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Abstract

Background: Combating the action of plant pathogenic microorganisms by mycoparasitic fungi
has been announced as an attractive biological alternative to the use of chemical fungicides since
two decades. The fungal genus Trichoderma includes a high number of taxa which are able to
recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical

processes related to this ability have been uncovered so far, however.

Results: We analyzed genome-wide gene expression changes during the begin of physical contact
between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and
compared with gene expression patterns of mycelial and conidiating cultures, respectively. About
3000 ESTs, representing about 900 genes, were obtained from each of these three growth
conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed
during onset of mycoparasitism, and the expression of a subset thereof was verified by expression
analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the
groups representing posttranslational processing, and amino acid metabolism, and included
components of the stress response, reaction to nitrogen shortage, signal transduction and lipid
catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid

biosynthesis and of those involved in the catabolism of lipids and aminosugars.

Conclusion: The analysis of the genes overexpressed during the onset of mycoparasitism in T.
atroviride has revealed that the fungus reacts to this condition with several previously undetected
physiological reactions. These data enable a new and more comprehensive interpretation of the
physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol

strains by recombinant techniques.
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Background

Evolution has driven fungi to develop manifold different
lifestyles which enable them to successfully thrive in their
habitat. These include saprotrophic growth, parasitism on
plants and animals, symbiosis with plants and algae and
many more [1]. Thereby, a small group of genera and taxa
within the order Hypocreales have adopted the ability par-
asite other fungi [2]. The ability to utilize other fungi as a
source of nutrients and thus e.g. combat the action of
plant pathogenic fungi by antagonistic or mycoparasitic
fungi is an attractive biological alternative to the use of
chemical fungicides [3]. Members of the fungal genus
Hpypocrea/Trichoderma (Ascomycota, Hypocreales, Hypoc-
reaceae) contain many prominent examples of such bio-
control agents, because they not only antagonize plant-
pathogenic fungi [4,5], but are often also rhizosphere
competent and can even enhance plant growth and elicit
plant defence responses [5,6].

Development of improved biocontrol agents for agricul-
tural applications requires an understanding of the bio-
logical principle of their action. Consequently, some
molecular aspects of biocontrol by Trichoderma spp. - such
as the regulation and role of cell wall hydrolytic enzymes
and antagonistic secondary metabolites - have been stud-
ied [5]. More global analyses (e.g. by the use of substrac-
tive hybridiation techniques, proteomics or expressed
sequence tag (EST) approaches) have also been performed
with different Trichoderma species, but have suffered from
the fact that no full genome sequences of the used species
were available for an in depth interpretation of the results.
These studies mostly used a mix of different growth con-
ditions to generate snapshots of the genetic arsenal of
these fungi, rather than to study individual events during
the mycoparasitic attack [7-11].

The analysis of EST transcripts represents an efficient
means of characterizing the transcriptome of an organism,
particularly when an annotated genome database is
already available as in the present case. Trichoderma atro-
viride (teleomorph Hypocrea atroviridis) is one of the myc-
oparasitic Trichoderma spp., which has most often been
used to investigate this process, but has not yet been used
for a genomic analysis of mycoparasitism. Its 36.1 Mbp
genome was recently completely sequenced, and contains
11.100 genes [12], which offered the opportunity to per-
form a systematic and comprehensive study of the tran-
scriptional response to the presence of a host fungus. In
addition, 40.000 ESTs were prepared from mycelia culti-
vated under mycoparasitic and non-mycoparasitic (myce-
lial growth, sporulation) conditions in order to aid in the
annotation of its genome sequence.

The availability of these ESTs and an annotated genome
thus raised the possibility to obtain a genome-wide
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insight into the transcriptomic response of T. atroviride
under biocontrol-relevant conditions. We therefore used
this EST collection to identify genes whose is expression in
T. atroviride is modulated in relation to the presence of a
fungal host, and thus arrive at a global picture of the
molecular physiology of the fungus at the early stages of
this intriguing process.

Results

Characterization of the EST database

We constructed EST libraries of T. atroviride from four dif-
ferent cultivation conditions: (a) confrontation with two
plant pathogenic hosts (Botrytis cinerea, Rhizoctonia solani)
on agar plates in the dark, using an mRNA extraction time
point when their hyphae were only 1-2 mm apart; (b) a
respective control consisting of only T. atroviride growing
in the dark and not sporulating; (c) cultures illuminated
by blue light to induce conidiation [13]; and (d) mycelia
growing on plates in the dark and subjected to stress pro-
voked by mechanical injury, a method known to lead to
sporulation independent of light [13]. The rationale of
this approach was that genes which would be uniquely
expressed under (a) could so be distinguished from those
required for filamentous growth and sporulation by T.
atroviride.

After editing the mean length of the single read (see Mate-
rials and Methods), sequences ranged from 0.57 - 0.62 kb.
A summary of the properties of the EST database used is
given in Additional File 1. The representativeness of the
libraries was confirmed by the high degree of transcript
diversity (diversity index ranging from 60 to 75%). No
ESTs representing rRNA or prokaryotic contaminations
were found.

Functional analysis of the EST libraries

Since an annotated genome sequence was available for
this study, we developed the following approach for anal-
ysis of the ESTs: 27658 ESTs from all four libraries (cf.
Additional File 1) were incorporated into a custom-made
BLAST database, and the database then queried (BLASTX)
with a total of 6889 genes from the T. atroviride genome
database for which at least a putative function could be
predicted and which were members of one of the 21 KOG
groups (5 - 779 protein sequences/KOG group; Additional
File 2). The respective protein models were extracted as
FASTA files from the T. atroviride genome portal [12].
9478 ESTs, showed positive matches. A comparison of the
ESTs isolated under each of the four conditions illustrated
that they were derived to approximately equal portions of
ESTs from plate confrontations (2882), mycelial growth
(2913), and light induced sporulation (3003). The
number of hits from ESTs from plates subjected to
mechanical injury were significantly lower (680), possibly
due to the stress evoked by this growth conditions, which
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consequently had a negative impact on RNA quality, and
they were thus excluded from most of the comparisons.

The 9478 ESTs represented 2734 genes, thus indicating
that 39.7% of the queried genes were indeed detected in
our EST collection. We examined to which of the 21 KOG
classes the detected genes belonged and found that most
KOG classes contained a similar proportion of expressed
genes (29 + 7%). Only three classes (J, translation; U, pro-
tein secretion; and Z, cytoskeleton) exhibited a strongly
increased percentage of expressed genes (59, 53 and 51%,
respectively). EST-density (the number of individual ESTs
per average single identified gene) was highest in class J,
too (9.1) but also significantly elevated in class C (energy
metabolism; 4.2), indicating that these two classes may
contain the most abundantly expressed genes (Additional
File 2).

We also compared the distribution of the ESTs from the
three different cultivation conditions in the 21 KOG
groups. Since the EST collections for mycoparasitism,
mycelial growth and light-induced sporulation comprise
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roughly similar numbers of ESTs, KOG groups that con-
tain genes with similar expression patterns under all
investigated growth conditions should be indicated by
values close to 33.3% of ESTs for individual growth con-
dition). However, values ranging from 17 - 50% were
found (Table 1). When the ESTs from mycelial growth
were taken as a reference growth condition, an increased
number of ESTs for mycoparasitism was found in the
KOG groups N (cell motility), O (posttranslational
events), Z (cytoskeleton) and E (amino acid metabolism).
The latter accounted for 46% of all ESTs assigned to this
KOG group. Conversely, the light-induced, sporulating
cultures exhibited enhanced EST numbers for the groups
T (signalling), Z (cytoskeleton), K (transcription factors),
D (cell cycle), C (energy metabolism) and L (DNA-repair)
in comparison with mycelial growth.

Of the total 2734 genes, for which ESTs were found,
roughly 60% were found under only a single cultivation
condition (Fig. 1). The remaining 1082 genes were
retrieved from two or more conditions. Among these, 326
genes were found under all three conditions (mycopara-

Table I: KOG-distribution of ESTs isolated from mycoparasitism (MP), mycelial growth (MG) and light induced sporulation (LC)

MP MG LC Total Fraction

Cellular processes and signalling
M M_cell wall membrane 16 23 17 56 0,26
N N_cell motility 6 3 3 12 0,5
o Posttranslational events 464 355 328 1147 0,4
T Signalling 170 194 215 579 0,29
Y nuclear structures 19 35 28 82 0,23
U Secretion 149 159 162 470 0,31
\'% V-defense 34 42 62 138 0,24
w W-extracellular structures 6 14 14 34 0,17
VA cytosceleton 135 95 152 382 0,35
Information storage and Processing
A RNA processing 64 91 96 251 0,25
B chromatin dynamics 76 72 77 225 0,33
J protein synthesis 717 794 750 2261 0,32
K Transcription factors 131 115 |55 401 0,32
L repair 4] 32 50 123 0,33
Metabolism
C energy metabolism 255 252 273 780 0,33
D Cell cycle 52 67 88 207 0,25
E Amino acid metabolism 192 92 128 412 0,46
| Lipid metabolism 106 130 113 349 0,3
F Nucleotide metabolism 60 88 45 193 0,31
G Carbohydrate metabolism 126 163 171 460 0,27
P Inorganic metabolism 63 97 76 236 0,24

Total 2882 2913 3003 8798 average 0,306
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VENN diagram of distribution and sharing of genes
between onset of mycoparasitism, mycelial growth
and light-induced conidiation.

sitism, mycelial growth and light-induced sporulation),
and combinations of each two of these conditions were
found for 175-192 genes, respectively. Combinations
involving the genes expressed under mechanical injury
also displayed roughly equal percentages but significantly
lower numbers (35-41), which is however consistent with
the other data when the lower number of total ESTs from
this growth condition is taken into account. ESTs which
were found under at least two conditions were particularly
found in the KOG groups posttranslational modification,
signal transduction, protein synthesis and energy metabo-
lism (Table 2).

Genes involved in sporulation are overexpressed under
light-induced sporulation

As a prove of-principle that our dataset allows identifica-
tion of genes specifically induced under a certain condi-
tion, we tested the expression of a set of 15 genes which
are known to be involved in sporulation in Neurospora
crassa [14], and for which orthologues were identified in
T. atroviride (Kubicek et al.; ms in preparation). We found
a total of 26 transcripts for 10 of them. These ESTs were
distributed between mycoparasistism, mycelial growth,
light-induced conidiation and mycelial injury, respec-
tively, in a ratio of 4:4:14:4 (Additional File 3). When nor-
malized to the total number of ESTs/growth condition,
this shows that ESTs involved in sporulation (light-
induced conidiation; mycelial injury) are ca. 3.5- and 4.3-
fold overrepresented under the two conditions leading to
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sporulation, even though they were represented by differ-
ent numbers of ESTs. This demonstrates that the number
of ESTs in our sample correlates with their expression
under the respective condition. The presence of an
increased number of ESTs under one condition thus indi-
cates an upregulation of the respective gene.

Constitutively strongly expressed genes of T. atroviride
27 genes made up for 1034 of the 9478 ESTs found, and
they were found in comparable numbers under the three
major conditions (Additional File 4). The percentage of
these strongly and constitutively expressed genes (10.8%)
is slightly lower than reported for other Trichoderma EST
datasets (15-17% for the 25 most abundantly expressed
ESTs; [11,15]). Some of these genes encoded glycolytic
enzymes, hydrophobins or histones that were also found
in other studies. Some strongly expressed genes that we
detected, however, were unexpected. Intriguingly, the
most abundantly expressed gene was cpc1, which encodes
the regulator of general amino acid control ("cross path-
way control") in fungi [16]. Although its transcript abun-
dance was much higher wunder conditions of
mycoparasitism, its nevertheless significant abundance
under the other conditions made us to refrain from calling
it "mycoparasitism-specific" (see also below) but we note
that it is strongly expressed under this condition.

Genes overexpressed under mycoparasitic conditions

Our EST collection (2734 genes) contained only 28% of
all genes present in the T. atroviride genome (11100 genes)
and we therefore considered the presence of only single
ESTs (albeit clearly proving the expression of the gene
under this condition) to be insufficient for claiming spe-
cific induction in comparison to other conditions. To
identify those genes from our EST collection that are sig-
nificantly overexpressed under mycoparasitic conditions,
we therefore looked for genes which were represented
either by at least 3 ESTs under mycoparasitic conditions
and by none under the others, or by 4 or more ESTs and
thereby accounting for at least 65% of the total number of
ESTs from the respective gene. Additional File 5 show s the
results from this screening, grouped according to KOG
terms: 442 ESTs, corresponding to 66 genes, were found
to fulfil this criterion and thus be strongly overexpressed
under mycoparasitic conditions. They were distributed
over 18 KOG groups, but were most abundant in those
comprising posttranslational processing (O) and amino
acid metabolism (E): 159 of the total number of ESTs
from the KOG group posttranslational processing (183)
and 70 out of 159 ESTs assigned to amino acid metabo-
lism belonged to the mycoparasitism-EST library. Con-
spicuously, several heat shock factors and tRNA synthases,
belonging to the posttranslational processing group
according to the KOG classification, were present in high
numbers and may indicate a significant shift towards
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Table 2: Shared distribution of ESTs
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pairs triplets All Total
MP X X X X X X X
MG x x X x X X x
LC x X X x x X x
IC X X X X X X X
Cellular processes and signalling
cell walls and membranes | 3 | 2 3 10
cell motility | | 2
posttranslational mod. 21 40 34 | 35 | | 3 4 140
signal transduction 15 I 4 27 9 22 3 2 4 2 107
nuclear structure 3 4 3 3 2 | 2 18
secretion 20 18 5 | 22 3 | | 71
defense 3 | 5 8 | | 19
extracellular structures 0
cytosceleton 6 17 4 2 19 | 49
Information storage and Processing
RNA processing 10 13 10 3 3 6 | 46
chromatin 4 5 2 | 7 | 20
protein synthesis 17 17 2 19 83 2| 2 I 154
transcription factors 6 I 5 Il | 4 17 3 | 59
repair mechanisms 5 6 4 | 16
Metabolism
energy metabolism 15 9 6 24 7 | 34 | | 4 9 11
cell cycle 3 8 4 13 3 | 5 2 2 2 43
amino acid metabolism 14 16 3 8 3 2 15 | | 2 65
lipid metabolism 9 | 6 | | 10 3 31
nucleotide metabolism 8 | 5 | 8 | | 25
carbohydrate metabolism 10 5 3 12 | 3 18 2 | 2 58
inorganic metabolism 8 4 2 7 | | 12 2 | 38

99 76 31 110 19 16 209 7 8 16 29 620

response to environmental stress (see Discussion). In
addition, lipid metabolism also accounted for a signifi-
cant portion of these EST (24 from 107). However, apart
from these quantitative considerations, a number of genes
(e.g. components of signal transduction, proteases) which
comprised only a small portion of their KOG groups were
also found and will be emphasized in the Discussion.

RT-PCR confirms upregulation of a subset of genes whose
ESTs are abundant during mycoparasitism

To test whether the EST abundance in fact reflects gene
expression patterns under conditions of confrontation of
T. atroviride with its prey, we performed reverse tran-
scriptase PCR (RT-PCR) with 12 genes up-regulated dur-
ing mycoparasitism and in addition with cpc1, which was
according to our EST analysis abundant during mycopara-
sitism but also during mycelial growth. Two housekeep-
ing genes served as a control (gpd1, tef1). To verify that an
upregulation of the selected genes could be attributed to
the presence of the host fungus irrespectively of the
medium used, plate confrontation assays were set up on

potato dextrose agar (PDA), whereas a minimal medium
with 0.3% carbon source had been used for generation of
the ESTs. Using Rhizoctonia solani as a host fungus, sam-
ples were taken before contact (5 mm distance of the myc-
elia), just at contact, and during overgrowth. It should be
noted that for the ESTs mycelia were harvested at a growth
stage that was between 'before contact' and 'contact' of
this experiment. Expression patterns of the selected genes
were monitored. Growth of T. atroviride alone on PDA
plates, was used as control growth condition, correspond-
ing to 'myecelial growth' in our EST collection.

In the gene expression analysis (Fig. 2), eight of the twelve
putative mycoparasitismspecific genes showed a behav-
iour consistent with the EST data and were upregulated
during mycoparasitism, whereas their transcripts were
either absent or of much lower abundance in the control.
The four other genes, however, also showed a high level of
transcription in the control: hsp26-3, wscl, pdc and gsyl
(although the latter was still more abundant at the onset
of mycoparasitism), indicating that their upregulation is
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Figure 2

Expression analysis of selected genes by RT-PCR.
Confrontations against R. solani on PDA plates covered by
cellophane (before contact = BC, contact = C, after contact
= AC); TA, T. atroviride growing alone on PDA plate. Gene
abbreviations: hsp26-1, hsp26-2, hsp26-3, hsp | 04 heat shock
proteins (146119, 146319, 160834 and 157453, respectively);
flol unknown protein related to a Candida flocculent associ-
ated protein (135185); acs| acyl-CoA synthetase (134354);
pdcl pyruvate decarboxylase (150078); ans| anthranilate syn-
thase component Il (152602); kat! kynurenine aminotrans-
ferase (159605); wscl, WSC-domain containing extracellular
protein (135366); gsyl glutamyl-tRNA-synthase (146978);
asy! alanyl-tRNA synthase (153342); cpcl, cross pathway
regulator CPCI (132971); gpd!, glyceraldehyde-3-phosphate
dehydrogenase (143663); tef!, elongation factor |-alpha
(146236).
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not mycoparasitism-specific. Transcripts of cpcl were
detected under all tested conditions. Therefore, our
threshold for detection of mycoparasitism-specific genes
appears to have mainly identified genes which are indeed
actually upregulated during this process.

Reconstruction and comparative analysis of a metabolic
network

In order to obtain a global understanding of the metabolic
changes of T. atroviride during the onset of mycoparasit-
ism, we also used the genome sequence data to recon-
struct a metabolic network and subsequently attempted to
identify pathways that were differently expressed at the
onset of mycoparasitism. Only enzymes with standard-
ized EC numbers were thereby considered, which yielded
832 EC numbers in total. From these, a bipartite meta-
bolic network containing 2013 reactions and 2198
metabolites was constructed. Subnetworks containing a
portion of these reactions were then extracted from the
whole network to address the aforementioned differen-
tially expressed genes and KOG groups in a metabolic
context.

The first intriguing finding - was that a significant number
of amino acid biosynthetic pathways, especially those for
common amino acids were significantly up-regulated (the
both number of ESTs was more than two-fold higher than
under other conditions). These pathways included (Addi-
tional File 6): urea cycle and metabolism of amino
groups; glutamate metabolism; methionine metabolism;
alanine and aspartate metabolism; valine, leucine and iso-
leucine biosynthesis; lysine biosynthesis; arginine and
proline metabolism; cysteine metabolism. In addition,
the biosynthesis of several aminoacyl-tRNAs was also
enhanced. Amino acid catabolism (e.g. that of valine, leu-
cine and isoleucine degradation), on the other hand, was
obviously downregulated. These data are supportive of
our data from EST evaluation and suggest that mycopara-
sitism is associated with a state of amino acids starvation.
We also found an upregulation of pyridoxalphosphate
biosynthesis which is consistent with an increased amino
acid biosynthesis. Metabolism of sulphur containing
compounds was also remarkably up-regulated, and it is
important to note that its genes were not expressed under
any of the other conditions. Analysis of the lipid metabo-
lism showed that the degradation pathways of lipid
metabolism were slightly up-regulated. In addition, bio-
synthesis of pantothenate was also increased, consistent
with its role as a constituent of coenzyme A required for
fatty acid catabolism. Another upregulation was found for
genes involved in sphingolipid metabolism. Biosynthesis
of unsaturated fatty acids pathway was absent. Also, ami-
nosugar catabolism was significantly enhanced under
mycoparasitic conditions, which would be in accordance
of an attack of T. atroviride on the prey's cell wall.
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Discussion

We used an EST-based approach to investigate the global
changes in the physiology of the mycoparasite T. atroviride
when confronted with a potential fungal host. ESTs for
approximately 900 genes were obtained from onset of
mycoparasitism, and this number is roughly similar to
that of ESTs found for the two other cultivation condi-
tions (vegetative growth, light-induced conidiation),
which were used for comparison. How complete is this
analysis? In other fungi, genome wide expression analysis
showed that, on the average, 55 - 60% of the genes present
in the genome are transcribed under a given, investigated
condition [17-19]. Of the 11.100 genes annotated in the
genome of T. atroviride, we only used those for which a
function could be predicted, which were 6889 genes.
Therefore, if for 55 - 60% of these genes a transcript would
be detected, this would have been 3789 - 4133 genes. The
about 900 genes that were actually found under condi-
tions of mycoparasitism, are thus only 13%. This number
is much lower, and indicates that the number of ESTs col-
lected represent only the fraction of more and most
strongly expressed genes. Previous studies on the genome
wide-expression of genes in other fungi arrived at a com-
parable figure of 400 - 450 transcripts (4-6% of all genes)
that were at least 2-fold elevated under a specific condi-
tion (e.g. carbon catabolite repression in S. cerevisiae [20];
general amino acid control in N. crassa, [19]; or secretion
stress response in T. reesei, [15]). Thus, our EST collection
contains most likely only those genes which are highly (or
at least medium-highly) expressed under the conditions
used, and genes which are transcribed at a low level are
probably absent.

Despite of these method-inherent limitations, the genes
that we identified to be upregulated under conditions of
confrontation with the prey reveal a clear trend in their
KOG-distribution: 60% of all ESTs came from 3 KOG
groups: posttranslational modification (O), amino acid
metabolism (E) and lipid metabolism (I). In group O, 13
of the 17 genes encoded proteins of the heat shock/stress
response such as HSP23, HSP70, HSP90 and HSP104.
Moreover, even though these transcripts were among the
most abundant ones detected in the mycoparasitic library,
in several cases they were completely absent under the two
other conditions. The function of these proteins in other
organisms is intriguing: HSP90 is a molecular chaperone
for many signal transducers and has been postulated to be
involved in releasing previously silent genetic variation in
response to environmental changes [21], such as drug
resistance, and this resistance can be abrogated by HSP90
inhibitors [22]. HSP104 is an essential protein of the heat-
shock response and belongs to the class 1 family of Clp/
HSP100 AAA+ ATPases. Members of this family form large
ring structures and have the ability to rescue proteins from
an aggregated state, a process for which the assistance of
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the cognate HSP70 chaperone system is also needed [23].
The massive upregulation of all of these heat-shock pro-
teins indicates that T. atroviride faces severe stress shortly
before contact with its prey.

What type of stress could this be? One could envisage that
T. atroviride has to respond to antifungal components
formed by the host. We know that the preys used in this
study are capable to form secondary metabolites [24-26],
and although no information is so far available about
competition and defense reactions of the hosts, it is possi-
ble that the above stress response reflects T. atroviride's
attempts to combat against them. Based on an inspection
of the metabolic network and an analysis of other strongly
overexpressed transcripts, our data suggest an alternative
interpretation: the upregulation of several genes of amino
acid biosynthesis and of aminoacyl tRNA synthases would
be consistent with the operation of the "cross pathway
control" of amino acid biosynthesis. This control mecha-
nism is induced in lower eukaryotes by starvation for any
one of a number of metabolically sensible amino acids,
and simultaneously leads to induced transcription fol-
lowed by derepression of the enzymes in several of these
amino acid's biosynthetic pathways [16]. The ultimate
element and central transcription factor of the cross-path-
way control is CPC1/GCN4, a member of the c-Jun-like
transcriptional activator family [27]. It is intriguing that
ESTs identified as the T. atroviride cpc1 orthologue were in
total the most abundant transcripts in this study. Expres-
sion of ¢pc1/cpcA in N. crassa and A. nidulans is also subject
to a transcriptional autoregulatory mechanism that causes
a several-fold increase in its mRNA levels when cells are
starved for amino acids [19,28]. The high, constitutive
expression of ¢pcl in this study has previously not been
observed in any fungus, and suggests its involvement in
other cellular regulatory processes than nitrogen shortage.
As an example, in S. cerevisiae GCN4 is also involved in
responses to purine starvation, glucose limitation, growth
on ethanol, or high salinity (for review see [27]). N. crassa
CPC1, on the other hand, also responds to the oxygen rad-
icals and metal ions [19]. We should like to note that -
supporting the operation of the cross pathway control
during mycoparasitism - we also found ESTs for the T.
atroviride cpc3 protein kinase orthologue (Triat1:130153)
under this condition (data not shown).

An additional characteristic feature of the mycoparasitic
EST-collection was its large number of genes for amino
acyl-tRNA synthases. As explained above, cross pathway
control is triggered by an accumulation of amino acid-free
tRNAs. The strong upregulation of some of these genes
may therefore suggest the operation of an autoregulatory
response by which the cell attempts to compensate its
deficiency of amino acyl-tRNAs. Elevated levels of some
tRNA synthase genes have also been observed in N. crassa
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upon induction of cross pathway control by a 3-aminotri-
azol, although the effect may be indirect since most of
their promoters do not contain the consensus site for
CPC1 binding [19].

One could argue that the upregulation of amino acid bio-
synthesis and aminoacyl tRNA synthases may not be due
to a nitrogen limitation signal, but simply reflect
increased protein synthesis, which would be necessary for
the increased synthesis of enzymes which are secreted dur-
ing the onset of mycoparasitism and participate in resist-
ing the attack on the prey [29]. We consider this
explanation less likely for the following reasons: genes
encoding such enzymes (chitinase, B-glucanases and pro-
teases) were underrepresented in our EST library, and we
detected the upregulation of only a few genes encoding
major extracellular proteins or of the secretory pathway.
The finding of increased aminosugar catabolism indicates
that chitinases are probably formed, but that a low level of
transcription is sufficient for the fungus at the stage of
onset of mycoparasitism. A comparison with transcrip-
tome data from other fungi under protein overexpressing
and secreting conditions [15,30] implies that, if massive
enzyme secretion would take place, we should have then
seen the overexpression of some of the genes for compo-
nents of the secretory pathway as well.

Therefore, we interpret our data such that T. atroviride is
facing stress from nitrogen limitation when it is con-
fronted with its prey. A similar interpretation was offered
to explain that A. fumigatus AcpcA strains exhibited
reduced virulence and viability in vivo in their mammalian
host [31]. However, the upregulation of amino acid bio-
synthesis during the onset of mycoparasitism is unlikely
to be due to a real limitation of nitrogen in the medium
e.g. caused by the consumption of the nitrogen from the
medium by the approaching antagonist. The genes ans1
and katl showed also a clear upregulation during myco-
parasitism on PDA plates, as determined by RT-PCR. On
this rich carbon source any starvation effects are unlikely
to occur and upregulated genes are thus probably directly
related to mycoparasitism and the presence of a prey. Our
hypothesis is that the receptors, which sense the nitrogen
status of the medium, are modulated by components
derived from the host fungus and thereby pretend nitro-
gen limitation. In S. cerevisiae, the TOR kinase cascade reg-
ulates the cellular response to the nutrient status of the
cell [32]. It is active under conditions of nitrogen suffi-
ciency and is inactivated by nitrogen starvation condi-
tions. In G. fujikuroi, Teichert et al. [33] found evidence for
aregulation of TOR1 by glutamine synthase and an as yet-
unknown nitrogen sensor. The STM1 seven transmem-
brane helix receptor of Schizosaccharomyces pombe [34] is
such a sensor for amino acid starvation, and delivers its
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signal via a G-protein complex involving GNA2. T. atrovir-
ide has two paralogues of STM1 (STM1, Triat1:151018
and STM2, Triat1:133836). We found 3 ESTs of stm1 - but
not of stm2 - exclusively under mycoparasitic conditions.
A possible involvement of the STM1/GNA2 cascade in
nitrogen signalling in T. atroviride would further be sup-
ported by the fact that knock out mutants of the T. atrovir-
ide orthologue of yeast GNA2 - gna3/tga3 - have been
reported to be unable to parasitize R. solani or B. cinerea in
plate confrontation assays [35]. The signal delivering
nitrogen starvation to STM1 in S. pombe is not known yet,
but Chung et al. [34] speculated that some nitrogenous
metabolites may bind to it in a ligand-receptorspecific
manner, thereby changing its structure and activating it. In
nematophagous fungi, trapping of the prey has been
shown to be induced by oligopeptides from the nema-
todes [36]. It is possible that a similar mechanism may
also occur at the early stage of mycoparasitism by T. atro-
viride.

A further hint towards the operation of stress during the
mycoparasitic attack comes from the finding that of some
genes encoding proteins involved in signal transduction
were also overexpressed. Although these genes are not
members of the major upregulated KOG groups, they
deserve comments as the signalling processes involved in
recognition of the host by Trichoderma have recently been
the subject of intense research [37-45]. In our analysis,
particularly two genes were conspicuous: TMK3, encoding
an orthologue of the HOG1 protein kinase required for
appropriate reaction to cellular, especially osmotic stress,
and whose inactivation in T. harzianum has already been
reported to partially impair antagonism against its prey
[37]. The other gene encodes a low-molecular weight pro-
tein tyrosine phosphate phosphatase (LMYP). Although
its function is unknown, we should like to note that TMK3
is regulated by tyrosine phosphorylation and dephospho-
rylation [46]. The PTP2 protein, which dephosphorylates
yeast TMK3 has not been studied in filamentous fungi yet.
The T. atroviride genome contains a protein
(Triat1:80848) with low similarity (e-34) to PTP2, but of
which no ESTs were found in this study.

The mechanism of mycoparasitism has frequently been
discussed in terms of involvement of extracellular
enzymes capable of hydrolyzing the host's cell wall [29].
Interestingly, we found in our analysis only few of them
to be upregulated during the onset of mycoparasitism.
Two of them encoded proteases: an aspartyl protease
(Triat1:129404), whose orthologue has already been iso-
lated from T. asperellum and reported to be potentially
involved in mycoparasitism [47]; and a subtilisin-like ser-
ine protease (Triat1:147394), which is an orthologue of
Metarhizium anisopliae PR1C which is involved in insect
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cuticle degradation [48]. This suggests that proteases also
play an important role in the first stages of mycoparasit-
ism, and their expression would be consistent with a situ-
ation of nitrogen starvation. In support of this, Olmedo-
Monfil et al. [49] reported that the induction of the prb1
gene, which encodes yet another protease of T. atroviride
and whose overexpression enhances the mycoparasitic
ability [50], depends on nitrogen limitation. The expres-
sion of proteolytic enzymes during the onset of mycopara-
sitism correlates with our above explained hypothesis of
formation of peptides as a signal for nitrogen-deficiency.

During the final stages of mycoparasitism, Trichoderma
also penetrates the host hyphae to utilize its cellular con-
tents as nutrients [51]. Whether this process requires the
formation of infection structures, like those known for
plant pathogenic fungi, has been frequently postulated
but not convincingly been shown or studied in detail yet.
In any case, the penetration of host hyphae will most
likely require mechanical pressure as well [51]. In the rice
blast fungus Magnaporthe grisea, glycerol generated from
storage lipids serves to build up the turgor needed for this
pressure [52]. It is therefore intriguing that genes involved
in lipid catabolism, notably fatty acid acyl CoA dehydro-
genases, were strongly upregulated during mycoparasit-
ism. The role of lipid degradation as a prerequisite for
mycoparasitism has not yet been recognized and therefore
needs further investigation. The simultaneous upregula-
tion of the aquaporin Triat1:39327, a water channel, and
tmk3, involved in signal transduction cascade of osmo-
sensing, underlines a potential importance of osmoregu-
lation at the onset of mycoparasitism.

Conclusion

Genome-wide expression profiling of T. atroviride at the
onset of mycoparasitism has revealed that the fungus
undergoes major changes in gene expression which
revealed previously unrecognized areas of importance to
this process such as stress response, response to nitrogen
shortage including cross pathway control, lipid metabo-
lism and signalling. Our study therefore opens new
opportunities (such as manipulation of the pathways
mentioned above) for further research on the mechanism
of mycoparasitism by reversed genetics and for develop-
ment or selection of biocontrol agents. We also expect that
future studies with whole-genomic oligonucleotide
arrays, and the investigation of later steps of mycoparasit-
ism in more detail will lead to a better understanding of
this process.

Methods

Cultivation conditions

T. atroviride IMI206040 was grown on Vogel's minimal
medium [53] with 0.3% (w/v) glucose as carbon source.
For confrontation assays agar plates were overlaid with
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cellophane and inoculated with an agar plaques of the
plant pathogen (Rhizoctonia solani, Botrytis cinerea), and T.
atroviride in approximately 5 cm distance from the patho-
gen. Strains were grown in complete darkness at 28 °C and
T. atroviride was harvested under red safety light at pre-
contact (1-2 mm distance of the mycelia) and immedi-
ately frozen in liquid nitrogen. For light induced conidia-
tion, T. atroviride cultures were grown in the dark for 48 h
at 27°C on PDA plates and used as pre-inoculum. Myce-
lial plugs (0.5 cm diam.) were taken from the colony
growth front and placed on the centre of plates containing
Vogel's medium covered with a cellophane membrane.
Cultures were allowed to grow for further 36 h under
these conditions, and then photoinduced as described in
[54] by exposure to white light for 5 min (fluence rate 27
mmol m2s1). For injury-induced conidiation, fungal col-
onies were grown in total darkness on PDA at 27°C for 72
h, cut in stripes with a scalpel and incubated for an addi-
tional 24 h in the dark at 27°C. For mere mycelial growth,
T. atroviride was grown on PDA plates in complete dark-
ness at 28°C for 48 hrs.

For RT-PCR experiments strains were grown on PDA, cov-
ered with cellophane, in constant light at 25°C and har-
vested when the mycelia were ca. 5 mm apart (before
contact), at contact of the mycelia and after T. atroviride
had overgrown the host fungus by ca. 5 mm (after con-
tact). As control T. atroviride was grown alone on plates
and, in analogy to the growth conditions for the EST
library, the peripheral hyphal zone was harvested.

Nucleic acid isolation and manipulation

Mycelia were ground to a fine powder under liquid nitro-
gen and total RNA was isolated using the RNeasy kit (Qia-
gen). cDNA was synthesized using poly A+ RNA and oligo
dT primers with 5'-Biotin-GGCGGCCGCACAACTTTGTA-
CAAGAAAGTTGGGT-(T)19-3". cDNAs were ligated to
attB1 adapter (5'-TCGTCGGGGACAACTTTGTACAAAA
AAGTTGG-3'), size fractionated using sephacryl S-500 HR
columns, and recombined to pDONR222-Lib vector.

Mycelium for the control condition of the RT-PCR was
directly extracted from agar. In this case the guanidinium
thiocyanate buffer was substituted by a buffer containing
0.6 M NaCl, 10 mM EDTA, 4% SDS, 100 mM Tris, pH8)
and after phenol extraction a precipitation step with 8 M
LiCl was introduced. The resulting pellet was dissolved in
0.3 ml RNase-free water and subsequently precipitated
again with isopropanol. All other steps were carried out
identically to the guanidinium thiocyanate method [55].

RT-PCR

For cDNA synthesis, RNA obtained from various cultiva-
tions was treated with DNase I (Fermentas, Burlington,
Canada) and purified with the RNeasy MinElute Cleanup
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Kit (Qiagen, Valencia, CA, USA). 5 ug RNA/reaction were
reverse transcribed using the the SuperScript™ III Reverse
Transcriptase (Invitrogen, Carlsbad, CA, USA) and a mix-
ture of random hexamer primer and oligo(dT), primer.
For transcript analysis cDNA equivalent to 50 ng RNA/
reaction, 25 cycles and the primers and annealing temper-
atures listed in Additional File 7 were used. PCR reactions
were carried out in a total volume of 50 pl using the
GoTaq system (Promega, Madison, WI, USA) according to
the manufacturer's instructions. 40 ul of each PCR reac-
tion were separated on a 1.5% agarose gel containing 0.5
pg/ml ethidium bromide. As negative controls, to ensure
the absence of genomic DNA, templates for PCR were pre-
pared by as described above, but no reverse transcriptase
was added during the cDNA synthesis step.

cDNA library sequencing

Bacterial colonies containing each T. atroviride cDNA
library were plated onto agarose plates (254 mm plates
from Teknova, Hollister, CA) at a density of approxi-
mately 1000 colonies per plate. Plates were grown at 37 C
for 18 hours then individual colonies were picked and
each used to inoculate a well containing LB media with
appropriate antibiotic in a 384 well plate (Nunc, Roches-
ter, NY). Clones were grown in 384 well plates at 37 C for
18 hours. Contained plasmid DNA for sequencing was
produced by rolling circle amplification ([56] Templiphi,
GE Healthcare, Piscataway, NJ). Inserts were sequenced
from both ends using primers complimentary to the
flanking vector sequence and Big Dye terminator chemis-
try then run on ABI 3730 instruments (ABI, Foster City,
CA). The sequencing primers used were the following: for
the myecelial injury library (vector: pDONR222; Fw: 5'-
GTAAAACGACGGCCAGT, Rv: 5'-AGGAAACAGCTAGAC-
CAT), for the light exposed library and the mycoparasit-
ism library (vector: pEXP-AD502; Fw: 5' CTATTCGA
TGATGAAGATACC Rv: 5' AGAAGTCCAAAGCTCCACC),
and for the dark exposed library (vector: pSPORT1; 5'-
GTTITCCCAGTCACGACGTTGTA, Rv: 5'-AGGAAACAGC
TATGACCAT).

EST sequence processing and assembly

ESTs were processed through the JGI EST pipeline (ESTs
were generated in pairs, a 5' and 3' end read from each
cDNA clone). To trim vector and adaptor sequences, com-
mon sequence patterns at the ends of ESTs (Expressed
Sequence Tags) were identified and removed using an
internally developed software tool. Insertless clones were
identified if either of the following criteria were met: >200
bases of vector sequence at the 5' end or less than 100
bases of non-vector sequence remained. ESTs were then
trimmed for quality using a sliding window trimmer
(window = 11 bases). Once the average quality score in
the window was below the threshold (Q15) the EST was
split and the longest remaining sequence segment was
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retained as the trimmed EST. EST sequences with less than
100 bases of high quality sequence were removed. ESTs
were evaluated for the presence of polyA or polyT tails
(which if present were removed) and the EST re-evaluated
for length, removing ESTs with less than 100 bases
remaining. ESTs consisting of more than 50% low com-
plexity sequence were also removed from the final set of
"good ESTs". In the case of re-sequencing the same EST,
the longest high quality EST was retained. Sister ESTs (end
pair reads) were categorized as follows: if an EST lacked an
insert or was a contaminant then by default the second sis-
ter was categorized as the same. However, each sister EST
was treated separately for complexity and quality scores.
Finally, EST sequences were compared to the GenBank/
EMBL/DDBJ nucleotide database in order to identify con-
taminants; non-desirable ESTs such as those matching
non-cellular and rRNA sequences were removed.

For clustering, ESTs were evaluated with MALIGN, a k-mer
based alignment tool (Chapman, Unpublished), which
clusters ESTs based on sequence overlap (k-mer = 16, seed
length requirement = 32, alignment ID > 98%). Clusters
of ESTs were further merged based on sister ESTs using
double linkage. Double linkage requires that 2 or more
matching sister ESTs exist in both clusters to be merged.
EST clusters were then each assembled using CAP3 [57] to
form consensus sequences. Clusters may have more than
one consensus sequence for various reasons to include;
the clone has a long insert, clones are splice variants or
consensus sequences are erroneously not assembled.
Cluster singlets are clusters of one EST, whereas CAP3 sin-
glets are single ESTs which had joined a cluster but during
cluster assembly were isolated into a separate singlet con-
sensus sequence. ESTs from each separate cDNA library
were clustered and assembled separately and subse-
quently the entire set of ESTs for all cDNA libraries were
clustered and assembled together.

A list of the ESTs and the corresponding accession num-
bers is given in Additional File 8.

Functional analysis of the EST libraries

Since an annotated genome sequence of T. atroviride
IMI206040 was available for this study [12], the following
approach was taken for analysis of the 27658 ESTs: they
were first used to construct a custom-BLAST database. This
database was then queried (BLASTX) with the protein
sequences extracted as FASTA files from individual KOG
groups available at the T. atroviride genome portal [12]. To
look for genes with special functions (e.g. CAZYs, recep-
tors, proteins involved in sporulation etc.), these were
manually retrieved from the database, combined to
FASTA files and used for the query as above. All proteins
contained in the same KOG group were manually verified.
In the case of positive matches, the full length amino acid
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sequences of the respective proteins were further cross-
checked by NCBI-BLAST or HMMER [58]. Significant hits
were defined as those with 100% similarity between the
amino acid sequences. Sequences exhibiting only a few aa
mismatches (< 5%), which were speculated to represent
sequencing errors, were manually verified by subjecting
their ntsequences to TBLASTN against the T. atroviride
genome sequence, and considered positive if no other
protein showed the same similarity. The same strategy was
used for ESTs, whose deduced aa-sequence was < 40 aa
(and thus eventually representing a domain shared by sev-
eral proteins), and identity was assumed when no other
protein contained the same sequence. A complete list of
identified genes is available in Additional File 9.

Proteins were considered to be orthologues by best bidi-
rectional hits in BLASTP with a cutoff value of 1e-80. In
cases of lower cutoff value, phylogenetic trees were con-
structed by NJ (MEGA 3.1; [59]), and an orthologue con-
firmed if the best bidirectional hit occurred in the same,
strongly supported (bootstrap support > 75%) terminal
clade.

Metabolic network construction

We used the EC numbers and the updated KEGG reaction
database [60] to build a bipartite metabolic network,
which was constructed based on the connection matrix of
reactions [61]. Compared to reaction graph or metabolite
graph, wherein either reactions or metabolites (called
"node") are shown in an interconnected way, the bipartite
network is more understandable because, similar to the
biochemistry textbook, both the reactions and metabo-
lites are visualized at mean time. The transcriptional data
can be easily mapped to the bipartite network by using the
visualization attributes of the reaction nodes, representing
the expression levels of corresponding genes. Some cur-
rency metabolites [60], such as ATP, NADH etc., easily
involve in hundreds of biological reactions. In order to
reduce the complexity of the network to make the real bio-
logical changes more visible, we snipped some connec-
tions of reactions mediated by the currency metabolites.
The software Cytoscape [62,63] was used as a layout tool
for the metabolic network. We mapped the ESTs to the
whole network and its sub networks, by using the opacity
of the background of reaction nodes to represent the level
of expression which was normalized by the number of
ESTs of the corresponding gene expressed in one condi-
tion divided by the total number of ESTs of this gene in all
compared conditions. A minimal opacity of 50 is set to
distinguish them with those not expressed. A series of sub
networks, enabling a clearer view on the expression differ-
ences between mycoparasitism and mycelial growth, was
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extracted from the whole network according to the KEGG
pathway category of the reactions.
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Additional material

Additional file 1

Properties of the EST collection used for this work. the table gives num-
bers of ESTs, clones, average reading length and variability of the EST col-
lection.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-567-S1.PDF]

Additional file 2

Gene fraction detected in the ESTs. this table attributes ESTs to KOG
categories, and provides information of the gene number and fraction that
is expressed for each KOG category.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-567-S2.PDF]|

Additional file 3

Expression of sporulation specific genes in T. atroviride. this table lists
EST numbers for selected genes known to be involved in conidiogenesis
under conditions of mycoparasitism (MP), mycelial growth (MG), light
induced conidiation (LI), and mechanical injury (IC).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-567-S3.PDF]

Additional file 4

Most abundantly expressed genes. this table lists EST numbers for the
most abundantly expressed genes detected in this study. Abbreviation of
conditions is as explained in Additional File S3.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-567-S4.PDF]

Additional file 5

Genes significantly overexpressed under mycoparaistic conditions. this
table lists EST numbers for the most abundantly expressed genes detected
under mycoparasitic conditions. Abbreviation of conditions is as explained
in Additional File S3.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-567-S5.PDF]
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Additional file 6

Metabolic subnetworks of T. atroviride under mycoparasitic (A, C
and E) and mycelial growth (B, D and F) conditions. AB, CD, EF are
pairs of contrasts to show the metabolic features under two conditions. AB
show the subnetworks of common amino acid metabolism; CD show the
subnetworks of sulfur amino acid related metabolic pathway; EF show the
subnetworks of lipid metabolism and aminosugar catabolism. The rectan-
gles and circles represent the enzymatic reactions and metabolites, respec-
tively. The larger circles indicate the main metabolites, while the smaller
circles show the currency metabolites such as ATP, NADH and etc. The
links with arrows in one or two ends represent the irreversible or reversible
reactions, respectively. The opacity of the rectangles indicates the strength
of the expression of corresponding genes, which is normalized by the
number of ESTs of a gene in one condition divided by the total number
ESTs of this gene in both conditions. The darker the color, the stronger the
expression. If no EST is present, there is no color and the background of
the rectangle is transparent.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-567-S6.PDF]

Additional file 7

Primers used for RT-PCR. this table lists the primers used in this study,
the corresponding protein ID of the respective gene and the annealing tem-
perature.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-567-S7.PDF]

Additional file 8

Genebank accession numbers of ESTs created and used in the work.
this table lists the ESTs, gene bank number, and number in the T. atro-
viride genome database. CCAH, mycoparasitic conditions; CBYT, myce-
lial growth; CBYP, light induced sporulation; CBWT, mechanical injury.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-567-S8.PDF]

Additional file 9

Total list of genes identified in this study. this table lists number of all
ESTs under the four conditions (abbreviated as in Additional File 3) and
their identification obtained during this study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-567-S9.PDF]
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