0.13) and positively correlated

(31%; range: 0.13, 0.73) with gene expression profiles.

Using mediation analyses to investigate DNA methylation

as a potential mediator for the effect of age on gene expres-

sion, 17% of age-associated genes (454 genes, FDR ≤ 0.001)

were identified harboring CpG sites whose degree of

methylation significantly mediated (pindirect < 0.05) the effect

of age on gene expression (Additional file 2: Table S10), in-

cluding a similar percentage of genes from each of the three

age-associated pathways: five OXPHOS genes (21%), 18

ribosomal genes (18%), and five autophagy genes (19%)

(Table 2). The majority of the mediation effects had similar

directions of effect as the overall effect of age on gene

expression (85%).

Different from previous studies of the aging transcrip-

tome that did not have measures of DNA methylation,

our concurrent transcriptomic and methylomic profiling

of the same batch of monocytes allowed us to detect

genes harboring CpG sites with methylation profiles

which significantly mediated the associations between

age and gene expression. These potentially functional

CpGs are enriched in predicted enhancer regions com-

pared to all CpGs measured by microarray [14,21], sug-

gesting that DNA methylation of enhancers could play a

role in the regulation of gene expression with age. How-

ever, we cannot rule out the reverse causality of age-

associated expression affecting methylation profiles or

uncontrolled (hidden) variation resulting in the correl-

ation between methylation and gene expression. Add-

itionally, the majority of the age and gene expression

associations (direct effects) remained significant after

adjusting for CpG methylation, suggesting that regula-

tors other than the measured CpG methylation likely

contribute to the relationship between age and gene ex-

pression. Moreover, further investigations of other po-

tential drivers for gene expression changes with age are

warranted.

Transcriptomic profiles associating with pulse pressure

To see if age-related changes in gene expression may

also reflect vascular age, we examined the relationships

between age-associated gene expression profiles and a

surrogate of vascular age, pulse pressure. Of the 2,704

genes associated with age (FDR ≤ 0.001) in the 1,264

monocyte samples, 15 genes were also associated with

pulse pressure (FDRgenome-wide ≤ 0.01), after adjusting for

age and appropriate biological and technical covariates

(Additional file 2: Table S11). The gene most signifi-

cantly associated with pulse pressure was PTGER2

(prostaglandin E receptor 2 (subtype EP2)), which had

increasing expression associated with higher pulse pres-

sure (FDRgenome-wide = 3.15×10−7). Additionally, the increas-

ing expression of MCL1, a known inhibitor of autophagy

[29] and one of the most significant associations we de-

tected with age in monocytes, was also independently asso-

ciated with higher pulse pressure.

Transcriptomic profiles associated with age in 423 T cell

and monocyte samples

We carried out transcriptomic profiling of CD4+ T cell

samples using microarrays (Illumina HumanHT-12 v4

Expression BeadChip) for a subset of the MESA samples

with transcriptomic data in monocytes (n = 423), and de-

tected 10,322 genes expressed in both T cell and mono-

cyte samples (Figure 1B). A comparison of the effect of

age on gene expression in T cells and monocytes is

shown in Figure 5, which reveals 188 genes with expres-

sion significantly associated with age only in T cells, 383

genes associated with age only in monocyte samples,

and 30 genes with age-associated expression in both the

T cell and monocyte samples (FDR < 0.01, Additional file

2: Table S12). The majority (93%) of the genes detected
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with age-associated expression in the subset of 423

monocyte samples were also significantly (FDR ≤

0.001) associated with age in the full sample of 1,264

monocytes, with similar effect directions observed for

all genes (Additional file 1: Figure S7 and Additional

file 2: Table S13).

Age-associated genes identified in the subset of 423

monocyte samples were enriched with ribonucleoprotein

complex genes, similar to results from the expanded

sample size of monocytes. After stratifying by the effect

direction, the genes with expression negatively associ-

ated with age were enriched with ribonucleoprotein

Table 2 Age-associated methylation predicted to mediate the relationship between age and expression of oxidative

phosphorylation, ribosome, and autophagy genes

Age ~ Methylation Methylation ~ cis Gene expression Age ~ Gene expression

CpG ID Chr Cor FDR Gene Cor FDR Indirect Direct Total

Beta (SE) P-value Beta (SE) P-value Beta (SE) FDR

Oxidative phosphorylation genes from gene ontology (GO:0006119):

cg07388493 1 −0.4 2.4E-42 NDUFS5 0.22 1.1E-12 −0.097 (0.014) 2.7E-12 −0.09 (0.03) 1.9E-03 −0.19 (0.03) 1.2E-08

cg24704287 19 −0.17 1.6E-07 NDUFB7 0.16 1.3E-05 −0.037 (0.009) 1.8E-05 −0.11 (0.03) 1.8E-05 −0.15 (0.03) 9.4E-06

cg09267188 8 −0.14 2.1E-05 UQCRB −0.13 1.1E-03 0.028 (0.007) 3.7E-05 0.10 (0.03) 9.3E-05 0.13 (0.03) 1.0E-05

cg27246938 7 −0.11 7.5E-04 NDUFB2 −0.24 2.5E-14 0.030 (0.007) 6.1E-05 −0.14 (0.03) 1.1E-07 −0.11 (0.03) 1.2E-04

cg09876992 22 −0.32 3.3E-26 NDUFA6 −0.13 8.5E-04 −0.027 (0.007) 1.8E-04 −0.17 (0.03) 7.2E-10 −0.20 (0.03) 6.9E-04

Ribosome genes from gene ontology (GO:005840):

cg17328880 19 −0.25 3.4E-16 MRPL34 0.29 4.0E-22 −0.070 (0.01) 7.6E-12 −0.07 (0.03) 4.8E-03 −0.14 (0.03) 3.0E-06

cg04865726 1 −0.27 7.5E-19 MRPL20 0.24 1.2E-14 −0.069 (0.011) 7.7E-11 −0.12 (0.03) 3.9E-06 −0.19 (0.03) 9.2E-09

cg08885076 2 −0.2 8.1E-11 MRPL30 0.2 7.6E-10 −0.042 (0.008) 6.9E-08 −0.05 (0.03) 5.3E-02 −0.09 (0.03) 1.1E-03

cg16399745 12 −0.29 6.4E-21 MRPL51 −0.15 8.4E-05 0.036 (0.008) 5.5E-06 −0.15 (0.03) 1.1E-08 −0.12 (0.03) 6.6E-05

cg16604233 6 −0.26 3.0E-17 RPS18 −0.16 4.6E-06 0.042 (0.01) 1.6E-05 −0.16 (0.03) 8.1E-08 −0.11 (0.03) 1.3E-04

cg16000022 11 −0.16 1.8E-06 MRPL21 −0.15 4.9E-05 0.028 (0.007) 2.8E-05 0.10 (0.03) 1.3E-04 0.13 (0.03) 6.9E-06

cg17614703 5 0.14 3.2E-05 CANX −0.13 7.7E-04 0.028 (0.007) 2.9E-05 0.10 (0.03) 8.2E-05 0.13 (0.03) 3.2E-05

cg15829665 6 −0.12 5.5E-04 MRPL18 −0.13 1.3E-03 0.028 (0.007) 3.6E-05 0.10 (0.03) 9.3E-05 0.13 (0.03) 4.6E-05

cg21252105 9 −0.18 2.8E-08 MRPL41 0.15 4.3E-05 −0.035 (0.009) 7.8E-05 −0.10 (0.03) 2.2E-04 −0.13 (0.03) 2.7E-05

cg14663914 19 −0.11 1.1E-03 RPS15 0.17 1.7E-06 −0.027 (0.007) 8.9E-05 −0.17 (0.03) 1.5E-09 −0.20 (0.03) 6.5E-06

cg05017994 5 0.16 9.4E-07 MRPL36 −0.15 2.3E-05 −0.039 (0.01) 9.6E-05 −0.14 (0.03) 3.2E-07 −0.18 (0.03) 1.9E-07

cg23163653 6 −0.16 3.8E-07 ABCF1 −0.13 6.2E-04 −0.027 (0.007) 1.0E-04 −0.17 (0.03) 1.2E-09 −0.20 (0.03) 1.3E-03

cg10700019 8 −0.11 9.8E-04 RPL8 −0.28 5.2E-21 0.033 (0.008) 1.1E-04 0.12 (0.03) 7.7E-06 0.15 (0.03) 1.0E-05

cg27209993 6 −0.14 2.7E-05 MRPS10 0.17 4.0E-07 −0.023 (0.006) 1.3E-04 −0.06 (0.03) 2.7E-02 −0.09 (0.03) 1.1E-03

cg00435173 17 −0.2 3.7E-10 RPL27 0.13 1.1E-03 0.033 (0.009) 1.4E-04 0.12 (0.03) 4.8E-06 0.15 (0.03) 8.0E-04

cg00530414 16 −0.21 8.3E-12 RPS15A −0.15 3.9E-05 0.030 (0.008) 1.8E-04 −0.13 (0.03) 5.0E-06 −0.09 (0.03) 1.0E-03

cg22803868 17 −0.12 6.1E-04 NUFIP2 −0.14 2.0E-04 0.023 (0.007) 4.7E-04 0.11 (0.03) 8.8E-05 0.13 (0.03) 7.1E-05

cg13084677 4 0.12 3.8E-04 RPL9 0.19 3.5E-09 0.017 (0.006) 4.6E-03 −0.12 (0.03) 1.8E-05 −0.10 (0.03) 7.7E-04

Autophagy genes from Figure 3:

cg24213719 18 0.19 1.9E-09 BCL2 0.13 7.2E-04 0.028 (0.007) 3.3E-05 0.10 (0.03) 1.4E-04 0.13 (0.03) 1.2E-03

cg11789534 22 −0.17 1.3E-07 IL2RB 0.16 4.1E-06 −0.032 (0.008) 4.6E-05 0.09 (0.02) 4.2E-05 0.06 (0.02) 9.9E-04

cg21826784 1 −0.12 3.4E-04 FRAP1 −0.13 9.5E-04 −0.027 (0.007) 1.2E-04 −0.17 (0.03) 2.2E-09 −0.20 (0.03) 2.3E-05

cg22117188 3 −0.13 1.4E-04 PRKCD −0.18 1.9E-07 −0.027 (0.007) 1.5E-04 −0.17 (0.03) 5.2E-10 −0.20 (0.03) 8.6E-05

cg18728264 11 −0.19 1.9E-09 IL10RA 0.14 3.9E-04 −0.020 (0.006) 4.3E-04 0.21 (0.03) 1.7E-13 0.19 (0.03) 1.5E-08

CpGs whose degree of methylation significantly associated with age (FDR ≤ 0.001), cis-gene expression (±1 MB; FDR ≤ 0.001), and was predicted to mediate

(indirect p-value < 0.05) the total effect (total beta, SE, FDR) of age on gene expression. Results include only the most significant mediating CpG identified per

gene for oxidative phosphorylation genes (from Gene Ontology pathway GO:0006119), ribosome genes (from GO:005840) and autophagy genes (from Figure 3),

and are sorted first by pathway, then by the significance of the mediation effect (full mediation results are presented in Additional file 2: Table S10). The direct

effects of age on gene expression not supported to be mediated by methylation are also shown (direct beta, SE, p-value). Analyses included 1,264 CD14+

monocyte samples; partial correlations (cor) were adjusted for sex, race, study site, residual contamination with non-targeted cells, and microarray chip effects.
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complex and mitochondrion genes, while genes with ex-

pression positively associated with age were enriched for

cellular biosynthetic processes (Additional file 1: Table

S14). The down-regulated mitochondria genes included

ATP synthase complex genes (ATP5E, ATP5S, ATP5G1,

ATP5I, ATP5G3) and electron transport chain genes

(NDUFS5, TXNRD1, NDUFS3, CRYZL1) which are key

genes for oxidative phosphorylation.

No pathways were significantly (FDR < 0.05) enriched

among genes with age-associated expression in T cells;

however, there was suggestive enrichment for the ribo-

nucleoprotein complex among genes with expression

negatively associated with age, and for the immune re-

sponse pathway among genes with expression positively

associated with age (Additional file 1: Table S14). Provid-

ing further evidence for a transcriptional decline of ribo-

somal protein synthesis genes with age in T cells, the

majority (62%) of the ribonucleoprotein complex genes

with expression profiles negatively associated with age in

monocytes were also negatively associated with age in T

cells (p < 0.05). However, the overall decline of oxidative

phosphorylation gene expression with older age that was

detected in monocytes was not detectable in T cells.

These results, from a large number of purified T cell and

monocyte samples from the same individuals, identify only

a small number of genes with transcriptomic profiles asso-

ciated with aging in both cell types, supporting the idea

that some age-related changes may be cell-type specific.

However, the potential decline in protein synthesis ma-

chinery gene expression observed in both cell types, and

previously reported in human blood leukocytes [10] and

brain tissue [6], further support the hypothesis that some

transcriptomic changes are conserved to varying degrees

across cell types.

Limitations of the study

Several limitations of the study should be noted. Our in-

vestigation included adults aged 55 to 94 years; there-

fore, these results may not be applicable to younger

populations. Also, our primary analysis used microarrays

to measure gene expression rather than RNA sequen-

cing, which may have missed low abundance genes. The

cross-sectional nature of the investigation also limits in-

ferences for the associations of gene expression with

chronological age. Longitudinal analyses are necessary to

confirm the effect of age on expression of identified

genes and gene networks. We also acknowledge that the

analyses of CpG methylation as a potential mediator of

the effect of age on gene expression should be inter-

preted with caution since statistical mediation does not

differentiate correlation from causation. Lastly, some of

the age-associated transcriptional differences we ob-

served may not reflect differences in protein levels or

protein activity, although we have quantified protein

levels using western blot for two of our transcriptional

signals.

Conclusions
In this transcriptomic study of purified monocytes from

a large, multi-ethnic and mixed gender population, older

age appears to be associated with a transcriptomic de-

cline in ribosomal protein synthesis machinery, oxidative

phosphorylation, and autophagy pathways. The ability to

detect a large number of biologically plausible gene ex-

pression changes support the use of CD14+ monocytes,

a readily accessible cell population, as a model for fur-

ther investigations of human aging, including the poten-

tial decline of autophagy and mitochondrial biogenesis

with age. Our data also provides clues to the potential

drivers of these transcriptomic changes with age, such as

chromatin remodeler genes and DNA methylation. Fur-

ther functional work is required to investigate the causes

and consequences of these mRNA expression alterations

with age.

Our sample size of purified T cells from a subset of

the population is also the largest reported to date, which

allowed sufficient power to detect age-sensitive genes,

and provided suggestive evidence for transcriptomic al-

terations in ribosomal protein synthesis machinery and

Figure 5 Comparison of the effect of age on gene expression in T

cells and monocyte samples. The correlation between age and gene

expression is shown in T cells (y-axis), compared to monocytes (x-axis)

from 423 individuals, including all 10,322 genes expressed in both T

cells and monocytes. Color indicates genes with expression

significantly associated with age (FDR < 0.01) in T cells (green, 188

genes) or monocytes (red, 383 genes), both T cells and monocytes

(blue, 30 genes), or neither T cells nor monocytes (grey); association

analyses were adjusted for race, sex, study site, and residual cell

contamination with non-target cells.
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immune response pathways with age. The full list of

age-genes identified from either CD4+ T cells or CD14+

monocytes harbors many strong candidate genes for fu-

ture studies of the aging process. In designing such ex-

perimental studies one may want to consider that there

may be tissue- or cell-specific changes with age, al-

though some patterns of aging are likely similar between

different human tissues.

Methods
Study population

The Multi-Ethnic Study of Atherosclerosis (MESA) was

designed to investigate the prevalence, correlates, and

progression of subclinical cardiovascular disease in a

population cohort of 6,814 participants. Since its incep-

tion in 2000, five clinic visits collected extensive clinical,

socio-demographic, lifestyle, behavior, laboratory, nutri-

tion, and medication data [60]. The present analysis is

based on analyses of purified monocyte and T cell sam-

ples from the April 2010 – February 2012 examination

(Exam 5) of 1,264 randomly selected MESA participants

(55 – 94 years old, Caucasian (47%), African American

(21%) and Hispanic (32%), female (51%)) from four

MESA field centers (Baltimore, MD; Forsyth County,

NC; New York, NY; and St. Paul, MN). The study protocol

was approved by the Institutional Review Boards at Johns

Hopkins Medical Institutions, Wake Forest University

Health Sciences, Columbia University Medical Center, and

the University of Minnesota. All participants signed in-

formed consent.

Purification of CD14+ Monocytes and CD4+ T cells

Centralized training of technicians, standardized proto-

cols, and extensive quality control (QC) measures were

implemented for collection, on-site processing, and ship-

ment of MESA specimens, and routine calibration of

equipment was performed. Blood was initially collected

in sodium heparin-containing Vacutainer CPTTM cell

separation tubes (Becton Dickinson, Rutherford, NJ) to

separate peripheral blood mononuclear cells from other

elements within two hours from blood draw. Subse-

quently, monocytes and T cells were isolated with anti-

CD14 and anti-CD4 monoclonal antibody coated mag-

netic beads, respectively, using autoMACS automated

magnetic separation unit (Miltenyi Biotec, Bergisch

Gladbach, Germany). Initially flow cytometry analysis of

18 specimens was performed, including samples from

all four MESA field centers, which were found to be

consistently > 90% pure.

DNA/RNA extraction

DNA and RNA were isolated from samples simultan-

eously using the AllPrep DNA/RNA Mini Kit (Qiagen,

Inc., Hilden, Germany). DNA and RNA QC metrics

included optical density (OD) measurements, using a

NanoDrop spectrophotometer and evaluation of the in-

tegrity of 18 s and 28 s ribosomal RNA using the Agilent

2100 Bioanalyzer with RNA 6000 Nano chips (Agilent

Technology, Inc., Santa Clara, CA) following manufac-

turer’s instructions. RNA with RIN (RNA Integrity)

scores > 9.0 was used for global expression microarrays.

The median of RIN for our 1,264 samples was 9.9.

Global expression quantification

The Illumina HumanHT-12 v4 Expression BeadChip

and Illumina Bead Array Reader were used to perform

the genome-wide expression analysis, following the Illu-

mina expression protocol. The Illumina TotalPrep-96

RNA Amplification Kit (Ambion/Applied Biosystems,

Darmstadt, Germany) was used for reverse transcription,

and amplification with 500 ng of input total RNA (at

11ul). 700 ng of biotinylated cRNA was hybridized to a

BeadChip at 58°C for 16 – 17 hours. To avoid potential

biases due to batch, chip, and position effects, a stratified

random sampling technique was used to assign individ-

ual samples (including five common control samples for

the first 480 samples) to specific BeadChips (12 samples/

chip) and chip position.

Epigenome-wide methylation quantification

The Illumina HumanMethylation450 BeadChip and HiScan

reader were used to perform the epigenome-wide methyla-

tion analysis. The EZ-96 DNA Methylation™ Kit (Zymo

Research, Orange, CA) was used for bisulfate conversation

with 1 μg of input DNA (at 45 μl). 4 μl of bisulfite-

converted DNA were used for DNA methylation assays,

following the Illumina Infinium HD Methylation protocol.

This consisted of a whole genome amplification step

followed by enzymatic end-point fragmentation, precipita-

tion, and resuspension. The resuspended samples were hy-

bridized on HumanMethylation 450 BeadChips at 48°C for

16 h. The individual samples were assigned to the Bead-

Chips and to chip position using the same sampling scheme

as that for the expression BeadChips.

Quality control and Pre-processing of microarray data

Data pre-processing and quality control (QC) analyses were

performed in R (http://www.r-project.org/) using Biocon-

ductor (http://www.bioconductor.org/) packages. For ex-

pression data, data corrected for local background were

obtained from Illumina’s proprietary software GenomeStudio.

QC analyses and bead type summarization (average bead

signal for each type after outlier removal) were performed

using the beadarray package [61]. Detection P-values were

computed using the negative controls on the array. The

neqc function of the limma [62] package was used to per-

form a normal-exponential convolution model analysis to

estimate non-negative signal, quantile normalization using
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all probes (gene and control, detected and not detected)

and samples, addition of a recommended (small) offset,

log2 transformation, and elimination of control probe data

from the normalized expression matrix. Multidimensional

scaling plots showed the five common control samples

were highly clustered together and identified three outlier

samples, which were excluded subsequently. For both

monocyte and T cell assays, we included 2% blind dupli-

cates. Correlations among technical replicates exceeded

0.997.

The Illumina HumanHT-12 v4 Expression BeadChip

included >47,000 probes for >30,000 genes (with unique

Entrez gene IDs). Statistical analyses excluded probes

with non-detectable expression in ≥90% of MESA sam-

ples (using a detection p-value cut-off of 0.0001), probes

overlapping repetitive elements or regions, probes with

low variance across the samples (<10th percentile), or

probes targeting putative and/or not well-characterized

genes, i.e. gene names starting with KIAA, FLJ, HS,

MGC, or LOC.

Bead-level methylation data were summarized in

GenomeStudio. Because the Illumina HumanMethyla-

tion450 BeadChip technology employs a two-channel

system and uses both Infinium I and II assays,

normalization was performed in several steps using the

lumi package [63]. We first adjusted for color bias using

“smooth quantile normalization”. Next, the data were back-

ground adjusted by subtracting the median intensity

value of the negative control probes. Lastly, data were

normalized across all samples by standard quantile

normalization applied to the bead-type intensities and

combined across Infinium I and II assays and both

colors. QC measures included checks for sex and race/

ethnicity mismatches, and outlier identification by

multidimensional scaling plots. The final methylation

value for each methylation probe was computed as the

M-value, essentially the log ratio of the methylated to

the unmethylated intensity [64]. The M-value is well

suited for high-level analyses and can be transformed

into the beta-value, an estimate of the percent methyla-

tion of an individual CpG site that ranges from 0 to 1

(thus M is logit(beta-value)).

The Illumina HumanMethylation450 BeadChip in-

cluded probes for >485,000 CpGs. Statistical analyses ex-

cluded CpGs with: “detected” methylation levels in <90%

of MESA samples using a detection p-value cut-off of

0.05, existence of any SNPs within 10 base pairs of the

targeted CpG, or overlap with a repetitive element or

region.

Pre-processing with global normalization removed

large position and chip effects across all probes; how-

ever, probe-specific chip effects were found for some

CpGs and gene transcripts, while probe-specific position

effects existed for some CpGs but were ignorable for all

gene transcripts. These probe-specific effects were in-

cluded as covariates in all subsequent analyses.

Pulse pressure measures

Blood pressure was measured 3 times at 2-minute inter-

vals using an automated oscillometric device (Dinamap

Monitor Pro 100, GE Healthcare, Milwaukee, WI) after

participants had rested for five minutes in the seated

position (MESA Exam 5). Appropriately sized cuffs were

used for blood pressure assessment. Blood pressure was

defined as the average of the second and third readings.

The average systolic and diastolic blood pressure values

were used to calculate pulse pressure, which was defined

as systolic minus diastolic blood pressure.

Association analyses

The overall goal of the association analysis was to iden-

tify associations, at the genome-wide level, between age

and gene expression, age and CpG methylation, and

transcript expression and CpG methylation. Association

analyses were performed using the linear model (lm)

function of the Stats package and the stepAIC function

of the MASS package in R. To identify gene transcripts

or methylation sites associated with age, we fit separate

linear regression models with age as a predictor of tran-

script expression or the M-value for each gene transcript

or CpG site, respectively. Covariates were sex, race/eth-

nicity, study site, expression/methylation chip, methyla-

tion position (for age-CpG methylation analyses only),

and residual sample contamination with non-targeted

cells (e.g. non-monocytes, see below). To identify methy-

lation sites associated with gene expression in cis, we fit

separate linear regression models with the M-value for

each CpG site (adjusted for methylation chip and pos-

ition effects) as a predictor of transcript expression for

any autosomal gene within 1 Mb of the CpG in question.

Covariates were age, sex, and race/ethnicity, study site,

expression chip, and residual sample contamination with

non-targeted cells. Sex- and ethnicity-stratified analyses

were performed as an internal validation and check of

generalizability. To look for potential population stratifi-

cation, we used EIGENSTRAT [65] to compute principal

components (PCs) for each race, based on Affymetrix

6.0 array genotype data [66], and examined the association

between the first five PCs and gene expression, as well as

CpG methylation, in race stratified analyses. Less than 1%

of expression transcripts and CpG methylation sites in

monocytes were associated with PCs in the Caucasian

and African American populations (FDR < 0.05). How-

ever, 14.7% of gene expression transcripts and 3.1% of

methylation sites in the Hispanic population were asso-

ciated with the first two PCs (FDR < 0.05); therefore,

analyses in the Hispanic population were adjusted for

the first two PCs. P-values were adjusted for multiple

Reynolds et al. BMC Genomics  (2015) 16:333 Page 12 of 17



testing using the q-value FDR method [67]. The re-

ported FDR was calculated at the genome-wide level for

all genes, CpGs, or cis-gene/CpGs that were tested.

Association analyses for individual gene transcripts

and pulse pressure were performed using the linear

model (lm) function in R. We fit separate linear regres-

sion models with transcript expression as a predictor of

pulse pressure. Covariates included age, sex, race/ethni-

city, study site, expression/methylation chip, methylation

position (for age-CpG methylation analyses only), and

residual sample contamination.

To estimate residual sample contamination for mono-

cyte and T cell data analysis, we generated separate enrich-

ment scores for neutrophils, B cells, T cells, monocytes,

and natural killer cells. We implemented a Gene Set

Enrichment Analysis [68] to calculate the enrichment

scores using the gene signature of each blood cell type in

the ranked list of expression values for each MESA sam-

ple. The cell type-specific signature genes were selected

from previously defined lists [69] and passed the following

additional filters: at least four-fold more highly expressed

in the targeted cell type than in other cell populations and

low expression levels in the targeted cells.

Functional annotation analysis

DAVID Bioinformatics Resources 6.7 was used to exam-

ine the enrichment (FDR < 0.05) of GO (Gene Ontology)

pathways among gene lists, relative to all genes

expressed and passing QC) [22,23]. Experimentally de-

termined protein-protein interactions listed in STRING

(Search Tool for the Retrieval of Interacting Genes/

Proteins v9.05 and v9.10) [35] were used to create

networks of biological connections. Cytoscape [70]

was used to visualize protein-protein interactions re-

ported by STRING.

Weighted gene Co-expression network analyses

For gene network analysis we pre-selected age-

associated genes at a less stringent FDR level of 0.01,

resulting in a subset of 4,129 genes. To cluster the

subset of 4,129 genes into network modules of highly

correlated transcripts, we applied the Weighted Gene

Co-Expression Network Analysis as implemented in the

R package WGCNA [24]. We used this method to first

construct a weighted network based on the pairwise cor-

relations among all transcripts considered, using soft

thresholding with parameter values chosen to produce

approximately a scale-free topology. Then, using the

topological overlap measure to estimate the network

interconnectedness, the transcripts were hierarchically

clustered. We used the default parameters of

WGCNA, except for changing the correlation type

from Pearson to biweight midcorrelation (which is

more robust to outliers) and set the minimum size

for module detection from 20 to 10. For each mod-

ule, we obtained the eigengene (the first eigenvector

of the within-module expression correlation matrix,

or the first right-singular vector of the standardized

within-module expression matrix).

Stability analysis and consensus modules

Unfortunately, the module structure identified by

WGCNA tends to be rather unstable, even when the

sample size is relatively large (in the hundreds). Stability

of the module structure can be assessed by repeatedly

making relatively small, random changes to the data and

re-running the analysis, and then assessing the agree-

ment between the resulting structures. One way of mak-

ing such changes to the data is by sampling random

subsets of the data (“sub-sampling”) which contain most

but not all of the samples. We performed sub–sampling

by obtaining a random sample of 80% of the observa-

tions (MESA participants), performing WGCNA on this

data subset (with module detection) and repeating this

process 200 times. Each of the 200 module assignment

was represented by an unsigned network in which all

transcripts assigned to the same module were connected

by an edge. The Jaccard index [71] was used to evaluate

the similarity between any two networks and is equal to

the number of edges shared by two networks divided by

the total number of edges in present in either network.

Hence, the Jaccard index ranges from 0 to 1, with larger

values indicating higher similarity between two networks

The values of the Jaccard index for the network con-

structed from the original data and any network ob-

tained from a sub-sampled data set were low with mean

value (across 200 replicates) in the range 0.25 - 0.30. To

increase the stability of the module assignment, we cal-

culated a consensus network composed of those edges

which were present in at least 70% of the 200 networks

constructed from the sub-sampled data sets (no minimum

size for consensus network modules). We then compared

several consensus networks, each based on 200 sub-

samples, resulting in Jaccard index values very near 0.90

and indicating much higher stability between consensus

networks compared with the (in)stability of networks from

individual datasets.

mRNA quantification using RNA seq

Expression levels accessed by microarray were com-

pared to results from RNA-sequencing in the subset

of the monocyte samples (n = 373), indicating excel-

lent reproducibility of microarray data (correlations

ranged from 0.45-0.86, median: 0.76). Detailed infor-

mation describing mRNA quantification is provided

in the Additional file 1.
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MCL1 and MRPS12 protein extraction and western

blotting

Following DNA/RNA extraction, protein pellet was pre-

cipitated from RLT Plus buffer (Qiagen, Inc., Hilden,

Germany) with acetone per manufacturer instructions.

Pellet was resuspended in 100 μl modified 4× Laemmli

buffer [72] (4% SDS, 250 mM Tris HCl, no glycerol, no

bromophenol blue, no β-mercaptoethanol) mixed 1:1

with 8 M Urea [73], with SigmaFAST Protease Inhibitor

Cocktail Tablet (Sigma-Aldrich, St. Louis, MO). Samples

were warmed to 55°C, and sonicated 4 × 30 seconds in a

Bioruptor (Diagenode, Denville, NJ). Protein concentra-

tion was determined using bicinchoninic acid microplate

assay (Thermo Scientific, Rockford, IL). Samples were

mixed 1:4 with 5x Loading Buffer Supplement (50% gly-

cerol, 0.02% bromphenol blue, 12.5% β-mercaptoethanol),

separated by SDS-PAGE on NuPage Novex 4-12% Bis-

Tris Midi gels (Life Technologies, Grand Island, NY),

and transferred to Immobilon Fl (Millipore, Billerica,

MA) PVDF membranes. Blots were blocked in non-fat

dry milk and incubated with antibodies to Mcl1 (Santa

Cruz Biotechnology, Santa Cruz, CA) (clone S-19, 1:500 di-

lution), MRPS12 (Proteintech Group, Chicago, Il) (rabbit

polyclonal, catalog #15225-1-AP, 1:333 dilution), and

GAPDH (Ablabs, Vancouver, British Columbia) (clone ga1r,

1:3000 dilution) overnight at 4°C. Secondary detection was

performed using IRDye 680 and 800 secondary antibodies

(LI-COR, Lincoln, NE), and imaged on an Odyssey Classic

scanner (LI-COR, Lincoln, NE).

Mcl-1 protein quantification: Mcl-1 often appears as a

doublet or triplet in western blot analysis, in agreement

with our own observations. These multiple bands are

thought to occur for a variety of reasons, including: an

alternative initiation site [74], alternative RNA splicing

[75], serine/threonine phosphorylation [76,77], and

perhaps most notably, and proteolytic cleavage of the N-

terminus [74,78,79]. The production, stability, and turn-

over of Mcl-1 variants is diverse, and thus we chose to

focus our quantitation on the dominant, high molecular

weight species (40 kDa), which likely corresponds to the

full length Mcl-1 protein. GAPDH was used as a loading

control because our gene expression analysis showed it

has low variance and no association with age (FDR =

0.32). Individual protein band quantification was per-

formed using Image Studio software (LI-COR, Lincoln,

NE). Target protein content was corrected for the con-

tent of GAPDH in samples.

Mediation analysis

We performed mediation analysis to investigate the hy-

pothesis that age may have an effect on gene expression

mediated through methylation alteration. We used

Structural Equation Modeling (SEM) with bootstrapping

as implemented in the R package lavaan [80] to estimate

direct and indirect effects (mediated through DNA

methylation) of age on gene expression.

Availability of supporting data

Microarray data presented in this manuscript has

been deposited in the NCBI Gene Expression Omni-

bus (GEO) repository and is accessible through GEO

Series accession number GSE56047. Other supporting

data are included in Additional file 1 and Additional

file 2.

Additional files

Additional file 1: Figure S1. Age-associations with the monocyte

transcriptome (page 3). Figure S2. Correlation between co-expression

network modules (page 4). Figure S3. Scatterplot of gene expression

and age for genes in the ‘black’ co-expression network module (page 5).

Figure S4. Correlation between MCL1 expression measured by microarray

and RNA-sequencing (page 6). Figure S5. MCL1 expression measured

using Western Blot (page 7). Figure S6. MRPS12 expression measured

using Western Blot (page 8). Figure S7. Comparison of the effect of age

on gene expression in 1,264 monocyte samples compared to results from a

subset of 423 samples (page 9). Table S1. Population characteristics (page 10).

Table S3. Gene set enrichment analysis for age-associated genes in

monocytes from 1,264 MESA participants (page 11). Table S4. Co-expression

network modules associated with age (page 12). Table S14. Gene set

enrichment analysis for age-associated genes in CD4+ T cells and CD14+

monocytes from 423 MESA participants (page 13). Supplementary Methods:

mRNA quantification using RNA seq (page 14–15). Supplementary

References (page 16).

Additional file 2: Table S2. Association between age and expression of

4,502 age-associated genes (FDR≤ 0.01) in 1,264 monocyte samples (Tab 1).

Table S5. Association between age and expression of 54 oxidative

phosphorylation genes (Tab 2). Table S6. Association between age and

expression of 204 ribosomal genes (Tab 3). Table S7 Association between

age and expression of 51 mitochondrial ribosome genes (Tab 4).

Table S8. Enrichment of transcription factor binding sites (TFBS) among

‘turquoise’ module genes (Tab 5). Table S9. Regulators of transcription

assigned to the ‘turquoise’ module negatively correlated with ‘blue’ module

expression (Tab 6). Table S10. Age-associated genes harboring cis-

methylation sites associated with age and predicted to mediate the effect of

age on cis-gene expression (Tab 7). Table S11. Gene expression associated

with age (FDR≤ 0.01) and a pulse pressure (FDR≤ 0.01) (Tab 8).

Table S12. Gene expression associated with age (FDR < 0.01) in CD4+ T cells

or CD14+ monocytes from 423 individuals (Tab 9). Table S13. Comparison of

age associations with gene expression in 423 CD14+ monocyte samples and

in the expanded CD14+ monocyte sample size (n = 1264) (Tab 10).
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