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We consider shallow-water flow past a broad bottom ridge, localized in the flow dir-
ection, using the framework of the forced Su–Gardner (SG) system of equations, with
a primary focus on the transcritical regime when the Froude number of the oncoming
flow is close to unity. These equations are an asymptotic long-wave approximation
of the full Euler system, obtained without a simultaneous expansion in the wave
amplitude, and hence are expected to be superior to the usual weakly nonlinear
Boussinesq-type models in reproducing the quantitative features of fully nonlinear
shallow-water flows. A combination of the local transcritical hydraulic solution over
the localized topography, which produces upstream and downstream hydraulic jumps,
and unsteady undular bore solutions describing the resolution of these hydraulic
jumps, is used to describe various flow regimes depending on the combination of
the topography height and the Froude number. We take advantage of the recently
developed modulation theory of SG undular bores to derive the main parameters
of transcritical fully nonlinear shallow-water flow, such as the leading solitary wave
amplitudes for the upstream and downstream undular bores, the speeds of the
undular bores edges and the drag force. Our results confirm that most of the features
of the previously developed description in the framework of the unidirectional forced
Korteweg–de Vries (KdV) model hold up qualitatively for finite amplitude waves, while
the quantitative description can be obtained in the framework of the bidirectional
forced SG system. Our analytic solutions agree with numerical simulations of the
forced SG equations within the range of applicability of these equations.

1. Introduction
Description of shallow-water flow over an obstacle is a classical and fundamental

problem in fluid mechanics, with implications for flow interaction with topography in
many other physical contexts. Our concern here is with the upstream and downstream
waves that may be generated for flow over a one-dimensional localized obstacle, that
is, the obstacle is uniform in the direction transverse to the oncoming flow, and is
localized in the flow direction. When the flow is not critical, that is, when the Froude
number F =V/c is not close to unity, where V is the oncoming flow speed and
c = (gh)1/2 is the linear long-wave speed in water of undisturbed depth h, linear theory
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may be used to describe the wave field. For subcritical flow (F < 1) stationary lee
waves are found downstream, together with transients propagating both upstream and
downstream, while only downstream-propagating transients are found in supercritical
flow (F > 1). However, these linear solutions fail near criticality (F = 1), as then the
wave energy cannot propagate away from the obstacle. In this case it is necessary to
invoke nonlinearity to obtain a suitable theory, and it is now well established that the
forced Korteweg–de Vries (fKdV) equation is an appropriate model for the weakly
nonlinear regime (see for instance Grimshaw, Zhang & Chow 2007 and the references
therein).

The structure of the transcritical (or resonant) flows over localized topography
modelled by the fKdV equation is now well understood. Combinations of the locally
steady hydraulic solution, with its associated upstream and downstream hydraulic
jumps, and the modulation solutions describing upstream and downstream undular
bores which resolve these jumps, obtained by Grimshaw & Smyth (1986) and Smyth
(1987), showed excellent agreement with direct numerical simulations of the fKdV
equation. On the other hand, a recent comparison in Grimshaw et al. (2007) of fKdV
dynamics with the corresponding numerical solution of the full Euler equations for
transcritical flow showed that, while the fKdV model successfully reproduces essential
qualitative features of the flow, quantitative differences could be quite significant
for large obstacles. In this paper, we address this issue by seeking analytical and
numerical solutions of the Su–Gardner (SG) equations, derived by Su & Gardner
(1969) to describe fully nonlinear water waves in the long-wave regime.

The SG system has the typical structure of the well-known Boussinesq-type systems
for shallow water waves, but differs from them in retaining full nonlinearity in the
leading-order dispersive term. Thus it is expected to be superior to traditional weakly
nonlinear Boussinesq models in reproducing quantitative features of fully nonlinear
dispersive flows.

Other fully nonlinear shallow water models exist which retain higher order
dispersive terms and describe the behaviour of finite amplitude waves better than the
SG equations (see for instance Gobbi, Kirby & Wei 2000 and Madsen, Bingham &
Schäffer 2003 and references therein). These models, however, are typically far more
complicated than the SG system and do not possess its degree of universality in
terms of applicability in other fluid dynamics contexts, such as bubbly fluid dynamics
Gavrilyuk (1994) and dispersive magnetohydrodynamics Dellar (2003). Our aim in this
paper is to construct an analytical theory of shallow-water irrotational transcritical
flows, this being presently available only for the weakly nonlinear case modelled
by the fKdV equation. So the choice of the SG system as the closest to the KdV
equation, in terms of complexity, and as a fully nonlinear bidirectional model is
natural. We also note that detailed numerical comparisons by Ertekin, Webster &
Wehausen (1986) and Nadiga, Margolin & Smolarkiewicz (1996) showed that the
SG equations reproduce the finite-amplitude Euler equation dynamics of flow past
topography, excluding any possible effects of wave breaking.

The description of an undular bore generated by an initial step was first constructed
by Gurevich & Pitaevskii (1974) in the framework of the Korteweg–de Vries (KdV)
equation, using the Whitham modulation theory (see Whitham 1974). This solution
was used by Grimshaw & Smyth (1986) and Smyth (1987) to describe the generation
of upstream and downstream undular bores generated by transcritical flow over
topography in the framework of the fKdV equation. In that case, explicit analytic
solutions could be found, as for the KdV equation Riemann invariants are available for
the associated modulation system, which in turn is a consequence of the integrability
of the KdV equation. The SG system is not integrable and the Riemann invariants
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for its modulation system are not available. A method for the analysis of the undular
bores which does not require the existence of the Riemann invariant form of the
modulation system was developed by El (2005) (see also El, Khodorovskii & Tyurina
2005). This method was applied to the SG system by El, Grimshaw & Smyth (2006)
where the main parameters of the so-called simple undular bores were derived. In this
present paper we use this theory to study the generation of finite-amplitude undular
bores generated by transcritical shallow-water flow past a localized obstacle in the
framework of the forced SG equations. Our main aim is to obtain the dependence of
the parameters defining the undular bores, such as the leading soliton amplitude and
the speeds of the undular bore edges, on the magnitude of the topographic forcing
and the Froude number of the oncoming flow.

Thus we consider one-dimensional shallow-water flow past topography. The flow
can be described by the total local depth H and the depth-averaged horizontal
velocity U . The basic equations are derived in the Appendix, and are just the usual
SG equations, but modified by the forcing term due to localized topographic obstacle
f (x) defined so that the bottom is located at z = −h+f (x) where h is the undisturbed
depth at infinity. Here we shall use non-dimensional coordinates, based on a length
scale h, a velocity scale

√
gh and a time scale of

√
h/g. Then the forced SG equations

are

ζt + (HU )x = 0, H = 1 + ζ − f, (1.1)

Ut + UUx + ζx = − (H 2D2H )x
3H

− (H 2D2f )x
2H

− fxD
2(ζ + f )

2
, (1.2)

where

D =
∂

∂t
+ U

∂

∂x
.

This agrees with the original SG system when f = 0. When f �= 0 the only difference
lies in the nonlinear dispersive terms in (1.2).

The forced SG system (1.1) and (1.2), in spite of its rather complicated form, is
much more amenable to analytical treatment than the full Euler equations. First, it has
well defined hyperbolic, dispersive and forcing components, so that the construction
of the hydraulic solution is possible. Second, as will be found later, undular bores
are formed away from the topographic forcing itself, so one can take advantage
of the modulation theory available for the unforced, standard SG system. Such a
modulation theory is, however, not available for the full Euler equations.

We note that the much discussed issue of the varying vorticity in the two-
dimensional (x, y, t) version of the SG equations, conventionally called the Green–
Naghdi equations (Green & Naghdi 1976) (see for instance Miles & Salmon 1985
and Kim et al. 2001), does not arise in the present effectively one-dimensional (x, t)
scenario. We also add that in the present work we consider laminar undular bores,
so that the large amplitude effects of wave breaking, implying rotational flows in the
(x, z) plane, are beyond the scope of the present paper.

We shall suppose that the upstream flow is the constant horizontal velocity V > 0,
in dimensional coordinates, which becomes F =V/

√
gh, the Froude number, in the

non-dimensional coordinate system. Since we are considering a localized obstacle, we
require that f = 0 for |x| >L say, and f > 0 when |x| <L with a maximum of fm at
x = 0. Then our asymptotic solution procedure assumes that that L � 1, and so in
|x| <L we can use a hydraulic approximation to obtain subcritical, supercritical and
transcritical solutions, analogous to those described by Grimshaw & Smyth (1986)
for the fKdV equation, and by Baines (1995) for fully nonlinear and non-dispersive
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flow. In the transcritical regime these solutions form upstream and downstream
discontinuities relative to the undisturbed flow at infinity, that is, hydraulic jumps.
These discontinuities are resolved by the insertion of undular bores and since in
|x| >L we have the homogeneous SG equations, the Whitham modulation theory
(Whitham 1974) can be applied there.

An important development outlined in this paper compared with previous studies
is that we derive the closure conditions for the transcritical hydraulic solution of
the forced shallow water equations based on an undular bore resolution and show
that, for weak to moderate values of the forcing, the downstream rarefraction wave
predicted by general hydrodynamic reasoning (see Baines 1995 for instance) has a
very small amplitude and can be neglected for any practical purpose. The absence,
or, to be precise, negligibly small amplitude of the downstream rarefraction wave is
confirmed by our numerical simulations of the SG equations and is also a feature
of the full Euler equations (see Grimshaw et al. 2007). This has the important
implication that the problem of transcritical shallow water flow past topography is
essentially unidirectional, which, in particular, formally justifies the applicability of
the unidirectional fKdV equation in the description of weakly nonlinear transcritical
flows in Grimshaw & Smyth (1986).

In the remainder of this paper, we present the hydraulic solutions in § 2, and the
required undular bore solutions in § 3. We conclude with a discussion in § 4.

2. Hydraulic approximation
We shall follow the approach of Grimshaw & Smyth (1986), the key point of

which is the assumption, confirmed by direct numerical simulations, of the existence,
in the transcritical regime, of a locally steady hydraulic transition in the forcing
region. This is characterized by a subcritical constant elevation ζ − > 0 and velocity
U < F upstream and a supercritical constant depression ζ+ < 0 and velocity U > F

downstream. These states are resolved back to the equilibrium state ζ = 0, U = F by
two undular bores, propagating upstream and downstream respectively. Apart from
the account of the large-amplitude effects, the qualitative difference between the KdV
case studied in Grimshaw & Smyth (1986) and the present case of the SG system is
that now we deal with the equations describing bidirectional wave propagation so the
mentioned combination of just two undular bores may generally be not sufficient to
resolve the upstream and downstream discontinuities in depth and velocity.

First, we need to determine the upstream elevation and velocity at x = −L and the
downstream depression and elevation at x = L. As in Grimshaw & Smyth (1986),
this can be done by using the hydraulic approximation, in which the dispersive term
in (1.2) is omitted, and we then seek steady solutions of the remaining equations
which, relative to the oncoming flow F , have a subcritical elevation upstream and a
supercritical depression downstream. These steady hydraulic equations are

HU =(1 + ζ − f )U = Q, ζ +
U 2

2
= B. (2.1)

Here Q, B are positive integration constants, representing mass and energy
respectively (strictly B is the Bernoulli constant and BQ is energy). Eliminating
ζ gives

U 2

2
+

Q

U
= B + 1 − f, (2.2)

which determines U as a function of the obstacle height f .
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For non-critical flow, the solution (U, ζ ) of (2.1), (2.2) must tend to (F, 0) at infinity,
and so Q =F, B = F 2/2. In terms of the upstream Froude number it is then required
that (see for instance Baines 1995)

0 < fm < 1 +
F 2

2
− 3F 2/3

2
. (2.3)

This expression defines the subcritical regime F < F− < 1 and the supercritical regime
1 < F+ <F where a smooth steady hydraulic solution exists. For small fm � 1, we
find that

F± =1 ±
√

3fm

2
. (2.4)

In the transcritical regime F− <F <F+ where (2.3) does not hold, we seek instead
a solution that has upstream and downstream jumps, and which satisfies the critical
flow condition at the top of the obstacle. That is we require that when fx = 0 at x = 0,
Ux �= 0. This condition leads to

U (x = 0) = Um = Q1/3. (2.5)

Note that we can define a local Froude number Fr by

(Fr)2 =
U 2

H
=

U 3

Q
=

U 3

U 3
m

, and so Fr = 1 at x = 0. (2.6)

Later it will emerge that there is subcritical flow upstream (Fr < 1, U < Um, x < 0)
and supercritical flow downstream (Fr > 1, U > Um, x > 0). Evaluating (2.2) at x =0
we get

3U 2
m

2
=

3Q2/3

2
= B + 1 − fm. (2.7)

For a given obstacle height, this relation defines B in terms of Q. Also we note that
the elevation ζ (x = 0) = ζm at the top of the obstacle is given by

ζm = B − U 2
m

2
. (2.8)

It follows that ζ > ζm, U < Um upstream, and ζ < ζm, U > Um downstream.
Next outside the obstacle in U = U±, ζ = ζ± are constant, downstream (x >L) and

upstream (x < −L) respectively. We must now determine how these constants are
related to the undisturbed values U = V, ζ = 0 far downstream and upstream. This
will depend on whether the adjustment is through a classical (frictional) shock, or
through an undular bore. Before proceeding we note the relationships

U±(1 + ζ±) = Q, (2.9)

U 2
±

2
+ ζ± =B, (2.10)

and so
U 2

±

2
+

Q

U±
=

Q2

2(1 + ζ±)2
+ ζ± + 1 = B + 1. (2.11)

For given Q, B , these relations fix U±, ζ± completely, provided we can establish that
the required solution must have U+ > U−, ζ+ < ζ−. But we have one relationship (2.7)
connecting B, Q, and so there is just a single constant to determine. Also note that
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ζ = 0

ζ = 0

ζr

ζ+

ζ–

Figure 1. Schematic for closure using classical shocks. The shaded area shows
the position of the bottom ridge.

the respective criteria that ζ± =0 recover the boundaries of the transcritical regime
defined by equality in (2.19).

2.1. Classical shock closure

We follow first the classical approach and consider downstream and upstream jump
resolution by classical shocks. Apart from being methodologically instructive this
consideration is relevant to the case of large-amplitude topography that would
generate classical turbulent bores.

If S is the shock speed, and [· · · ] denotes a jump, the classical shocks conserve
mass and momentum, and so we get, in |x| >L,

−S[ζ ] + [HU ] = 0, −S[HU ] +

[
HU 2 + ζ +

1

2
ζ 2

]
=0. (2.12)

Note the steady flow over the obstacle conserves mass and energy (rather than
momentum) so these are non-trivial conditions to apply. However, we cannot
simultaneously impose upstream and downstream jumps which connect directly to
the uniform flow. Instead, we follow Baines (1995), and first impose an upstream
jump. There is then a downstream jump which connects to a rarefraction wave (see
figure 1 ). First, we consider the upstream jump, which connects ζ−, U− to 0, F with
S− < 0, S− being the speed of the upstream shock. The first relation in (2.12) gives

ζ−(S− − F ) = (1 + ζ−)(U− − F ), or ζ−(S− − U−) =U− − F. (2.13)

But then, using the relations (2.9) we also get

S−ζ− =Q − F. (2.14)

Next, the second relation in (2.12) gives

(1 + ζ−)(U− − F )(S− − U−) = ζ−

(
1 +

ζ−

2

)
. (2.15)

Eliminating S− gives

(1 + ζ−)(U− − F )2 = ζ 2
−

(
1 +

ζ−

2

)
, (2.16)
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while eliminating U− − F gives

(S− − F )2 = (1 + ζ−)

(
1 +

ζ−

2

)
, (2.17)

so that S− = F −
[
(1 + ζ−)

(
1 +

ζ−

2

)]1/2

. (2.18)

Here the choice of sign is dictated by the requirement that this solution is to hold in
the transcritical regime. Further, since we need S− < 0 it follows that we must have
ζ− > 0. Then the relations (2.9), (2.14) show that also U− < Q < F .

The system of equations is now closed, as substitution of (2.18) into (2.14) determines
ζ− in terms of Q, and then we can use (2.11) to determine Q in terms of B , so that
finally all unknowns are obtained in terms of fm from (2.7). Further, the conditions
ζ− > 0 serve to define the transcritical regime in terms of the Froude number F and
fm,

fm > 1 +
F 2

2
− 3F 2/3

2
. (2.19)

This of course is precisely the opposite of the condition (2.3) for non-critical flow. In
the weakly nonlinear limit, this procedure yields

ζ± =
2

3
(F − 1) ∓

√
2fm

3
, (2.20)

which holds in the transcritical regime |F − 1| < (3fm/2)1/2.
This procedure also determines ζ+ < 0, U+ >Um, but in general, these cannot be

resolved by a jump directly to the state 0, F . Instead we must insert a right-propagating
rarefraction wave, as in Baines (1995) (see figure 1). The rarefraction wave propagates
downstream into the undisturbed state 0, F , and so is defined by the values ζr, Ur

where

Ur − 2(1 + ζr )
1/2 = F − 2. (2.21)

The rarefraction wave is then connected to the ‘hydraulic’ downstream state near
topography ζ+, U+ by a shock, using the jump conditions (2.12) to connect the two
states through a shock with speed S+ > 0. There are then three equations for the three
unknowns ζr, Ur, S+ and the system is closed.

Note that in the weakly nonlinear regime, when the forcing is sufficiently small (the
appropriate small parameter is ε∼

√
fm), the rarefraction wave contribution can be

neglected as it has the amplitude of order ε3 while the shock intensity is O(ε) (see
the next section).

2.2. Undular bore closure

Now suppose that instead we use undular bores to resolve the shocks. Then upstream
we must impose the condition for a simple undular bore (see El et al. 2006), while
downstream we should in principle allow for a rarefraction wave in addition to another
simple undular bore (see figure 2). The simple undular bore transition condition
requires that one of the Riemann invariants of the ideal shallow-water equations (the
dispersionless limit of the system (1.1), (1.2) with a zero right-hand side) should have
a zero jump across the bore. The choice of the Riemann invariant is suggested by the
comparison with the well-understood weakly nonlinear theory (Grimshaw & Smyth
1986 and Smyth 1987). Indeed, in the weakly nonlinear approximation for transcritical
flow past topography both the upstream and the downstream undular bores are
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ζ = 0 ζ = 0
ζr

ζ+

ζ–

Figure 2. Schematic for closure using undular bores. The shaded area shows
the position of the bottom ridge.

modelled within the framework of the same left-propagating forced KdV equation.
This implies that for the forced SG system the appropriate left-propagating simple
undular bore conditions should be applied to both the upstream and downstream
flow.

Thus for the upstream undular bore we have

U− + 2(1 + ζ−)1/2 = F + 2, (2.22)

or, equivalently, using (2.9),

Q

1 + ζ−
+ 2(1 + ζ−)1/2 = U− +

2Q1/2

U
1/2
−

= F + 2. (2.23)

This expression then replaces (2.13), (2.18), and in conjunction with (2.11) determines
ζ−, U−, Q in terms of F, fm. As for the classical shock closure, the condition ζ− > 0
again defines the transcritical regime by (2.19). Note that the expression (2.23) can be
expanded in powers of ζ− to yield

Q =F + (F − 1)ζ− − 3ζ 2
−

4
+

ζ 3
−
8

+ · · · . (2.24)

This agrees with the corresponding expression obtained from the classical shock
closure using (2.13) up to the second-order term, while the third-order term is then
ζ 3

−/16. Since the final determination of ζ− in terms of F, fm is then given by (2.11) in
both cases, it follows that these results will also agree up to the second-order terms
in ζ−, where we note that F − 1∼ζ− for transcritical flow. A plot of fm in terms
of ζ− for F = 1 is shown in figure 3, where we also show the corresponding result
using the classical shock closure. We see that ζ− is slightly smaller when using the
undular bore closure than for the classical shock closure, but is indeed quite close
over the whole range of fm. However, while the closure conditions for classical and
undular bores are very close, their structure and speeds of propagation are drastically
different. Indeed, in contrast to the classical shock, the undular bore expands with
time and is characterized by two speeds, the leading edge propagating with the soliton
speed and the trailing with the linear group velocity. Both speeds are different from
the classical shock speed. For instance, for the KdV equation ut + uux + uxxx = 0 the
corresponding classical shock speed (found from the dispersionless ‘mass’ balance
ut +(u2/2)x = 0) is s = �/2, where �= u− −u+ is the jump across the shock, while for



Transcritical shallow-water flow past topography: finite-amplitude theory 195

1.0

0.8

0.6

fm

0.4

0.2

0.1 0.2 0.3 0.4

ζ–

0.5 0.6 0.80.7 0.90

Figure 3. Plot of ζ− as a function of fm for F = 1; the solid line is the classical shock
closure and the dashed line is the undular bore closure.

the undular bore with the same jump � the leading edge propagates with the velocity
s+ = 2�/3 and the trailing edge with the velocity s− = −� (see Gurevich & Pitaevskii
1974 and Fornberg & Whitham 1978). The speeds of the upstream and downstream
undular bore edges for the forced SG system will be determined in terms of fm, F

in the subsequent sections. Also, we note that from the analytical point of view it is
essential that we use the undular bore closure condition (2.22) rather than classical
shock closure (2.16) as condition (2.22) is consistent with the Whitham modulation
equations describing slow variations of the travelling wave parameters in the undular
bore (see El 2005 and El et al. 2005).

As for the classical shock closure, the downstream undular bore can now be found
independently of the upstream state, where we would generally use

U+ + 2(1 + ζ+))1/2 = Ur + 2(1 + ζr )
1/2, (2.25)

where Ur , ζr are the parameters of an additional intermediate constant state which
is connected to the unperturbed flow U = F, ζ =0 through a right-propagating
rarefraction wave satisfying the transition condition (2.21). This analysis can be
simplified by noticing that for sufficiently small values of topographic forcing one can
neglect the contribution of the rarefraction wave into the solution and connect the
downstream undular bore directly to the undisturbed flow U = F , ζ = 0. To show this,
we consider the jump of the Riemann invariant of the unforced ideal shallow-water
equations, U + 2(1 + ζ )1/2, defining the simple undular bore transition, across the
transcritical hydraulic solution. For that, using (2.5), (2.9), we introduce dimensionless
quantities v± = U±/Um to transform (2.11) into

v2
± +

2

v±
− 3 =α, (2.26)



196 G. A. El, R. H. J. Grimshaw and N. F. Smyth

where α = 2fm/U 2
m. For small values of the topographic forcing, when α � 1, we

expect v± 1. Then from (2.26) we get the expansion

v± = 1 ±
(α

3

)1/2

+
α

9
+ c±α3/2 + · · · . (2.27)

The coefficients c± in (2.27) will not contribute to the result so we do not present
them explicitly. Next we consider the quantities

Λ± =
1

Um

(
U± +

2Q1/2

U
1/2
±

)
= v± +

2

v
1/2
±

, (2.28)

which are just the normalized Riemann invariants (2.25) and (2.22) defining the
downstream and upstream undular bore transitions respectively. Expanding (2.28) for
small α we get that

Λ± =3 +
α

4
∓ α3/2

24
√

3
. . . . (2.29)

Now, taking into account that for weak topography Um = 1 to leading order, we get
that

Λ− − Λ+ = 2

(
fm

6

)3/2

+ · · · . (2.30)

Thus for small topographic forcing the Riemann invariant controlling the undular
bore transition condition has a jump of only the third order in the small parameter√

fm across the forcing region. It is not difficult to show now that the magnitude �ζ

of the downstream rarefraction wave forming due to this small jump of the Riemann
invariant across the forcing region to leading order is �ζ ≈ (Λ− − Λ+)/2 ≈ (fm/6)3/2.
This implies that one can neglect the downstream rarefraction wave and use the same
transition condition (2.22) for the downstream undular bore. That is, henceforth we
can assume that

U− + 2(1 + ζ−)1/2 = U+ + 2(1 + ζ+)1/2 = F + 2. (2.31)

Of course, it is well known that in the case of weak topography the resonant flow
problem is modelled by the unidirectional forced KdV equation (see for instance
Grimshaw & Smyth 1986) so that the simple-wave relationship (2.31) is already taken
into account in this model. In this respect, the result (2.31) for weak topography
is to be expected and can be regarded as a formal justification of the validity of
the unidirectional KdV approximation in the modelling of the resonant flow past
topography. On the other hand, relationship (2.30) shows that within the range of
applicability of the SG model one can consistently neglect the downstream rarefraction
wave and at the same time capture effects O(

√
fm) which could be well beyond the

KdV approximation.
Now, having the full hydraulic solution for the transcritical region (2.3), we use

(2.7), (2.9), (2.10), (2.11), (2.31) to plot the values of the upstream and downstream
elevation (depression) jumps, ζ− and ζ+ as functions of the topography amplitude fm

for a fixed value of the Froude number say F = 1 and as functions of the Froude
number F for a fixed value of fm (we take fm = 0.2). The corresponding plots are
presented in figure 4. One can see that at the lower boundary F− ≈ 0.47 of the
transcritical regime one has a downstream bifurcation (ζ+ ‘switches’ from 0 to about
−0.6) while at the upper boundary F+ ≈ 1.56 there is an upstream bifurcation from
ζ− = 0 to about 0.9.
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functions of the topography strength fm for fixed Froude number F = 1 (a) and the Froude
number F for fixed fm =0.2 (b) in the local hydraulic transcritical solution.

It is clear that for flows with Froude numbers close to the transcritical region
boundaries F± our assumption about the existence of a steady hydraulic transition
over the topographic forcing might not be valid as it assumes that the time for
the establishment of this transition is much less than that for the formation of the
developed wave structure of the undular bore. Indeed, our numerical simulations with
the Froude numbers close to the values F± show that the steady hydraulic flow over
the topography does not establish itself within the simulation time. So one can expect
noticeable departures of the actual details of the flow from the analytic predictions
based on the above assumption.

Thus, near the transcritical region boundaries an additional (non-stationary)
analysis is required to clarify validity of the local hydraulic solution in the global
description of the transcritical flow. Such an analysis is beyond the scope of the present
paper, instead, we shall simply compare our analytic results with direct numerical
solutions of the forced SG system.

3. Downstream and upstream undular bore resolution
3.1. Numerical solution

In the subsequent subsections, we shall derive analytically the main parameters of the
undular bores generated in transcritical shallow-water flow past a localized obstacle
modelled by the forced SG equations (1.1), (1.2). These will be compared with the
results of direct numerical simulations of the system (1.1), (1.2).

The numerical scheme was developed using centred differences in space and time,
so that the error was O(�x2, �t2), where �x and �t are the space and time steps
respectively. More precisely, the mass conservation equation (1.1) was solved using the
Lax–Wendroff method, which is an explicit method and has second-order accuracy
in �t and �x. The momentum equation (1.2) was solved using centred differences
in x and t for the derivatives, which resulted in an implicit scheme which required
solving a tridiagonal system at each time step, which is numerically fast. This implicit
scheme was also second-order accurate in �t and �x. The combined hybrid scheme
was found to be stable, for sufficiently small �t . For the numerical simulations we
used the choice f (x) = fm exp (−x2/w2) with w = 8 for the forcing term.

It will be shown that for weak topographies our theory reproduces the analytical
results obtained (and verified numerically) earlier in the framework of the forced
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Figure 5. The regions of the fm, F plane corresponding to different configurations of the flow
past topography. Solid line: the transcritical region boundaries F+ > F− defined by the equality
in (2.3). For F < F− (region I) and F >F+ (region V) one has the hydraulic flow smoothly
connecting to ζ = 0, U = F at infinity; in the regions II–IV undular bores are generated.
Region II corresponds to the attached downstream undular bore and detached upstream
undular bore; in the region III both undular bores are detached; in the region IV there is an
attached upstream bore (soliton train) and a detached downstream bore.

KdV equation. Therefore, in the numerical comparisons we shall concentrate on the
finite-amplitude waves and will test the obtained analytical solutions for a broad
range of amplitudes performing the simulations even outside the range of formal
applicability of the SG model to actual shallow-water flows.

In the forced KdV dynamics with broad localized forcing one of the undular bores
is always attached to the topography while another one is fully realized. Which bore
(upstream or downstream one) is attached is determined by the actual combination
of the forcing amplitude fm and the Froude number F of the oncoming flow. The
‘switchover’ between two attached bores occurs on a certain line in the (fm, F ) plane.
As we shall show, in the fully nonlinear SG theory this ‘switchover’ line splits into a
domain corresponding to the configuration with both undular bores fully realized and
completely detached from the topography. The diagram showing different regions of
the (fm, F ) plane is presented in figure 5. The equations of the transcritical region
boundaries F+ > F− are given by the equality in (2.3). The equations for the internal
boundaries separating regions II, III and IV will be derived later.

In figure 6 two numerical solutions for the surface displacement ζ in the forced SG
system (1.1), (1.2) are shown for the input parameters corresponding to the regions
IV and II of figure 5. Further, in figure 7 the numerical solution corresponding
to the region III with two completely detached bores is presented. One can see
that the numerical solutions confirm our main assumption about the existence,
in the topography forcing region, of the steady hydraulic transcritical solution
forming downstream and upstream jumps which are further resolved back into
the undisturbed flow via undular bores. Another important feature of the numerical
solution confirming our theory so far is the fact that the downstream large-amplitude
undular bore resolves (almost) directly back into the undisturbed flow without the
need of a further rarefraction wave which could be there from general reasoning
described in § 2. A very small departure of the equilibrium state downstream of the
bore from the undisturbed flow with ζ = 0, which can be seen in both figures, agrees
with our prediction in § 2.2, which gives �ζ ≈ (fm/6)3/2∼10−3 (i.e. about 1 %–2 % of
the depth jump across the downstream undular bore for the forcing amplitudes used
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Figure 7. Undular bore resolution in the transcritical flow past broad topography (fm = 0.1,
F = 0.8, t =250): both bores are detached (region III).

in our simulations). Thus the contribution of the corresponding rarefraction wave
can indeed be neglected for any practical purpose.

3.2. General analytic construction

Based on the results of our numerical simulations we shall assume that the downstream
and upstream undular bores are generated outside the region of the topographic
forcing. Therefore we can take advantage of the modulation theory of undular
bores in the standard, unforced SG equations developed in El et al. (2006) and El,
Grimshaw & Smyth (2008). To be consistent with the notations of the aforementioned
papers we introduce η =1 + ζ , u =U and represent the unforced SG system in the
form

ηt + (ηu)x = 0, (3.1)

ut + uux + ηx =
1

η

[
1

3
η3(uxt + uuxx − (ux)

2)

]
x

.
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Now we explicitly present the upstream and downstream hydraulic states for the
transcritical regime, F− < F < F+

at x = −L : η = ηu > 1, u = uu <F, (3.2)

at x = L : η = ηd < 1, u = ud >F, (3.3)

where ηd = 1 + ζ+, ud = U+, ηu = 1 + ζ−, uu = U−. (3.4)

Using (3.4) and relationships (2.7), (2.9), (2.10), (2.11) we obtain the system for ηu,d ,
uu,d ,

ηuuu = ηdud,
1
2
(uu)

2 + ηu = 1
2
(ud)

2 + ηd,
1
2
(uu)

2 + ηu − 3
2
(ηuuu)

2/3 = fm, (3.5)

which is closed by any of two (asymptotically equivalent) conditions:

uu + 2
√

ηu = F + 2 (3.6)

or

ud + 2
√

ηd = F + 2. (3.7)

Both the hydraulic elevation (3.2) upstream and the depression (3.3) downstream
are resolved into the undisturbed flow η =1, u =F by expanding undular bores.
These undular bores represent nonlinear modulated periodic wavetrains and can be
described using the Whitham modulation theory (Whitham 1974).

Before we proceed with the undular bore analysis it is instructive to obtain simple
approximate explicit expressions for ηu,d , uu,d in terms of F and fm for weak
topographies. We use the asymptotic closure conditions (3.6) , (3.7) to eliminate
ηu,d from (3.5) and obtain a single equation for w = uu,d ,

w2

2
+

(
F − w

2
+ 1

)2

− 3

2

[
w

(
F − w

2
+ 1

)2
]2/3

= fm. (3.8)

This equation has two roots, the larger one corresponds to ud and the smaller one
to uu. It is easy to see that for fm = 0 (3.8) is identically satisfied if w = (F + 2)/3.
Expanding (3.8) for small fm we obtain to first order

uu = 1 +
1

3
(F − 1) −

√
2fm

3
, ud = 1 +

1

3
(F − 1) +

√
2fm

3
, (3.9)

where we have also used that F takes its values in the transcritical region (see (2.4))

1 −
√

3fm

2
< F < 1 +

√
3fm

2
. (3.10)

With the same accuracy we get, respectively, from (3.6), (3.7):

ηu = 1 +
2

3
(F − 1) +

√
2fm

3
, ηd = 1 +

2

3
(F − 1) −

√
2fm

3
. (3.11)

One can see that at the lower boundary, F =F−, of the transcritical region one has
ηu =1, ηd = 1 − 2(2fm/3)1/2, that is, there is only the downstream jump. Similarly, if
F =F+, one has ηd = 1, ηu =1 + 2(2fm/3)1/2, that is, there is only the upstream jump.
As a matter of fact, this qualitative behaviour at the boundaries of the transcritical
region is also characteristic for the resonant flows satisfying fully nonlinear conditions
(3.5)–(3.7) (see figure 4).

Next we make a brief account of the properties of the travelling wave solutions
to the SG system (1.1), (1.2) necessary for the asymptotic modulation description of
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the SG undular bores. The periodic travelling wave solution of the SG system is
expressed in terms of the Jacobian elliptic function cn(θ; m) and depends on four
constant parameters: c, η3 � η2 � η1 > 0 (see El et al. 2006),

η(x, t) = η2 + a cn2

(
1

2

√
3(η3 − η1)

η1η2η3

(x − ct); m

)
, u = c ∓ (η1η2η3)

1/2

η
, (3.12)

where a = η3 − η2, m =
η3 − η2

η3 − η1

(3.13)

are the wave amplitude and the modulus respectively and c is the phase speed. Signs
‘−’ and ‘ +’ in the expression (3.12) for the velocity u correspond to the right- and
left-propagating waves respectively The wavenumber is given by

k =

√
3(η3 − η1)

η1η2η3

π

2K(m)
, (3.14)

where K(m) is the complete elliptic integral of the first kind. When m → 0 (i.e.
η2 → η3) the cnoidal wave (3.12) transforms into the harmonic small-amplitude wave
characterized by the dispersion relation

ω0(k; u0, η0) = ck = k

(
u0 ± η

1/2
0

(1 + η2
0k

2/3)1/2

)
, (3.15)

where η0, u0 are the background flow parameters and the signs ‘+’ and ‘−’ correspond
to the right- and left-propagating waves respectively. When m =1 (i.e. η2 = η1) the
wavenumber k = 0 and the cnoidal wave (3.12) becomes a solitary wave,

η = η0 + a sech−2

( √
3a

η0

√
η0 + a

(x − cst)

)
(3.16)

characterized by the speed–amplitude relationship

cs = u0 ±
√

η0 + a. (3.17)

Here ‘+’ corresponds to the right-propagating and ‘−’ to the left-propagating solitary
wave. In the undular bore solution, the local travelling wave parameters η1, η2, η3, c

are allowed to slowly depend on x, t . As a result, their evolution is governed by the
Whitham modulation equations, which can be obtained by averaging the conservation
laws of the SG system over the period 2π/k of (3.12) or, alternatively, by the standard
multiple-scale analysis (see Gavrilyuk 1994). As a matter of fact, one can use any
four independent combinations of η1, η2, η3, c as modulation variables. The most

convenient choice appears to be η, u, k, k̃, where η, u are the mean flow parameters
defined as averages of η and u over the period of the travelling wave (3.12), k is the
wavenumber (3.14), and

k̃ =

√
3(η3 − η1)

η1η2η3

π

2K(1 − m)
(3.18)

is the ‘conjugate wavenumber’ associated with the adjoint (imaginary) period of the

elliptic solution (3.12) in the complex x plane. When m = 1, k̃ becomes proportional
to the inverse solitary wave half-width (sometimes called the soliton wavenumber). In

the opposite limit, when m =0, one also has k̃ = 0.
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The modulations in the undular bore generated by the decay of an initial step
in η and u are described by an appropriate similarity solution of the Whitham
equations. To clarify how this applies to the present problem of the transcritical
flow past topography we note that, since both downstream and upstream undular
bores expand with time, for sufficiently large t one can neglect the topography width
2L compared with the width of the undular bore. Hence, on the typical scale of
the modulation variations the hydraulic transition from (ηu, uu) upstream to (ηd, ud)
downstream can be considered to be localized at x =0, which allows one to use
similarity modulation solution for the description of the large-time behaviour of the
flow. The required solution is chosen in such a way that it would provide continuous
matching of the mean flow in the undular bore region with given external constant
flow at free boundaries x− = s−t and x+ = s+t defined by the conditions that k̃ = 0
at one (linear) edge and k = 0 at the opposite (soliton) edge. In the left-propagating
shallow-water undular bore the solitary wave forms at the leading edge x−(t) and
the linear wave train degeneration occurs at the trailing edge x+(t). The crucial fact
that enables one to determine the speeds s± of the undular bore edges in terms
of the initial step parameters is that the boundaries of the undular bore, where
the matching of the modulation solution with the external constant flow occurs,
must necessarily be characteristics of the modulation Whitham system. Then the
constraints imposed by the corresponding characteristic relationships along the linear
group velocity dx/dt = ∂ω0/∂k and the soliton dx/dt = (ω/k)k =0 characteristics lead
to two systems of ordinary differential equations for the undular bore edge parameters
(see El 2005 for details). For the SG system these equations were derived and solved
in El et al. (2006). However, the results of the latter paper cannot be directly applied
to the present resonant flow problem as they should be first modified to the case
of left-propagating waves and non-zero background velocity. The modification is
quite straightforward and involves incorporation of the simple-wave relationship
u + 2η1/2 = F + 2 for the background flow into the linear dispersion relation (3.15),
namely we replace η0, u0 with η, u so that one arrives at the dispersion relation for
the left-propagating linear modulated waves riding on a slowly varying simple-wave
hydrodynamic background

Ω0(η̄, k) = ω0(k; u(η), η) = k[F + 2(1 − η̄1/2)] − kη̄1/2

(1 + η̄2k2/3)1/2
. (3.19)

Then one constructs two families of characteristic integrals I1, I2 of the modulation
system specified by the ordinary differential equations (see El et al. 2006, 2008 for
details):

I1 : k̃ = 0,
dk

dη
=

∂Ω0/∂η

V (η) − ∂Ω0/∂k
on

dx

dt
=

∂Ω0

∂k
, (3.20)

I2 : k = 0,
dk̃

dη
=

∂Ω̃0/∂η

V (η) − ∂Ω̃0/∂k̃
on

dx

dt
=

Ω̃0

k̃
. (3.21)

Here

V (η) = u(η) − η1/2 = F + 2 − 3η1/2 (3.22)

is the characteristic velocity of the left-propagating simple wave of the ideal shallow-
water equations (i.e. the dispersionless limit of the SG system) and

Ω̃0(η, k̃) = −iΩ0(η, ik̃) = k̃(F + 2(1 − η1/2)) +
k̃η1/2

(1 − η2k̃2/3)1/2
(3.23)



Transcritical shallow-water flow past topography: finite-amplitude theory 203

is the SG ‘solitary wave dispersion relation’. Ordinary differential equations (3.20)

and (3.21) for k(η) and k̃(η) are readily integrated using the substitutions α = (1 +

k2η̄2/3)−1/2 and α̃ = (1 − k̃2η2/3)−1/2 respectively,

η

λ1

=
1

α1/2

(
4 − α

3

)21/10 (
1 + α

2

)2/5

, (3.24)

η

λ2

=
1

α̃1/2

(
4 − α̃

3

)21/10 (
1 + α̃

2

)2/5

. (3.25)

Here λ1,2 are constants of integration, their values are to be found from the
free-boundary matching conditions for downstream and upstream undular bores
separately.

3.3. Downstream undular bore

We first assume that the downstream undular bore is fully realized (as in figure 6a)
so that it connects the undisturbed flow η = 1, u =F at the trailing edge x+

d with the
hydraulic transition downstream state η = ηd, u = ud at the leading edge x−

d (we use
the terms ‘trailing’ and ‘leading’ here keeping in mind that we deal with the waves
based on the left-propagating family of characteristics, so that the leading edge is, as
usual, associated with the solitary wave) and satisfies the transition condition (3.7).
Then the matching conditions at the edges x

±
d = s

±
d t are

at x = s−
d t : k = 0, η̄ = ηd, ū= ud, (3.26)

at x = s+
d t : k̃ =0, η̄ = 1, ū= F. (3.27)

So the downstream undular bore transition is located in the interval s−
d t < x < s+

d t

and is characterized by two independent parameters: ηd and F . Our task is to
determine the dependence of the edge speeds s

±
d and the amplitude of the leading

solitary wave a−
d on these two parameters. First we apply the matching conditions

(3.26) and (3.27) to the solutions (3.24), (3.25) respectively to obtain λ1 = ηd , λ2 = 1
(see El et al. 2006, 2008 for a detailed explanation). Thus, the characteristic integrals

k(η) and k̃(η) for the downstream flow are now completely determined by (3.24) and
(3.25).

The speeds of the undular bore edges are defined by the kinematic conditions which
state that the speeds of the edges should be equal to the respective characteristic
(group) velocities of the nonlinear wave train at its endpoints where m = 0 and m =1
(see El 2005). The trailing (harmonic, m = 0) edge x+

d rides on the background η =1
with the linear group velocity

s+
d =

∂Ω0

∂k
|η =1, k = k+, (3.28)

where k+ = k(η = 1) is found from (3.24). Now using (3.19) we get an implicit
expression for the trailing edge speed s+

d in terms of ηd and the Froude number
F of the undisturbed flow

√
β

ηd

−
(

4 − β

3

)21/10 (
1 + β

2

)2/5

= 0, where β = (F − s+
d )1/3. (3.29)

One should note that the notion of the trailing edge of an undular bore is rather
theoretical since the trailing edge, as it is defined by the modulation theory, is
associated with the group of small-amplitude waves rather than with a particular
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Figure 8. Dependence of the downstream undular bore edge speeds s
±
d on the forcing

amplitude fm for the fixed Froude number F = 1 (a) and on the Froude number F for
the fixed forcing amplitude fm = 0.2 (b). Lines: modulation solutions for s−

d (solid) and s+
d

(broken); symbols: the values of s
±
d extracted from the numerical solutions.

wave crest so, unlike the leading edge specified by a soliton, the trailing edge is
often not clearly pronounced in numerical simulations (and in physical observations).
However, this notion is very useful as it enables one to define the undular bore width
and, in particular, to quantify the differences between different models with respect to
the rate of the ‘wave production’ (see for instance Lamb & Yan 1996 for the relevant
numerical comparisons for undular bores modelled by different KdV type models and
full Euler equations, and El et al. 2006 for the comparison between the KdV and SG
undular bores).

The leading (soliton, m =1) edge x−
d propagates on the background η = ηd with the

soliton velocity

s−
d =

Ω̃0(ηd, k̃
−)

k̃−
, (3.30)

where k̃− = k̃(η = ηd) is found from (3.25) (see El 2005 for the derivation of (3.30)).
Now, using expression (3.23) for the conjugate frequency we obtain from (3.30) an
implicit equation for the leading edge speed s−

d = s−
d (ηd, F ),

ηd

√
γ −

(
4 − γ

3

)21/10 (
1 + γ

2

)2/5

= 0, where γ = (2 + F − s−
d )η−1/2

d − 2. (3.31)

Next, having the dependence ηd on fm and F from (3.5), (3.7) we finally get the
downstream undular bore edge speeds s

±
d as functions of the input parameters fm, F .

The dependencies of s
±
d on fm (for the fixed value F =1) and on F (for the fixed

value fm =0.2) are shown in figure 8. The symbols in the same figure show the values
of s

±
d extracted from the numerical solutions of the forced SG system (in numerics

the point of the trailing edge was determined using simple linear approximation in x

of the undular bore envelope, which agrees with the asymptotic behaviour of the SG
modulation solution near the trailing edge – see El et al. 2006). One can see that the
modulation theory predicts the location of the undular bores very well. The growing
discrepancy between numerical and modulation solutions as one gets closer the lower
transcritical boundary, which is F =F− ≈ 0.55 for fm = 0.2, seen in the dependence
on the Froude number, is explained by the fact that F = F− is the point of the
downstream bifurcation and the local hydraulic approximation does not work very
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Figure 9. Dependence of the downstream undular bore leading soliton amplitude a−
d on the

forcing amplitude fm for the fixed Froude number F = 1 (a) and on the Froude number F
for the fixed forcing amplitude fm = 0.2 (b). Solid line: modulation solution (3.32) for a−;
symbols: values of a− extracted from the numerical solutions.

well downstream for the flows with the Froude numbers close to this value (see the
discussion in the end of § 2.2).

Since the leading edge is defined by a solitary wave, we have s−
d = cs(ηd, ud, a

−
d )

where cs(η, u, a) is the SG soliton speed–amplitude relation (3.17) and ηd and ud are
related through the transition condition (3.7), we have for the lead soliton amplitude
a−

d :

a−
d = (F − s−

d + 2(1 − √
ηd))

2 − ηd. (3.32)

Dependencies of the soliton amplitude a−
d on fm and F given by (3.32), (3.31),

(3.5), (3.7) is presented in figure 9. Again, one cam see a very good agreement
between analytical and numerical dependencies on fm and noticeable discrepancy
between the dependencies on the Froude number as the lower transcritical boundary
is approached. This departure of the actual behaviour of the flow from the prediction
of the analytical solution constructed under the assumption of the existence of a local
steady hydraulic transition is to be expected (see the discussion at the end of § 2).
Still, within the range of applicability of the SG system to the description of finite-
amplitude laminar shallow-water flow, which, for the chosen value fm = 0.2, involves
the Froude numbers from about F ≈ 1.0 to F =F+ ≈ 1.55 (and soliton amplitudes
from a = 0 to a ≈ 0.6) the agreement is quite good.

For weak topographies we use expansion (3.11) for ηd to obtain approximate explicit
expressions for s

±
d and a−

d in terms of fm and F . Clearly if fm = 0 we have ηd = 1,

F = 1, s
±
d = 0. Then from (3.29), (3.31), (3.32) we obtain to first order in (F − 1) and

(fm)1/2

s−
d =

2

3
(F − 1) +

1

2

√
2fm

3
, s+

d = −(F − 1) + 3

√
2fm

3
, (3.33)

a−
d = −4

3
(F − 1) + 2

√
2fm

3
(3.34)

provided F− <F <F+ (see (3.10)). Expansions (3.33) and (3.34) correspond to the
forced KdV approximation (Grimshaw & Smyth 1986 and Smyth 1987) (note that
the coefficients in (3.33) correspond to the KdV equation in the form ‘naturally’
following from the small-amplitude long-wave expansions of the SG equations, see
Johnson 2002 or El et al. 2006, without its further reduction to the standard form
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as in Grimshaw & Smyth 1986 and Smyth 1987). Equation (3.34) reproduces the
classical result of Gurevich & Pitaevskii (1974) amax = 2δ where amax is the amplitude
of the greatest soliton in the undular bore and δ is the initial step value (in our case
the downstream step is δ = 1 − ηd); this result does not depend on the normalization
of the KdV equation.

One can see from (3.33) that for the transcritical interval of F (3.10) the value s−
d

can change its sign, which implies that for certain domain of values of F and fm

the downstream undular bore would propagate upstream. Since this is not allowed,
the bore should be terminated at x =0 so that it gets realized only partially for
0 < x < s+

d t , with the modulus m ranging within the interval 0 � m � m∗, where m∗ < 1
is certain cutoff value. The line in the fm, F plane defining the parameter values at
which the downstream bore gets attached to to the topography at its leading edge
is specified by the equation s−

d = 0, s−
d being defined by (3.31). This line is shown in

figure 5 where it separates regions II and III. A more detailed discussion of partial
undular bores will be given in the next subsection.

3.4. Upstream undular bore

The upstream undular bore connects the undisturbed flow η = 1, u =F at the leading
edge with the hydraulic transition upstream state η = ηu, u = uu at the trailing edge
and satisfies the transition condition (3.6). Again, we first assume that the upstream
undular bore is fully realized. Then the matching conditions at the leading x−

u = s−
u t

and trailing x+
u = s+

u t edges are

at x = s−
u t : k =0, η̄ = 1, ū = F, (3.35)

at x = s+
u t : k̃ = 0, η̄ = ηu, ū= uu. (3.36)

The upstream undular bore occupies an expanding zone s−
u t < x < s+

u t and is
characterized by two independent parameters: ηu and F . Similar to the downstream
case, our task is to determine dependence of the edge speeds s±

u on these two
parameters. As before, we apply the matching conditions (3.35) and (3.36) to the
solutions (3.24), (3.25) respectively to obtain now λ1 = 1, λ2 = ηu. The characteristic

integrals k(η) and k̃(η) for the upstream flow are now completely determined by (3.24)
and (3.25).

The kinematic conditions defining the speeds of the edges of the upstream undular
bore have the form (cf. (3.28), (3.30))

s+
u =

∂Ω0

∂k
|η = ηu, k = k+, s−

u =
Ω̃0(1, k̃−)

k̃−
. (3.37)

The parameters k+ and k̃− in (3.37) are calculated as the boundary values k+ = k(ηu),
k̃− = k̃(1) of the functions k(η̄) and k̃(η̄).

Next, using (3.37), (3.19) we get an implicit expression for the trailing (harmonic)
edge s+

u in terms of ηu:√
βηu −

(
4 − β

3

)21/10 (
1 + β

2

)2/5

= 0, where β =

(
2 + F − s+

u√
ηu

− 2

)1/3

. (3.38)

Similarly, using the expression for the conjugate frequency (3.23) we obtain from
(3.37) the equation of the leading (soliton) edge s−

u (ηu, F ) in an implicit form,

√
γ

ηu

−
(

4 − γ

3

)21/10 (
1 + γ

2

)2/5

= 0, where γ =F − s−
u . (3.39)
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Figure 10. Dependence of the upstream lead soliton speed s−
u on the forcing amplitude fm

for the fixed Froude number F = 1 (a) and on the Froude number F for the fixed forcing
amplitude fm = 0.2 (b). Line: modulation solutions for s−

u ; symbols: the values of s−
u extracted

from the numerical solutions.

Now, having the dependence ηu on fm, F specified by (3.5), (3.6) we get the speeds
s±
u as functions of the input parameters fm, F . The dependencies of s±

u on F (for the
fixed value fm =0.2) and on fm (for the fixed value F =1) are shown in figure 10.

One can see from the leading edge curve in figure 10 that for certain interval of
Froude number values we have s+

u > 0 which implies that the upstream undular bore
partially propagates downstream. This can already be seen from the small amplitude,
fm � 1, expansions of (3.38), (3.39) analogous to (3.33)

s−
u =

1

3
(F − 1) −

√
2fm

3
, s+

u = 2(F − 1) +
3

2

√
2fm

3
. (3.40)

Indeed, one can readily see that for F in the transcritical interval (3.10) one has
s+
u > 0. Obviously, this is not allowed as the upstream modulation wavetrain is only

defined for x < 0 so the modulation solution must be terminated at x = 0 resulting
in a partial undular bore, which can be viewed as a soliton train propagating
upstream. The formal grounds for the possibility of ‘cutting’ the undular bore in
two can be inferred from the detailed modulation analysis available in the case
of weak topography forcing described by the forced KdV equation and studied in
El et al. (2006) and Smyth (1987). The idea is that, since the modulation solution
represents a centred characteristic fan of the Whitham equations (Whitham 1974),
and for the edge characteristics we have dx/dt = s− < 0 and dx/dt = s+ > 0, there
should be a characteristic dx/dt = 0 for the solution under study. Then the free-
boundary matching condition at the unknown boundary x+ > 0 (condition (3.36) in
the present SG case) can be replaced by the appropriate boundary conditions at x =0
leading to the same modulation solution for x < 0. The boundary conditions should
be formulated in terms of the Riemann invariants of the modulation system as the
Riemann invariants are transferred to the boundary x = 0 along the corresponding
modulation characteristics from the given initial step data. As a result, to construct
the modulation solution for the upstream partial undular bore generated by a given
hydraulic jump at x = 0 one just considers the part of the modulation solution in the
region x < 0 as if the undular bore was created by the decay of the initial step located
at x = 0 and having the same magnitude as the boundary jump. This is essentially
how the modulation solution for the upstream partial undular bore was constructed
in Grimshaw & Smyth (1986) and Smyth (1987).
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Figure 11. Dependence of the upstream lead soliton amplitude a−
u on the forcing amplitude

fm for the fixed Froude number F = 1 (a) and on the Froude number F for the fixed forcing
amplitude fm =0.2 (b). Line: modulation solutions for a−

u ; symbols: the values of a−
u extracted

from the numerical solutions.

Although the Riemann invariants are not available for the modulation system
associated with the SG equations, one can argue that the values of the ‘external’
hydrodynamic invariants λ± = u/2 ± √

η are transferred across the modulation zone

with the same effect on the edge speeds s± as if they were present within the undular
bore (see Tyurina & El 1999; El 2005; El et al. 2005); so one can use the value
of s−

u (3.39) to characterize the upstream partial undular bore of the SG system.
For the tallest upstream soliton we have s−

u = cs(1, F, a−
u ) where cs(η, u, a) is the

speed–amplitude relation (3.17). Thus for the soliton amplitude a−
u we have

a−
u = (F − s−

u )2 − 1. (3.41)

Using (3.5), (3.7), (3.39), (3.41) one obtains the dependence of the upstream lead soliton
amplitude a−

u on fm and F . The dependencies of s−
u and a−

u on the topography height
fm and the Froude number of the equilibrium flow are presented in figures 10 and 11.
One can see an excellent agreement between the analytical and numerical dependencies
on fm. The discrepancy between the theory and numerics seen in the comparisons
for the Froude number dependencies as one gets closer to the upper transcritical
boundary F =F+ is connected with the already discussed unsteady character of the
flow over the forcing range for the flows with Froude numbers near the upstream
bifurcation point F = F+.

For weakly nonlinear case, fm � 1, we have

a−
u =

4

3
(F − 1) + 2

√
2fm

3
, (3.42)

which again agrees with the classical KdV result amax = 2δ where δ = ηu − 1 is the
value of the equivalent initial step (see (3.11) for the weak forcing expansion of ηu).

3.5. Drag force

The drag force on the topography is (see for instance Baines 1995)

FD =

∫ L

−L

pz = d dx dx, (3.43)

where pz = d is the pressure evaluated at the bottom z = d = 1 − f . Here, in the SG
system, to leading order the pressure field is just p = ζ (see the Appendix), and so we
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can write

FD = −
∫ L

−L

Hfx dx, (3.44)

where we recall that H = 1 + ζ − f . Further, since we are assuming that the flow is
locally steady over the topography, we can use the expressions (2.1) to evaluate FD

giving (see Baines 1995)

FD =
(ηd − ηu)

3

2ηdηu

, (3.45)

where, we recall, ηd = H (−L), ηu = H (L). For the case when both undular bores are
completely detached from the topography (the region III in figure 5) expression (3.45)
together with formulae (3.5)–(3.7) determines the stationary value of the drag force.
In this case for weak topographies we obtain using the expansions (3.11),

FD = −32

(
fm

6

)3/2 (
1 − 4

3
(F − 1)

)
+ · · · . (3.46)

However, when one of the undular bores gets attached to the topography, the
corresponding value ηu or ηd at the attachment point will oscillate resulting in
oscillations of the drag force with the same frequency. Below we derive an approximate
formula for the drag force frequency for the most typical upstream attachment case
assuming that the partial undular bore can be viewed as a soliton train (see figure
6a). For the forced KdV equation such a soliton train approximation proved to work
very well (see Grimshaw & Smyth 1986 and Smyth 1987).

The frequency of the upstream undular bore at the point of attachment (hence the
drag force frequency) is calculated by the formula

ωD = −k∗c∗, (3.47)

where k∗ and c∗ < 0 are respectively the upstream wavenumber and phase velocity
at x =0. Assuming that the upstream undular bore can be viewed as a soliton train
with the solitons having almost the same amplitude, we take c∗ = s−

u .
To estimate k∗ we make use of the fact that wavenumber function k(x, t) is almost

linear in x through the entire undular bore except for the vicinity of the leading
edge, where k rather rapidly decays to zero (dk/dx → ∞ as x approaches the leading
edge – see, for instance, the full modulation solution for the KdV undular bore in
Gurevich & Pitaevskii 1974 or Fornberg & Whitham 1978). The linear approximation
for k(x, t) near the trailing edge for the simple SG undular was obtained in El et al.
(2006) (see formula (65) in the referred paper).

For our case of the left-propagating bore this approximation assumes the form

k ≈ k+ − 2

3ω′′
0(k

+)

(
s+
u − x

t

)
, (3.48)

where

ω′′
0(k) =

k·η5/2
u

(1 + k2η2
u/3)5/2

(3.49)

is the second derivative of the SG dispersion relation (3.15) for the linear waves
propagating to the left against the background η = ηu; k+ being the value of the
wavenumber at the trailing edge of the upstream undular bore and s+

u the speed
of its trailing edge. We note that the trailing edge of the upstream undular bore
is not physically realized in the flow, as the upstream bore is terminated at x = 0.
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Figure 12. Dependence of the drag force frequency ωD on the forcing amplitude fm for the
fixed Froude number F = 1 (a) and on the Froude number F for the fixed forcing amplitude
fm = 0.2 (b). Line: approximate formula (3.52); symbols: the values of ωD extracted from the
numerical solutions.

However, as was explained in § 4.4, all the parameters of the upstream undular bore
are consistent with the definition (3.37) of the trailing edge as if it existed. So we find
the ‘effective’ trailing edge wavenumber k+ from (3.37), i.e. from

s+
u =

∂Ω0

∂k
|η = ηu, k = k+ =F + 2

(
1 − η1/2

u

)
− η1/2

u

(1 + (k+)2(ηu)2/3)3/2
. (3.50)

Since s+
u is given by formula (3.38) the quantity k+ is now completely defined and we

obtain at the point of attachment

k∗ = k(x = 0) ≈ k+ − 2s+
u

3ω′′
0(k

+)
. (3.51)

Now substituting k∗, c∗ into (3.47) we obtain an approximate formula for the frequency
of the drag force oscillations

ωD ≈ s−
u

(
2

3

s+
u

ω′′
0(k

+)
− k+

)
. (3.52)

We note that, while formula (3.52) represents a rather crude approximation, it can still
be useful for the determination of approximate values for and general tendencies in
the behaviour of the drag force frequency. Comparisons of the approximate behaviour
given by (3.52) with the dependencies of the drag force frequency on fm (for fixed
F =1) and on F (for fixed fm = 2) obtained from our numerical simulations are
shown in figure 12. One can see that, whilst the accuracy of the formula (3.52) is not
particularly great, it correctly reproduces the approximate range and main features
of the actual drag frequency behaviour.

4. Discussion
In this paper we have used the forced SG equations (1.1), (1.2) to describe

transcritical irrotational flow over a localized obstacle, with the aim of extending
the well-known fKdV model to finite-amplitude water waves.

As for the fKdV equation, the asymptotic solution consists of two parts, a steady
hydraulic solution over the obstacle with upstream and downstream hydraulic jumps,
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and the resolution of these jumps by undular bores using the Whitham modulation
theory. In contrast to the fKdV model, the local hydraulic solution is fully nonlinear,
but a full asymptotic description of the undular bores is not available, and instead we
evaluate key parameters such as the amplitude of the leading wave and the location of
the bores. The theoretical results are favourably compared with numerical simulations
of the full forced SG system.

We would like to stress several qualitatively new results from our analysis. First,
by using the undular bore closure of El et al. (2006) and expanding the transcritical
hydraulic solution up to third order in amplitude we have shown that this solution
implies an approximate (up to third order) conservation, across the topographic
forcing region, of one of the Riemann invariants corresponding to the simple wave
of the ideal dispersionless shallow water equations. The direction of propagation
of this simple wave is opposite to that of the oncoming flow. This asymptotic
conservation property eliminates the need for the introduction of an additional
rarefraction wave downstream, which could theoretically be present in the downstream
solution. Some evidence for such a very small rarefraction wave can be seen in the
numerical simulations. The approximate conservation of the shallow water Riemann
invariant across the topographic forcing also formally justifies the applicability of
the unidirectional fKdV equation for the modelling of transcritical flows over weak
topography. The second qualitatively new feature is the existence, in the plane of
parameter values of the topographic forcing amplitude fm and Froude number F of
the oncoming flow, of a region corresponding to the generation of two fully detached
undular bores (region III in figure 5 ). This is different from the prediction of the
fKDV theory (see Grimshaw & Smyth 1986 and Smyth 1987) for which one of
the bores is always attached to the forcing. Our preliminary comparisons with the
corresponding solutions of the full Euler equations show that the these new features
of the forced SG model are indeed present in the full Euler dynamics. A detailed
comparison of the transcritical SG solutions with the corresponding solutions of the
full Euler system is beyond the scope of this paper and will be presented elsewhere.

We also note that in practice, and certainly in the context of the fully nonlinear
Euler equations, sufficiently large amplitude waves will break, whereas breaking does
not occur in the present SG system. However, a typical wave breaking criterion might
be ζ > 0.88 (see Mei 1983 for instance), and we have ensured that in our present
simulations we used forcing amplitudes and Froude numbers which produced waves
below this threshold amplitude.

The corresponding range of the forcing amplitude fm and of the oncoming Froude
number F can be estimated by substituting this critical value of the amplitude
into expressions (3.32) and (3.41) for the leading solitary wave amplitudes in the
downstream and upstream waves respectively. Say, for F = 1 this gives the maximum
admissible value of fm of about 0.3 (see figures 9 and 11). Similarly, for a given
fm =0.2 we obtain that the requirement that both undular bores are laminar implies
that the admissible range for the oncoming flow Froude number is from about 0.9 to
about 1.1. Of course, if one is interested in the non-breaking condition only for one
of the bores, the admissible range of Froude numbers broadens.

Overall, for the moderate forcing amplitudes considered here, our results confirm
that most features of the fKdV description hold up qualitatively for finite amplitude
waves, while the quantitative description can be obtained in the framework of the
forced SG system.

We would like to acknowledge the useful discussions with A. M. Kamchatnov.
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Appendix. Derivation of forced SG equations
This derivation follows Camassa, Holm & Levermore (1997). The full Euler

equations for two-dimensional irrotational flow of an inviscid fluid over topography
are

ut + uux + wuz + px = 0, (A 1)

wt + uwx + wwz + pz = 0, (A 2)

ux + wz = 0, (A 3)

valid in the region −d < z < ζ (d = 1 − f ), where p is the dynamic pressure per unit
density, defined so that the full pressure is p + z. These equations are expressed in
non-dimensional units, based on a length scale h, the undisturbed fluid depth at
infinity, a velocity scale

√
gh and a time scale

√
h/g. The boundary conditions are

that

w + udx = 0 at z = −d, (A 4)

w − ζt − uζx = 0 at z = ζ, (A 5)

p − ζ = 0 at z = ζ. (A 6)

The equation for conservation of mass then follows, namely

ζt + (HU )x =0, (A 7)

where H = d + ζ, HU =

∫ ζ

−d

u dz. (A 8)

This is just (1.1). The horizontal momentum equation (A 1) can also be integrated
over the depth to yield

(HU )t +

(∫ ζ

−d

u2 dz

)
x

+

∫ ζ

−d

px dz = 0, (A 9)

This will yield the second equation (1.2) after the integral terms have been
approximately evaluated.

To evaluate the integral terms we make a long-wave expansion, in which
∂/∂x∼ε � 1, and expand in powers of ε. First, we note that the flow is irrotational,
that is,

uz =wx, in − d < z < ζ. (A 10)

Combining this with the incompressibility condition (A 3), we see that u, w each
satisfy Laplace’s equation. Then taking account of the boundary condition (A 4) we
find that to the second order in ε,

u = Ũ (x, t) − (2Ũxdx + Ũdxx)(z + d) − 1

2
Ũxx(z + d)2 + · · · , (A 11)

w = −dxŨ − Ũx(z + d) + · · · . (A 12)

Next we substitute (A 11) into (A 8) to get

U = Ũ − (2Ũxdx + Ũdxx)
H

2
− H 2

6
Ũxx + · · · , (A 13)

or Ũ = U + (2Uxdx + Udxx)
H

2
+

H 2

6
Uxx + · · · . (A 14)
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The expression (A 11) is then substituted into the second term in (A 9) to yield∫ ζ

−d

u2 dz = HU 2 + · · · . (A 15)

Finally, the pressure gradient is evaluated from (A 2) to yield

pz = p1(z+d)+p2, where p1 =DUx−U 2
x , p2 = D(dxU ), D =

∂

∂t
+U

∂

∂x
. (A 16)

With the boundary condition (A 6) this can then be integrated to yield the pressure
and hence ∫ ζ

−d

px dz = Hζx − (H 3p1)x
3

− (H 2p2)x
2

+
H 2p1dx

2
+ Hp2dx, (A 17)

Finally, using the conservation of mass equation (A 7) this can be rewritten as∫ ζ

−d

px dz = Hζx +
(H 2D2H )x

3
− (H 2D2d)x

2
− Hdx

2
D2(ζ − d). (A 18)

Setting d =1 − f we recover (1.2).
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