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Transcriptomics and proteomics reveal two waves
of translational repression during the maturation
of malaria parasite sporozoites
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Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must

navigate the host skin and vasculature to infect the liver. This journey requires distinct

proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst

sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii para-

sites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs

and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious

sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite

functions in the vector and host. Moreover, we find that malaria parasites use two over-

lapping, extensive, and independent programs of translational repression across sporozoite

maturation to temporally regulate protein expression. Together with gene-specific validation

experiments, these data indicate that two waves of translational repression are implemented

and relieved at different times during sporozoite maturation, migration and infection, thus

promoting their successful development and vector-to-host transition.
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M
alaria remains one of the great global health problems
today, taking a large toll on people in the tropics and
subtropics. This disease, caused by Plasmodium para-

sites, affects over 200 million people annually and kills over
400,000 (WHO World Malaria Report 2018). While a protein-
based subunit vaccine (RTS,S) has recently been licensed and is
being used for pilot implementation in three Sub-Saharan African
countries, its protection has been limited and relatively short-
lived in clinical trials1. Developing an effective and long-lasting
malaria vaccine that prevents infection remains a chief goal that
has yet to be achieved. Accomplishing this goal will require
greater knowledge of the basic biology and transmission
dynamics of the gametocyte stages as well as pre-erythrocytic
sporozoite stages and liver stage parasites. Promising whole-
parasite vaccine candidates, based on the sporozoite form of the
parasite, are on the horizon and might get closer to realizing a
protective vaccine2.

Plasmodium parasites are transmitted between mammalian
hosts by female Anopheles mosquitoes (reviewed in ref. 3). Fol-
lowing uptake of male and female gametocytes by the mosquito
during a blood meal from an infected host, these parasites activate
into gametes in the midgut and fertilize by fusion to form a
zygote, which then develops into a motile ookinete. This stage
burrows through the midgut wall and establishes an oocyst under
the basal lamina. Within each oocyst, the parasite undergoes
sporogony to produce up to five thousand oocyst sporozoites,
which are released and selectively infect the salivary glands4.
Oocyst sporozoites are weakly infectious if injected directly into a
naïve mammalian host5, but become highly infectious following
proteolytic rupture of the oocyst wall and their transit through
the mosquito hemocoel. Sporozoites further gain infectivity after
invasion of the salivary glands5,6. Interestingly, salivary gland
sporozoites lose infectivity for the salivary glands, which was
demonstrated by experimentally injecting them into the hemocoel
of uninfected mosquitoes7. Within the glands, sporozoites await
transmission as long-lived, poised salivary gland sporozoites,
which occurs when the mosquito takes its next blood meal and
injects these sporozoites into the skin. Sporozoites then exit the
bite site in the skin, locate and enter the vasculature, and passively
travel to the liver. Here, they infect hepatocytes and thus initiate
the life cycle progression in the mammalian host8. Relatively few
sporozoites are injected during a mosquito bite9 and form a liver
stage parasites. Thus, this transmission bottleneck has been the
focus of intervention efforts using drugs, subunit vaccines, and
attenuated whole-parasite vaccines2.

Fundamental studies of sporozoite biology have informed
efforts to inhibit and/or arrest the parasite during pre-
erythrocytic infection. For example, in rodent malaria parasites
some transcripts are upregulated in infective (salivary gland)
sporozoites (UIS genes), a phenomenon that was originally
determined for 23 currently annotated genes by subtractive
cDNA hybridization10. With the advent of microarray-based
transcriptomics, a renewed effort to identify both UIS and
upregulated in oocyst sporozoites (UOS) genes identified 124 UIS
and 47 UOS genes11. Interestingly, only 7 of the original 23 UIS
genes were confirmed in this expanded study. However, these
UIS genes (UIS1, UIS2, UIS3, UIS4, UIS7, UIS16, and UIS28)
have proven to encode some of the most important proteins for
the transmission and transformation of the sporozoite into a liver
stage parasite, as well as for liver stage development. Gene dele-
tions of some UIS genes have been exploited to generate geneti-
cally attenuated parasite strains that arrest during liver stage
development12–15.

In addition to transcriptional control, the malaria parasite also
imposes translational repression upon specific mRNAs in female
gametocytes, and this mechanism has been observed for at least a

few mRNAs in salivary gland sporozoites (reviewed in refs. 16,17).
Translational repression allows for the proactive production of
mRNAs and restriction of their translation before transmission,
and yet enables just-in-time production of these proteins after
transmission when they are needed. However, this strategy (high
transcription and low/no translation) is energetically costly, and
model eukaryotes and human cells have evolved to avoid this
gene regulatory combination (the depleted region of Crick Space)
except in specific, beneficial situations18. In light of this, it is
notable that Plasmodium parasites have evolved to use transla-
tional repression for transmission to the mosquito, which has
been clearly observed for mRNAs (e.g., p28) in female gameto-
cytes19. The mechanisms underlying this have been established
most thoroughly in the rodent malaria parasite Plasmodium
berghei, where DOZI (a DEAD-box RNA helicase orthologous to
human DDX6) and CITH (an Lsm14 orthologue) bind, stabilize,
and translationally repress specific mRNAs in female gameto-
cytes19–21. Recently, the extent of translational repression in
Plasmodium falciparum female gametocytes was assessed by mass
spectrometry-based proteomics and RNA-seq22. In this stage, the
parasite expresses over 500 transcripts with no evidence for their
encoded proteins, with over half of these maternal gene products
being uncharacterized. Enriched in this set of translationally
repressed mRNAs are those that encode for functions needed
post-transmission and include gene families previously shown to
be translationally repressed. These data support the model that
female gametocytes, despite high-energetic costs, prepare and
await transmission by storing and protecting specific mRNAs
needed to establish the infection of the mosquito. However, the
extent and precise mechanisms of how translational repression is
imposed in sporozoites has not been established beyond targeted
studies, which suggest that the PUF2 RBP may act upon cis ele-
ments found within the coding sequence of the uis4 mRNA14.

Systems analysis of translational repression in sporozoites
requires knowledge of their global transcriptomes and proteomes,
but such analyses were greatly restricted due to substantial con-
tamination with material from the mosquito vector and its
microbiome in sporozoite samples23–25 (reviewed in ref. 26,27). To
address this, we have developed a scalable, discontinuous density
gradient purification approach for sporozoites that greatly redu-
ces contamination from the mosquito and its microbes28. The
resulting fully infectious sporozoites have allowed extensive ChIP,
transcriptomic (RNA-seq), and proteomic (nano liquid
chromatography–mass spectrometry/MS (nanoLC–MS/MS))
analyses of sporozoites29–35. These studies demonstrate that
“omics” level analyses of sporozoites are now experimentally
practical, and thus reopen long standing questions of mechanisms
underlying critical sporozoite functions.

Here, we have addressed one of the foremost questions of
sporozoite biology: how and when does the sporozoite prepare
molecularly for transmission from the mosquito vector to the
mammalian host? Using RNA-seq-based transcriptomics and
nanoLC–MS/MS-based proteomics, we here characterize both
oocyst sporozoites and salivary gland sporozoites of both rodent-
infectious (Plasmodium yoelii) and human-infectious (P. falci-
parum) species. Together, these data provide a comprehensive
assessment of mRNA and protein abundances, provide evidence
for extensive post-transcriptional regulation of the most abundant
mRNAs, and demonstrate that two distinct and likely orthogonal
translational repression programs are active during sporozoite
maturation.

Results
Dynamic transcriptional regulation in maturing sporozoites.
Important insights into how sporozoites mature and become
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infectious were gained from studies of the upregulated in oocyst
sporozoites (UOS) and upregulated in infectious sporozoites
(UIS) transcripts in Plasmodium. Moreover, a number of these
UIS genes turned out to be essential to hepatocyte infection and
the early liver stage parasite. However, prior studies were limited
by the methods and instrumentation available, thus resulting in
an incomplete view of transcriptional regulation in the sporozoite.
By leveraging RNA-seq and greatly improved sporozoite pur-
ification strategies, we could now achieve a more comprehensive
transcriptome and differential expression analyses of sporozoites
from rodent-infectious (P. yoelii) and human-infectious (P. fal-
ciparum) species. In addition, as the sporozoite undergoes a
transition from being weakly infectious to highly infectious for
the mammalian host, which occurs while in transit through the
hemocoel from the oocyst to the salivary glands and within the
salivary glands5,6, we assessed both the oocyst sporozoite and
salivary gland sporozoite transcriptomes (Fig. 1, Supplementary
Table 1, Supplementary Data 1).

First, using P. yoelii (17XNL nonlethal strain) rodent-infectious
parasites we identified 4195 and 3887 RNAs with detectable and
unambiguous sequence reads present in P. yoelii oocyst spor-
ozoites and salivary gland sporozoites, respectively. Similarly, with
P. falciparum (NF54 strain) human-infectious parasites, we
identified 3535 and 3575 detectable and unambiguous RNAs in
oocyst sporozoite and salivary gland sporozoite stages, respec-
tively. Many well-characterized genes were among the most
abundant transcripts in these two stages, including apical
membrane antigen 1 (ama1), circumsporozoite protein (csp),
membrane-associated erythrocyte binding-like protein (maebl),
perforin-like protein 1 (plp1/spect2), thrombospondin-related
anonymous protein (trap), trap-like protein (tlp), UIS 4 (uis4),
and others (Supplementary Table 1, Supplementary Data 1)36–41.
Among these, the maebl mRNA is known to undergo alternative
splicing, which produces a protein with appreciated roles in
sporozoite invasion of the salivary glands and a developmentally
regulated shift in localization across sporozoite maturation39,42–44.
Notably, several of the most abundant mRNAs in oocyst and
salivary gland sporozoites in both species encode for unchar-
acterized proteins, some of which (e.g., py17x_0208200,
py17x_0835500, and py17x_1354300) undergo the same extreme

swings in transcript abundance between these stages as does
pyuis4 (>1000-fold). Finally, we found that a recently described
sporozoite var gene (SpzPfEMP1) is robustly expressed in not
only oocyst sporozoites as previously reported, but also in salivary
gland sporozoites and thus may simplify the recently described
model of how this interesting var gene is regulated (Supplemen-
tary Table 1)35. Given the transcript abundance of the novel and
uncharacterized genes of these lists, they warrant a prioritized
assessment.

Previous definitions of UOS or UIS mRNAs were assigned
using lower thresholds of greater than twofold increases in
transcript abundance for any detectable transcript between oocyst
and salivary gland sporozoites, which in part were dictated by the
power of subtractive cDNA hybridization or microarray
approaches available at the time10,11. With greatly improved
approaches, we have made the definitions of UIS and UOS RNAs
more stringent by assigning thresholds whereby transcripts must
be both in the top decile of abundance, and must be greater than
fivefold more abundant in one stage compared to the other. Using
these parameters, we have defined 167 UOS mRNAs and 88 UIS
mRNAs in P. yoelii, and 101 UOS mRNAs and 68 UIS mRNAs in
P. falciparum (Supplementary Data 2). Few of the UOS
transcripts previously defined remain so using these more
stringent thresholds, but robustly include the previous top UOS
hit: TREP/UOS311. Additional UOS transcripts include those that
encode for proteins important for sporozoite functions in the
mosquito and the initial infection of a new host, and include
those that encode for RNA metabolic processes, protein
translation, heat shock proteins (HSP20), the glideosome/inner
membrane complex (GAPM3, IMC1m), vesicular trafficking, and
transporters. Similarly, a core set of the most abundant UIS
transcripts remain defined as such: uis1, uis2, uis3, uis4, uis7, uis8,
and uis28. Strikingly, pyuis4 transcript abundance increases 1500-
fold and reaffirms the use of its promoter for highly enriched
expression of transgenes in salivary gland sporozoites30,45. An
additional 71 P. yoelii and 53 P. falciparum transcripts that were
not in the top decile of RNA abundance, but were in the seventh
to ninth decile, increase greater than tenfold in abundance in
salivary gland sporozoites vs. oocyst sporozoites. These include
pfccr4, the pfdbp10 and pydbp10 RNA helicases, pfslarp/pfsap1
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Fig. 1 Comparative transcriptomics of oocyst and salivary gland sporozoites. RNA from purified a P. falciparum or b P. yoelii sporozoites isolated from

oocysts or the salivary glands was assessed by RNA-seq, and transcript abundances compared by DEseq2. Transcripts are plotted based upon fold change
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(40-fold), pynek1 (38-fold), pyplp3, pyplp5, pfptex150, pyuis5 (22-
fold), and pyuis12 (40-fold) (Supplementary Data 3). Beyond the
previously defined UIS mRNAs, several other transcripts are
notable as their protein products are or may be important to the
function of salivary gland sporozoites: FAS-II pathway proteins,
fatty acid modifiers, plasma membrane transporters, adhesins/
surface proteins (p113, speld, and tlp), traversal-related proteins
(celtos), heat shock proteins, and ApiAP2 specific transcription
factors (e.g., py17x_0523100 and pf3d7_0420300)46–53. Together,
these transcripts encode for proteins that encompass many
essential attributes necessary for sporozoite development, trans-
mission, and infectivity. However, it is striking that while a
similar regulatory strategy is employed by sporozoites of both
parasite species, there is less overlap in the transcripts that are
regulated than might be expected, especially in oocyst sporozoites.
These findings underscore the strengths and importance of using
comparative and independent approaches with human- and
rodent-infectious species to identify the important and conserved
molecular components of infection.

Proteomic comparisons of Plasmodium sporozoites. While
transcriptomics can provide an important window into gene
expression, the inclusion of proteomics provides a much more
comprehensive understanding of the parasite’s molecular and
cellular functions. To determine the presence and steady-state
abundance of proteins found within Plasmodium sporozoites, the
global proteomes of both P. yoelii and P. falciparum oocyst
sporozoites were determined by nanoLC–MS/MS and were
compared to our previously published salivary gland sporozoite
global proteomes31. This approach (steady-state protein abun-
dance) was used, as it is compatible with currently feasible
sporozoite production and purification capabilities, whereas
ribosome profiling remains technically unfeasible with sporozoite
samples due to the number of highly purified sporozoites that are
required. Together, these four datasets now allow a more com-
plete understanding of the oocyst and salivary gland sporozoite
stages, and also allow for the definition of UOS Proteins and UIS
Proteins for the two distinct malaria parasite species.

Using approximately four million purified sporozoites per
biological replicate, protein lysates were separated in a single lane
of a gradient sodium dodecyl sulphate (SDS)-polyacrylamide gel,
digested with trypsin, and the resulting tryptic peptides were
extracted and subjected to nanoLC–MS/MS. Resulting mass
spectra were assessed with the trans-proteomic pipeline (TPP) to
identify peptides and to infer identities of proteins. In sum,
reanalysis of our previously acquired P. falciparum data identified
2037 salivary gland sporozoite proteins31 and we now here also
identify 1430 oocyst sporozoite proteins; similarly, from our
previously acquired P. yoelii data, we identified 1773 salivary
gland sporozoite proteins, and here identify 1760 oocyst
sporozoite proteins (Fig. 2, Supplementary Table 2, see
Supplementary Data 1 for a complete list). As has been shown
in previous interspecies comparisons of sporozoite proteomes
(i.e., P. falciparum and P. vivax32), we observed a core group of
high-abundance, essential proteins that were similarly expressed
in both P. yoelii and P. falciparum sporozoites. These included
well-characterized sporozoite proteins (CSP, CelTOS, TRAP,
IMC/glideosome proteins, ALBA proteins, and SIAP1) and
abundant housekeeping proteins (histones, HSPs, GAPDH, and
translation-related proteins). In addition, dynamic changes in the
abundance of specific proteins between the oocyst and salivary
gland sporozoite stages were also identified. For instance, in both
P. yoelii and P. falciparum, CelTOS, GEST, and SPELD were not
detected or were only weakly expressed in oocyst sporozoites, but
were among the most abundant proteins in salivary gland

sporozoites. This coincides with the maturation of sporozoite
invasion organelles during sporozoite transition (Supplementary
Table 2, Supplementary Data 1, Supplementary Fig. 1). Moreover,
the presence/absence of cellular regulators such as specific
ApiAP2s, histone modifiers, RBPs, and other proteins (Supple-
mentary Data 1) agree with previous reports describing how these
types of regulation may be used by sporozoites35,46,54.

With proteomic data from both oocyst sporozoites and salivary
gland sporozoites, we have expanded the UIS and UOS
designations to proteins that are differentially abundant in one
stage or the other. These designated UIS and UOS proteins in P.
yoelii and P. falciparum were identified using the same stringent
threshold as was applied to mRNA abundances (greater than
sixfold more abundant in one stage compared to the other).
Moreover, this was applied only to the top half of detected
proteins of oocyst sporozoites (for UOS proteins) or salivary
gland sporozoites (for UIS proteins), as differences in protein
abundances quantified by spectral counting methods are most
robust among higher-abundance proteins55. Based upon this
analysis, we identified 30 UOS proteins and 114 UIS proteins in
P. falciparum, and 65 UOS and 65 UIS proteins in P. yoelii. UOS
proteins detected in both species include UOS3/TREP, PCRMP2,
and PCRMP4 (Fig. 3, Supplementary Data 4), which all have
clearly been shown to be expressed in and are important to oocyst
sporozoites11,56,57. Similarly, UIS proteins in both species include
6-Cys proteins (P38, P36, P52, and B9), CLAMP, GEST, PLP1/
SPECT2, PUF2, Sir2A, SPATR, SPELD, TRAMP, and UIS2,
which have roles in salivary gland sporozoite infectivity, enabling
the sporozoite to navigate the host skin and liver, or traverse and
productively infect hepatocytes. As with differential expression of
RNA, species-specific differences in protein abundance changes
were observed, with notable proteins being ApiAP2-SP (P.
falciparum), and SPECT1, UIS3, and GAMER (P. yoelii). These
data sets include many of the best-characterized sporozoite
proteins, which are also known to be critical to sporozoite
maturation and transmission. However, in both species and in
both stages, 28–49% of the proteins now defined as UOS and UIS
proteins remain uncharacterized and are likely to be important to
sporozoite functions in the mosquito vector and the mammalian
host.

Comparison of UOS/UIS designations within and across spe-
cies. When comparisons across species for UOS RNAs and pro-
teins (Fig. 3a) or UIS RNAs and proteins (Fig. 3b) are made,
several key features emerge. First, there are very few gene pro-
ducts that receive the same UOS designations across species (e.g.,
14 UOS mRNAs and 6 UOS proteins), few that are both UOS
mRNAs and proteins (5 in P. falciparum, 7 in P. yoelii), and only
a single instance of a syntenic gene that encodes a UOS mRNA
and protein in both species: TREP/UOS3. However, these pro-
teins are known to be important to the oocyst sporozoite. For
example, we identified TREP/UOS3 as well as Plasmodium
Cysteine Repeat Modular Protein 2 and 4 (PCRMP2 and
PCRMP4) as UOS proteins in both P. yoelii and P. falciparum.
TREP/UOS3 and PCRMP2 are important for sporozoite targeting
to the salivary gland11,57, whereas PCRMP4 is important for
oocyst egress56. Similarly, relatively few gene products receive the
same UIS designations across species (Fig. 3b), but those that do
include several gene products known to be important to salivary
gland sporozoites. For instance, 10 cross-species UIS mRNAs and
25 UIS proteins were detected, and include gene products that
enable the sporozoite to preserve its infectivity (PUF2), relieve
translational repression (UIS2), traverse through host cells (PLP1
and CelTOS) and more. Two of these gene products are both UIS
mRNAs and UIS proteins in both species: CelTOS and SPELD
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(Supplementary Data 1). While less is known about SPELD, which
is found on the sporozoite surface and is essential for liver stage
development, CelTOS has been the focus of substantial study and
is a promising target for therapeutic interventions47,58. We
anticipate that the uncharacterized gene products identified here
will play roles in similar processes as those that have already been
studied, and deserve prioritization in future work. Together, these
data indicate that similar gene regulatory strategies are used by P.
yoelii and P. falciparum sporozoites, but in order to navigate and
interact with specific mammalian host environments, they might
regulate their most abundant gene products differently. Relaxation
of the more stringent thresholds used to define UOS and UIS gene
products by inclusion of additional expression deciles and/or
requiring a lower fold change yields substantially more overlap in
the regulated gene products (Supplementary Data 1).

Independent translational repression programs in sporozoites.
Plasmodium parasites have adopted the use of translational
repression in female gametocytes in a manner analogous to the
maternal-to-zygotic transition of metazoans, with translation of
stored and protected mRNAs occurring post transmission to the
mosquito19. However, far less is known about whether a similar,
energetically unfavorable regulatory strategy is used in spor-
ozoites. Currently, few transcripts have been shown to be trans-
lationally repressed in sporozoites through reverse genetic studies.
The best-studied example is the uis4 transcript, which has cis
control elements located in the coding sequence itself to limit
translation of the UIS4 protein prior to transmission14. In addi-
tion, a translational repressor, PUF2, has been shown to be
essential for the preservation of sporozoite infectivity during an
extended residence in the salivary glands30,59–61. Recently, tran-
scriptomic and proteomic data from P. vivax sporozoites has
indicated that translational repression occurs in this species as
well62.

In order to identify putatively translationally repressed transcripts
in sporozoites, we analyzed our transcriptomic and proteomic data
for evidence of highly abundant transcripts for which no protein
could be detected. Existing data suggest that translational repression
is imperfect, meaning that translationally repressed mRNAs may
still produce a detectable amount of protein. Therefore, in these
comparisons we used the following highly stringent criteria to define
a translationally repressed transcript: (1) transcripts must be in the
top decile of mRNA abundance, (2) the corresponding protein must
be either undetected or exhibit a disproportionately low abundance
(e.g., bottom 50th percentile), and (3) must encode for a protein
with detectable tryptic peptides (Supplementary Data 5). Through
comparison of the combined RNA-seq and proteomics datasets, we
observed that, as expected, transcript and protein abundance
correlated well for many essential and conserved gene products,
e.g., CSP, TRAP, CelTOS, SPELD, and GEST. However, there was
also widespread temporal dysregulation between transcript and
protein abundance, including evidence that translational repression
is extensively imposed upon many of the most abundant mRNAs of
both oocyst sporozoite and salivary gland sporozoite stages of both
species (Supplementary Data 6, Supplementary Fig. 2). The extent of
translational repression of transcripts in the top decile of abundance
is comparable across both species and both sporozoite stages, with
each species having transcripts with no evidence (~40–50% of
mRNAs), or no or low amounts (~68–80% of mRNAs) of protein
detected. Specifically, 115 of 167 UOS mRNAs and 70 of 88 UIS
mRNAs are translationally repressed in P. yoelii, whereas 62 of 101
UOS mRNAs and 50 of 68 UIS mRNAs are translationally repressed
in P. falciparum. Complete lists of the top 10% most abundant
transcripts that are translationally repressed are provided (Supple-
mentary Data 1 and 6).

Importantly, these datasets also reveal that Plasmodium has
implemented two discrete and likely orthogonal translational
repression programs during sporozoite maturation and transmis-
sion. One program imposes translational repression in oocyst
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sporozoites, which is relieved in salivary gland sporozoites to
allow for the production of highly abundant proteins (TR-oospz
to UIS Proteins program) (Supplementary Table 3). A second
program imposes and retains translational repression upon
mRNAs throughout sporozoite maturation (pan-sporozoite TR
program), which may allow for de-repression in the liver stage
parasite as is the case for pyuis4 (a selected list is provided in
Supplementary Table 4; Supplementary Fig. 1). However, formal
demonstration of the full scale of a post-transmission release
from the pan-sporozoite TR program awaits technical advances to
enable total proteomics of early liver stage parasites.

Strikingly, for both programs, well-characterized mRNAs are
regulated to allow production of their encoded proteins when
they are required for the parasite’s activities. For instance, the TR-
oospz to UIS Protein program (Supplementary Table 3) controls
production of PLP1/SPECT2, CelTOS, and TLP, which are
critical or essential for the sporozoite to navigate the host skin,
vasculature, and liver37,52,53,63–65. Analyses of the complete TR-
oospz to UIS Protein dataset reveal significant GO terms noting
roles in the apical invasion complex, the parasite cell surface,
movement in host environments, and interaction with and entry
into host cells (Supplementary Data 6). These data are in full
agreement with original studies of PLP1/SPECT2 and CelTOS in
P. berghei, which used IFA, western blotting, and immuno-EM to
show that neither protein is present in oocyst sporozoites, but
that both become abundant in salivary gland sporozoites37,53.
Work on other proteins provide supporting evidence for their
expression in and importance to sporozoite functions in the
salivary glands and early steps in the infection of the mammalian
host66–68.

Similarly, the Pan-Sporozoite Translational Repression pro-
gram affects transcripts that encode for proteins that are known
to be important/essential for subsequent stages of the parasite,
with notable overlapping regulation of ApiAP2-I, MORN1,
UIS11, and PAIP1 in both species and with similar timing
(Supplementary Table 4). In addition, in P. yoelii, several of the
historically defined UIS mRNAs (UIS4, UIS8, UIS12 (when
including the top two deciles), UIS28), ApiAP2-SP3, ApiAP2-L,
and others are regulated by this program. In P. falciparum,
GAMER, HDAC1, RNA metabolic enzymes, CDPK1, CDPK6,
FabZ, ApiAP2-O4, two unnamed ApiAP2s, and other regulator
proteins are affected. This indicates that the sporozoite is capable
of immediate regulation of these mRNAs before any significant
translation can occur, and is consistent with models that position
cytosolic granules near the nuclear pore complex to receive
exported mRNAs69. Taken together, these data indicate that
sporozoites have evolved two overlapping and independent
translational repression programs to prepare and remain poised
for their next required functions in a closely orchestrated manner.

Validation of translational repression in sporozoites. To fur-
ther validate the regulation of select mRNAs by the pan-
sporozoite TR program, we have used a gold standard, gene-by-
gene assessment of wild-type and transgenic P. yoelii salivary
gland sporozoites by fluorescence microscopy. For this, we have
selected genes that exhibit RNA abundances in either the 99th
percentile (UIS4 and PY17X_1354300) or at the 80th percentile
(UIS12), but that by mass spectrometry have exceedingly low
protein abundances (7, 2, and 1 peptide spectrum matches in
salivary gland sporozoites, respectively). Previous characteriza-
tions of UIS4 in both P. yoelii and P. berghei have yielded con-
flicting data on the presence/abundance of this protein using
either fluorescence microscopy or mass spectrometry-based
proteomics. To address this, we have generated rabbit poly-
clonal antisera against recombinant PyUIS4 to monitor protein

abundance in wild-type sporozoites. By IFA, nearly all day
14 salivary gland sporozoites showed no UIS4 protein detectable
above background (Fig. 4a). This is consistent with a previous
report that showed UIS4 protein levels increase over the residence
time of P. berghei sporozoites in the salivary gland70. Together
with our current findings, these data are consistent with a robust
but incomplete translational repression of UIS4, which becomes
increasingly leaky over time in sporozoites, even in the earliest
isolatable salivary gland sporozoites. We hypothesize that this
might be attributed to our incomplete understanding of how to
minimally perturb sporozoites upon extraction from the
mosquito.

We have further investigated whether our classifications of
translational repression apply to uncharacterized gene products
with mRNAs in the top decile of abundance. To this end, we
chose PY17X_1354300, which is one of the most abundant
mRNAs in P. yoelii salivary gland sporozoites (99.5th percentile)
but was among the least abundant proteins detected (Supple-
mentary Data 1). We created PY17X_1354300::GFP transgenic
salivary gland sporozoites, and in agreement with the proteomic
data, did not detect the presence of PY17X_1354300::GFP protein
using anti-GFP antibodies (Fig. 4b). Finally, while we have
restricted our definition of translationally repressed transcripts to
include only the most abundant mRNAs, it is also likely that less
abundant mRNAs are similarly regulated as well. To address this,
we assessed PyUIS12 protein expression in salivary gland
sporozoites, as it has high mRNA expression (80th percentile)
but was barely detected by mass spectrometry (a single peptide
spectrum match (PSM) in salivary gland sporozoites). Using live
fluorescence microscopy with PyWT-GFP or PyUIS12::GFP
sporozoites, we clearly observed GFP expression in control P.
yoelii WT-GFP sporozoites, but did not detect UIS12::GFP
protein when transcribed from its native locus (Fig. 4c). In
agreement with translational repression being relieved post-
transmission, IFA micrographs clearly show UIS12::GFP expres-
sion in the cytosol of 24-h old liver stage parasites (Fig. 4d).
Taken together, these data indicate that Plasmodium parasites can
impose translational repression upon sporozoite transcripts, and
can do so beyond what our conservative definition applied to only
the top decile of RNA abundance encompasses. However, it is
notable that because the consistency and completeness of this
regulation varies across individual sporozoites, both global (such
as those applied here) and single-cell approaches are informative
and required to understand this regulatory process.

Discussion
Plasmodium sporozoites are an intriguing model of parasite
infection biology with distinct infectivity profiles in the mosquito
vector site of development (oocysts) and site of sequestration for
transmission to the mammalian host (salivary glands). Here, we
report a comprehensive and comparative assessment of the
transcriptomes and proteomes of both P. yoelii and P. falciparum
sporozoites. We have captured these gene expression and protein
profiles for immature sporozoites from the mosquito midgut
(oocyst sporozoites) and mature, infectious sporozoites from the
mosquito salivary glands. From these extensive data sets, several
important features of transcriptome and proteome regulation can
be deciphered that are likely controlling the distinct sporozoite
phenotypes in the mosquito vector and mammalian host.

First, these datasets provide a robust classification of transcript
regulation across sporozoite maturation at both the mRNA and
protein levels. Previous work identified mRNAs UOS or salivary
gland sporozoites, but relied upon less comprehensive instru-
mentation and low stringency thresholds. The use of current
RNA-seq methodologies and improved genome annotation
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employed here provides a far more extensive and robust classi-
fication of UOS and UIS transcripts, and now does so for both
rodent-infectious (P. yoelii) and human-infectious (P. falciparum)
sporozoites (Fig. 1, Supplementary Table 1, Supplementary
Datas 1–3). Moreover, we have also assessed these parasites for
large-scale changes in protein abundance through mass
spectrometry-based proteomics (Fig. 2, Supplementary Table 2,
Supplementary Data 1 and 4). Together, these data strongly align
with the expression levels and timing reported for individually
studied mRNAs and proteins, and will provide the foundation for
a systems analysis of the regulatory networks that govern spor-
ozoite infection biology.

Second, we uncovered evidence that extensive translational
repression occurs in both P. falciparum and P. yoelii oocyst
sporozoites and salivary gland sporozoites. In analyzing our data,
we first applied rigorous thresholds to interrogate the most
abundant transcripts and proteins with the goal of identifying
putative targets with the highest possible confidence. We deemed
this prudent, as detection of mRNAs by RNA-seq (which includes
sample amplification approaches) is more sensitive than detection
of proteins by mass spectrometry (which cannot benefit from
sample amplification). Among the top decile of mRNAs by
abundance, the encoded proteins for nearly half were not detected
at all by mass spectrometry, and the encoded proteins for another

quarter were detected at a disproportionately low abundance
(Supplementary Data 6). It is notable that relaxation of these
thresholds reveals that translational repression also occurs with
less abundant mRNAs, which we also observed through micro-
scopy in the validation of PyUIS12 expression (Fig. 4).

Intriguingly, we find that two translational repression pro-
grams appear to be functioning in sporozoites, with some tran-
scripts being translationally repressed in oocyst sporozoites but
highly translated in salivary gland sporozoites (TR-oospz to UIS
Protein program) while others remain translationally repressed
throughout sporozoite maturation (pan-sporozoite TR program)
(Fig. 5). In the case of those proteins that have been characterized
for their roles in sporozoite maturation and functions in the
mosquito and host, clear patterns arise. The TR-oospz to UIS
Protein program would provide for the rapid production of
proteins in salivary gland sporozoites, and would be well-suited
for proteins that are needed immediately after transmission for
host cell traversal in the skin, vasculature and liver, and/or for
productive infection of hepatocytes. In agreement with this, we
find several proteins with known roles in cell traversal (PLP1/
SPECT2, CelTOS, GAMER, TLP; Supplementary Table 3). The
second Pan-sporozoite TR program, particularly including those
UIS transcripts that are expressed only in salivary gland spor-
ozoites but that are translationally repressed, would regulate the
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establishment of a new intrahepatocytic liver stage of infection by
allowing for the rapid translation of these mRNAs after hepato-
cyte invasion. In the absence of robust global proteomic analysis
of the early liver stage parasite, which will be exceedingly difficult
to achieve, this dataset constitutes the best possible platform from
which to assess the liver stage proteome in a candidate-based
approach.

Together, our findings indicate that a multitiered, temporal
translational repression mechanism is at work in Plasmodium
sporozoites. This regulatory system aligns with the several win-
dows of functionality that are required for the sporozoites’
journey as they egress from the relatively benign environment of
oocysts on the mosquito midgut, migrate through the hemocoel,
invade the salivary glands, remain there poised for transmission
and when transmitted, migrate in mammalian tissue, avoid the
dangers of the host immune response, traverse cells, and ulti-
mately infect hepatocytes. As the posttranscriptional control of
specific mRNAs is energetically unfavorable as compared to de
novo transcription, we hypothesize that reducing the time
between receipt of an external/environmental stimulus and the
availability of a protein is critical to the parasite. The use of a TR-
oospz to UIS Protein program is straightforward, as it would
require a short duration of translational repression until invasion

of the salivary glands occurs. However, it is less clear why an
energetically unfavorable pan-sporozoite program would be
activated in oocyst sporozoites, instead of simply transcribing
these mRNAs in salivary gland sporozoites. One scenario that
could explain the use of both programs is one where the spor-
ozoite invades the salivary gland and then is immediately trans-
mitted, as this would allow immediate responses to both events.
While population-level approaches (like those used here) are
practical and informative, single-cell approaches should be cou-
pled with them to uncover meaningful differences in the variance
of gene expression across individual sporozoites. Enabling tech-
nology for single-cell RNA sequencing is currently available, and
single-cell proteomics is on the horizon.

Finally, new questions emerge from these data. For instance,
what are the trans factors and cis elements responsible for these
two likely orthogonal translational repression systems? While
several RNA-binding proteins (RBPs) have been implicated in the
preparation of salivary gland sporozoites for transmission, spe-
cific RBPs have not been associated with specific transcripts in the
sporozoite. Moreover, as the TR-oospz to UIS Protein program
initiates in the oocyst sporozoite, experiments must also be pur-
sued in this stage as well. In addition, at what point are mRNAs
governed by the pan-sporozoite TR program released for
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translation? The prevailing model based upon a few gene-specific
examples suggests that it should be relieved after hepatocyte
infection in early liver stage. Also, could another program be
active in Plasmodium species that produce latent liver stage
forms, called hypnozoite stages? As the commitment to active or
latent liver stage forms might already occur in salivary gland
sporozoites, having a translational repression program available
in sporozoites could allow for this, and could also contribute to
determining the frequency of latent liver stage parasites. Lastly,
perhaps the most appealing questions of all revolve around the
uncharacterized and under-characterized gene products identified
here. These may provide new clues to unappreciated parasite
functions, or produce proteins so very different from host pro-
teins that they can be therapeutically targeted.

Methods
Plasmodium sporozoite production and purification. Wild-type P. yoelii (17XNL
strain) sporozoites were produced in a temperature (24C), humidity (70%), and
light (12 h cycles) controlled incubator30. Briefly, 6-to-8-week old Swiss Webster
mice were infected by intraperitoneal (IP) injection of cryopreserved infected blood
and were monitored until the peak day of male gametocyte exflagellation. Mice
were then anesthetized with an IP injection of ketamine/xylazine and exposed to
150–200 Anopheles stephensi mosquitoes for 15 min with periodic movements on
the cage to promote consistency in the transmission of parasites to the mosquito
population. Oocyst sporozoites were collected by microdissection and grinding of
mosquito midguts on day 10 post-blood meal, whereas salivary gland sporozoites
were similarly collected from salivary glands on day 14 post-blood meal.

All animal care adheres to the Association for Assessment and Accreditation of
Laboratory Animal Care (AAALAC) guidelines, and all experiments conformed to
approved IACUC protocols at the Center for Infectious Disease Research (formerly
Seattle Biomedical Research Institute, Protocol ID #SK-02 to Stefan Kappe) or at
Pennsylvania State University (Protocol ID #42678 to Scott Lindner). To this end,
all work with vertebrate animals was conducted in strict accordance with the
recommendations in the Guide for Care and Use of Laboratory Animals of the
National Institutes of Health with approved Office for Laboratory Animal Welfare
(OLAW) assurance.

Wild-type Plasmodium falciparum (NF54 strain) sporozoites were produced33

by Seattle Children’s (formerly the Center for Infectious Disease Research, Seattle
Biomedical Research Institute) and Johns Hopkins University. P. yoelii and P.
falciparum sporozoites were purified by DEAE sepharose and/or two sequential
Accudenz gradients28,31,71.

Reverse genetic modification of P. yoelii parasites. Plasmodium yoelii (17XNL
strain) was genetically modified using conventional, double homologous recom-
bination approaches with the pDEF plasmid vector30. Oligonucleotides used for the
creation of targeting sequences are listed in Supplementary Data 7. The 3′ end of
py17X_1354300 or pyuis12 (PY17X_0507300) was modified by the addition of the
GFPmut2 coding sequence prior to the stop codon. Transgenic parasites were
identified by genotyping PCR, with independent transgenic clones being isolated by
limiting dilution cloning. Clonal parasites were transmitted to A. stephensi mos-
quitoes to produce salivary gland sporozoites as described above.

Live fluorescence and indirect immunofluorescence assays. Wild-type and
transgenic P. yoelii sporozoites (PY17X_1354300::GFP, PyUIS12::GFP) were sub-
jected to live fluorescence assays and/or an indirect immunofluorescence assay
(IFA)72 to characterize the extent of translational repression of these candidates.
For live fluorescence microscopy of PyUIS12::GFP, freshly produced salivary gland
sporozoites placed on glass slides in VectaShield, overlaid with a cover glass slip,
and visualized by fluorescent microscopy using a Zeiss Axioscope A1 with 8-bit
AxioCam ICc1 camera and Zen imagine software from the manufacturer. Alter-
natively, fresh salivary gland sporozoites were fixed in 10% v/v formalin for 10 min,
and then air dried to a well on a glass slide defined by a hydrophobic coating.
Sporozoites were treated for IFA using either rabbit polyclonal anti-PyUIS4
(antigen consisting of AA80-224, diluted 1:1000), produced by Pocono Rabbit
Farm and Laboratory, Canadensis, PA) or rabbit polyclonal anti-GFPmut2 (diluted
1:1000) as primary antibodies and anti-rabbit IgG antibodies conjugated to Alexa
Fluor 488 as a secondary antibody (diluted 1:500).

Comparative RNA-seq of oocyst and salivary gland sporozoites. For all oocyst
sporozoite and salivary gland sporozoite replicates, RNA was prepared using the
Qiagen RNeasy kit with two sequential DNaseI on-column digests, and was quality
controlled by analysis on a BioAnalyzer. Barcoded libraries were created using the
Illumina TruSeq Stranded mRNA Library Prep Kit, according to the manu-
facturer’s protocol. Sequencing was conducted on an Illumina HiSeq 2500 using
100 nt single read length on three biological replicates per sample type. The
resulting data was mapped to the respective reference genomes (P. yoelii 17XNL

strain, plasmodb.org v30; P. falciparum 3D7 strain, plasmodb.org v30) using
Tophat2 in a local Galaxy instance (version 2.1.0). Count files were generated using
htseq-count (version 0.6.1) with a minimum alignment quality value set at 30 and a
union mode setting. These count files compare the aligned BAM files to a reference
GFF file (plasmodb.org v30 for both Py17xNL and Pf3D7) to evaluate the number
of reads mapping to each feature, or gene. The count files are combined and
compared across conditions using DEseq2 (version 2.11.38), which outputs com-
plete transcript abundance comparisons and performs best among current differ-
ential expression tools for three biological replicates. Normalization values for these
data are determined by DEseq2 across compared datasets for oocyst sporozoites
and salivary gland sporozoites. Statistical metrics utilized were generated by
DEseq273. The average number of counts across biological replicates and their
standard error of the mean were calculated to allow ranking of transcripts detected
over background. Gene ontology terms (components, functions, and processes)
were retrieved from PlasmoDB.org (v30). RNA-seq data reported here is available
through the GEO depository (Accession #GSE113582).

MS-based proteomics of Plasmodium sporozoites. Purified oocyst sporozoites
were subjected to SDS-PAGE pre-fractionation and in-gel tryptic digestion31,32.
Briefly, samples were electrophoresed through a 4–20% w/v SDS-polyacrylamide
gel (Pierce Precise Tris-HEPES). Gels were stained with Imperial Stain (Thermo
Fisher Scientific), de-stained in Milli-Q Water (Millipore), and cut into equal-sized
fractions (26 fractions pooled into 13 LC–MS samples for the P. yoelii gel and 24
fractions analyzed as 24 LC–MS samples for the P. falciparum gel). Gel pieces were
then destained with 50 mM ammonium bicarbonate (ABC) in 50% acetonitrile
(ACN) and dehydrated with ACN. Disulfide bonds were reduced with 10 mM DTT
and cysteines were alkylated with 50 mM iodoacetamide in 100 mM ABC. Gel
pieces were washed with ABC in 50% ACN, dehydrated with ACN, and rehydrated
with 6.25 ng per µL sequencing grade trypsin (Promega). After incubating over-
night at 37 °C, the supernatant was recovered and peptides were extracted by
incubating the gel pieces with 2% v/v ACN/1% v/v formic acid, then ACN. The
extractions were combined with the digest supernatant, evaporated to dryness in a
centrifugal vacuum concentrator, and reconstituted in LC loading buffer consisting
of 2% v/v ACN/0.2% v/v trifluoroacetic acid (TFA).

LC was performed using an Agilent 1100 nano pump with electronically
controlled split flow at 300 nL per min (P. falciparum sample) or an Eksigent
nanoLC at 500 nL per min (P. yoelii sample)31,33. Peptides were separated on a
column with an integrated fritted tip (360 µm outer diameter (O.D.), 75 µm inner
diameter (I.D.), 15 µm I.D. tip; New Objective) packed in-house with a 20 cm bed
of C18 (Dr. Maisch ReproSil-Pur C18-AQ, 120 Å, 3 µm). Prior to each run, sample
was loaded onto a trap column consisting of a fritted capillary (360 µmO.D., 150
µm I.D.) packed with a 1 cm bed of the same stationary phase and washed with
loading buffer. The trap was then placed in-line with the separation column for the
separation gradient. The LC mobile phases consisted of buffer A (0.1% v/v formic
acid in water) and buffer B (0.1% v/v formic acid in ACN). The separation gradient
was 5% B to 35% B over 60 min (P. falciparum sample) or 90 min (P. yoelii sample).
Tandem MS (MS/MS) was performed with a Thermo Fisher Scientific LTQ Velos
Pro-Orbitrap Elite (P. falciparum) or LTQ Velos-Orbitrap (P. yoelii). Data-
dependent acquisition was employed to select the top 20 precursors for collision-
induced dissociation and analysis in the ion trap. Dynamic exclusion and precursor
charge state selection were employed. Three nanoLC–MS technical replicates were
performed for each fraction.

The raw MS data from our previously reported analysis of salivary gland
sporozoites31 were reanalyzed using the same databases and parameters described
here. Mass spectrometer output files were converted to mzML format using
msConvert version 3.0.600274 and searched with Comet version 2015.02 rev.075.
The precursor mass tolerance was ±20 ppm, and fragment ions bins were set to a
tolerance of 1.0005m/z and a monoisotopic mass offset of 0.4m/z. Semitryptic
peptides and up to two missed cleavages were allowed. The search parameters
included a static modification of +57.021464 Da at Cys for formation of S-
carboxamidomethyl-Cys by iodoacetamide and potential modifications of
+15.994915 Da at Met for oxidation, −17.026549 Da at peptide N-terminal Gln for
deamidation from formation of pyroGlu, −18.010565 Da at peptide N-terminal
Glu for loss of water from formation of pyroGlu, −17.026549 Da at peptide N-
terminal Cys for deamidation from formation of cyclized N-terminal S-
carboxamidomethyl-Cys, and +42.010565 for acetylation at the N-terminus of the
protein, either at N-terminal Met or the N-terminal residue after cleavage of N-
terminal Met. The spectra were searched against a database comprising either P.
falciparum 3D776 or P. yoelii yoelii 17X77 (PlasmoDB v.30, www.plasmodb.org78)
appended with A. stephensi Indian AsteI2.379 (VectorBase, www.vectorbase.org80),
and a modified version of the common Repository of Adventitious Proteins
(v.2012.01.01, The Global Proteome Machine, www.thegpm.org/cRAP) with the
Sigma Universal Standard Proteins removed and the LC calibration standard
peptide [Glu-1] fibrinopeptide B appended. Decoy proteins with the residues
between tryptic residues randomly shuffled were generated using a tool included in
the TPP and interleaved among the real entries. The MS/MS data were analyzed
using the TPP81 version 5.0.0 Typhoon. Peptide spectrum matches (PSMs) were
assigned scores in PeptideProphet, peptide-level scores were assigned in iProphet82,
and protein identifications were inferred with ProteinProphet83. In the case that
multiple proteins were inferred at equal confidence by a set of peptides, the
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inference was counted as a single identification and all relevant protein IDs were
listed. Only proteins with ProteinProphet probabilities corresponding to a false-
discovery rate (FDR) less than 1.0% (as determined from the ProteinProphet
mixture models) were reported.

Protein quantification. Relative protein abundance within and between samples
was estimated using label-free proteomics methods based on spectral counting.
Briefly, the spectral counts for a protein were taken as the total number of high-
quality PSMs (identified at an iProphet probability corresponding to an FDR less
than 1.0%) that identified the protein. Spectral counts were quantified using the
StPeter program in the TPP84. The distributed spectral counts model was used to
divide PSMs from degenerate peptides (peptides whose sequences were found in
multiple proteins in the database) among proteins containing that peptide in a
weighted fashion85. Relative protein abundance within samples was ranked using
the normalized spectral abundance factor55,86. Relative protein abundance ratios
based on spectral counts were normalized and p values were assigned32. The raw
and fully analyzed data files for these mass spectrometry-based proteomic
experiments have been deposited in PRIDE (Accession # PXD009726, PXD009727,
PXD009728, and PXD009729).

Prediction of tryptic peptides. The CONSeQuence algorithm was used to identify
proteins with detectable fully tryptic peptides with no missed cleavages87. A
threshold of a Rank score ≥0.5 (derived from the combined predictors) was
applied, a cutoff that had a sensitivity >70% with a false positive rate <50% when
tested on datasets other than the training data as reported by the developers.
Application of this algorithm with this threshold to our published P. falciparum
salivary gland sporozoite proteome only misidentified 2.9% of all proteins as having
no detectable peptides31.

Statistical analyses. Statistical tests used in this study were carried out using
DEseq2 (RNA-seq), the TPP and the CONSeQuence algorithm (proteomics) as
described above for three biological replicates for each sample type. Measurements
of statistical significance (p values, p-adjusted values) are provided in Supple-
mentary Data. Gene Ontology (GO) analyses were conducted on PlasmoDB (v44),
with enriched GO terms identified through embedded Benjamini and Bonferroni
statistical analyses.

Ethics statement. All animal care adheres to the Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC) guidelines, and all experi-
ments conformed to approved IACUC protocols at Seattle Childrens (formerly
Seattle Biomedical Research Institute, Protocol ID #SK-02 to Stefan Kappe) or at
Pennsylvania State University (Protocol ID #42678 to Scott Lindner). To this end,
all work with vertebrate animals was conducted in strict accordance with the
recommendations in the Guide for Care and Use of Laboratory Animals of the
National Institutes of Health with approved Office for Laboratory Animal Welfare
(OLAW) assurance.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Transcriptomic and proteomic data that support the findings of this study have been
deposited in the GEO (Accession #GSE113582)] and PRIDE (Accession # PXD009726,
PXD009727, PXD009728, and PXD009729) depositories.
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