
Parkes et al. Translational Psychiatry          (2021) 11:232 

https://doi.org/10.1038/s41398-021-01342-6 Translational Psychiatry

ART ICLE Open Ac ce s s

Transdiagnostic dimensions of psychopathology
explain individuals’ unique deviations from
normative neurodevelopment in brain structure
Linden Parkes 1, Tyler M. Moore 2,3, Monica E. Calkins2,3, Philip A. Cook4, Matthew Cieslak 2,3,5, David R. Roalf 2,3,

Daniel H. Wolf2,3,5, Ruben C. Gur2,3,4,6, Raquel E. Gur2,3,4,6, Theodore D. Satterthwaite2,3,5 and Danielle S. Bassett 1,2,6,7,8,9

Abstract
Psychopathology is rooted in neurodevelopment. However, clinical and biological heterogeneity, together with a

focus on case-control approaches, have made it difficult to link dimensions of psychopathology to abnormalities of

neurodevelopment. Here, using the Philadelphia Neurodevelopmental Cohort, we built normative models of cortical

volume and tested whether deviations from these models better predicted psychiatric symptoms compared to raw

cortical volume. Specifically, drawing on the p-factor hypothesis, we distilled 117 clinical symptom measures into six

orthogonal psychopathology dimensions: overall psychopathology, anxious-misery, externalizing disorders, fear,

positive psychosis symptoms, and negative psychosis symptoms. We found that multivariate patterns of deviations

yielded improved out-of-sample prediction of psychopathology dimensions compared to multivariate patterns of raw

cortical volume. We also found that correlations between overall psychopathology and deviations in ventromedial

prefrontal, inferior temporal, and dorsal anterior cingulate cortices were stronger than those observed for specific

dimensions of psychopathology (e.g., anxious-misery). Notably, these same regions are consistently implicated in a

range of putatively distinct disorders. Finally, we performed conventional case-control comparisons of deviations in a

group of individuals with depression and a group with attention-deficit hyperactivity disorder (ADHD). We observed

spatially overlapping effects between these groups that diminished when controlling for overall psychopathology.

Together, our results suggest that modeling cortical brain features as deviations from normative neurodevelopment

improves prediction of psychiatric symptoms in out-of-sample testing, and that p-factor models of psychopathology

may assist in separating biomarkers that are disorder-general from those that are disorder-specific.

Introduction
Throughout childhood, adolescence, and young adult-

hood, the brain undergoes major structural changes that

facilitate the emergence of complex behavior and cogni-

tion1,2. Mental disorders often surface during this period3

and are increasingly understood as resulting from

disruptions to normative brain maturation4,5. While

maturational changes are stereotyped at the population

level, substantial individual variation also exists2. The

extent to which this individual variation in neurodeve-

lopment may explain psychopathology remains unclear.

Linking abnormalities in neurodevelopment to psycho-

pathology has been limited by several challenges. First,

diagnostic nosologies assign individuals with distinct

symptom profiles to the same clinical diagnosis, yielding

disorder groups with highly heterogenous clinical pre-

sentation6. Second, comorbidity among disorders is

high7–9, rendering it difficult to detect the neural corre-

lates of specific disorders. Third, much of the extant
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literature has adopted case-control designs that reveal

only abnormalities associated with the ‘average’ patient,

ignoring the dimensional nature of psychopathology10.

Research linking individuals’ neurodevelopmental altera-

tions with distinct dimensions of psychopathology rele-

vant to multiple disorders is a critical step toward

developing diagnostic biomarkers for mental health11–15.

A promising approach entails examining dimensions

of symptoms that cut across diagnostic categories16. The

p-factor hypothesis10,17–19 posits that psychopathology

symptoms cluster into latent dimensions including a

general factor (known as p or ‘overall psychopathology’),

which underpins individuals’ tendency to develop all

forms of psychopathology, alongside multiple dimensions

that describe specific types of psychopathology. This

dimensional scoring can be accomplished with a bifactor

model20, which yields specific factors (e.g., externalizing,

psychosis) that are orthogonal to the general factor and to

each other. Previous research has revealed that such

psychopathology dimensions relate to differences in

brain structure19,21–24. However, it remains unclear whe-

ther these psychopathology dimensions help to elucidate

abnormal neurodevelopment; furthermore, it remains

unknown to what extent they can help to dissociate

disorder-general from disorder-specific abnormalities.

Here, we evaluated whether dimensions of psycho-

pathology relate to individual differences in deviations

from normative neurodevelopment. We modeled overall

psychopathology and five specific factors, corresponding

to mood and anxiety symptoms, externalizing behavior,

fear, positive psychosis symptoms, and negative psychosis

symptoms21,25–27. We integrated these psychopathology

dimensions with T1-weighted neuroimaging data using a

technique known as normative modeling28. Here, a nor-

mative model is a statistical model that finds the rela-

tionship between age and any brain feature, as well as the

variation in this relationship expected in a group of

healthy individuals. Then, the brains of individuals who

experience psychopathology can be understood with

respect to this normative model, allowing identification of

regional deviations from normative neurodevelopment for

each individual29–31. This approach allowed us to test

whether individuals’ patterns of deviations from norma-

tive neurodevelopment were able to predict dimensions of

psychopathology in out-of-sample testing. To examine

the relative advantages of the normative model, we

compared the predictive performance of deviations

against the predictive performance of raw brain features.

The above framework is applicable to any brain feature

that changes reliably with age. We focused on cortical

gray matter, indexed via cortical volume, which is known

to undergo plastic maturation in youth. Cortical volume

shows a robust global decrease from childhood to

adulthood, potentially reflecting cortical myelination and

synaptic pruning32–34. Prior work has shown widespread

non-uniform reductions in cortical volume—as well as

thickness and surface area, which together comprise

volume—across major depressive disorder35,36, schizo-

phrenia37, bipolar disorder38, and anxiety disorders39.

Across these disorders, overlapping reductions were par-

ticularly found in ventromedial prefrontal/medial orbito-

frontal cortex (vmPFC/mOFC), inferior temporal, dorsal

anterior cingulate (daCC), and insular cortices39,40.

Here, we sought to understand the link between

dimensions of psychopathology from the p-factor model

and deviations of cortical volume from patterns expected

in normative neurodevelopment. We addressed three

related questions. First, given that psychopathology may

have neurodevelopmental origins, we tested the primary

hypothesis that modeling cortical volume according to

deviations from normative neurodevelopment would

provide improved out-of-sample prediction of psycho-

pathology compared to using raw volume.

Second, at the regional level, we expected that overall

psychopathology would explain the common abnormal-

ities observed in case-control studies35–40; we specifically

predicted that greater overall psychopathology would be

associated with greater negative deviations (i.e., lower

than normative cortical volume) in the vmPFC/mOFC,

inferior temporal, daCC, and insular cortices. Addition-

ally, supporting the notion that effects in these regions

predominantly represent disorder-general rather than

disorder-specific biomarkers, we also predicted that cor-

relations between deviations in these regions and overall

psychopathology would be stronger than correlations

between deviations and the specific dimensions in our

model. We note that while it may be plausible to select

other regions of interest to test this hypothesis, here our

motivation was to select regions that have been robustly

implicated across a broad range of distinct disorders. In

accordance with this goal, the aforementioned regions

were selected based on their consistent implication across

multiple distinct clinical disorders in worldwide ENIGMA

studies35–38,40 as well as meta-analyses39.

Third, we assessed the extent to which overall psycho-

pathology explained the overlap between whole-brain

group-level differences observed for traditional case-

control analyses. Specifically, we examined group-level

deviations from the normative model in two samples,

one with depression and another with attention-deficit

hyperactivity disorder (ADHD). We expected that both

groups would show spatially correlated patterns of

average deviations from normative neurodevelopment.

Critically, we hypothesized that the correlation between

patterns of average deviations would diminish when

overall psychopathology was controlled for in our sample,

indicating a lack of sensitivity of a case-control approach

to detect disorder-specific biomarkers.
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Materials and methods
Participants

The institutional review boards of both the University of

Pennsylvania and the Children’s Hospital of Philadelphia

approved all study procedures. Participants included 1601

individuals from the Philadelphia Neurodevelopmental

Cohort41, a large community-based study of brain devel-

opment in youths aged 8–22 years. All participants gave

informed consent (for participants under the age of

18 years, assent and parental consent were obtained). All

scanning was done using the same sequences on the same

scanner without any hardware or firmware upgrades41. We

studied a subset of 1271 participants, including individuals

who were medically healthy and passed stringent quality

control benchmarks for the neuroimaging data (see Sup-

plementary Methods).

Psychopathology dimensions

In this study, we take a transdiagnostic dimensional

approach to assessing variation in the symptoms of mental

health11,13,16,42. In particular, we use our recently published

extended p-factor model25 based on the GOASSESS

interview26,43. Briefly, the GOASSESS is an abbreviated and

modified structured interview derived from the NIMH

Genetic Epidemiology Research Branch Kiddie-SADS44

that covers a wide variety of psychiatric symptomatology

such as the occurrence of mood (major depressive episode,

mania), anxiety (agoraphobia, generalized anxiety, panic,

specific phobia, social phobia, separation anxiety, obsessive-

compulsive disorder), externalizing behavior (oppositional

defiant, attention-deficit/hyperactivity, conduct disorder),

and other behaviors. GOASSESS was administered by

trained and certified assessors. The original model used a

combination of exploratory and confirmatory factor ana-

lysis to distill the 112 item-level symptoms from the

GOASSESS into five orthogonal dimensions of psycho-

pathology. The original model included a factor common

to all psychiatric disorders, referred to as overall psycho-

pathology, as well as four specific factors: anxious-misery,

psychosis, externalizing behaviors, and fear.

Here, as in our recent work25, we extended the above

p-factor model in two ways. First, we included an additional

five assessor-rated polytomous items (scored from 0 to 6,

where 0 is ‘absent’ and 6 is ‘severe and psychotic’ or ‘extreme’,

from the Scale of Prodromal Symptoms (SOPS) derived from

the Structured Interview for Prodromal Syndromes (SIPS45)

designed to measure the negative/disorganized symptoms of

psychosis. These five items were (i) P5 disorganized com-

munication, (ii) N2 avolition, (iii) N3 expression of emotion,

(iv) N4 experience of emotions and self, and (v) N6 occu-

pational functioning. Including this additional set of items

brought the total number to 117. Second, we split the psy-

chosis factor into two factors, one describing the delusions

and hallucinations associated with the psychosis spectrum,

which we hereafter refer to as psychosis-positive. The

second psychosis factor described disorganized thought,

cognitive impairments, and motivational-emotional defi-

cits, which we hereafter refer to as psychosis-negative. We

used confirmatory factor analysis implemented in Mplus46

to model five specific factors of psychopathology (anxious-

misery, psychosis-positive, psychosis-negative, externaliz-

ing behaviors, and fear) as well as one common factor

(overall psychopathology). See Table S1 for model statistics

and Table S2 for factor loadings. Note, all phenotypes

derived from this model are orthogonal to one another. To

ensure normality, psychopathology dimensions were

transformed using an inverse normal transformation47,48.

Normative modeling

For details on image acquisition, processing, quality

assurance (QA), and derivation of cortical volume, see

Supplementary Methods. Briefly, cortical volume was

extracted for each of 400 regions defined by the Schaefer

atlas49. Next, we built normative models to predict regional

volume. In order to estimate normative neurodevelopmental

trajectories, we first split our sample of 1271 participants

into two groups according to the presence or absence of

psychiatric history. A total of 381 individuals reported no

clinically significant symptoms on any disorder examined,

while 890 individuals reported experiencing psychopathol-

ogy. Next, in order to ensure that our analyses of deviations

encompassed the full spectrum of psychopathology—

including normal, subclinical, and clinical variance—we

randomly sampled 100 of the 381 healthy individuals and

combined them with the aforementioned 890 individuals to

create a testing subset totaling 990 individuals. The

remaining 281 healthy individuals were designated as our

normative training subset. Next, for each brain region (j), we

used gaussian process regression (GPR) to predict cortical

volume values from age and sex using the training subset

(see ref. 28 for details). An advantage of this approach is that

in addition to fitting potentially nonlinear predictions of a

brain feature, it also provides regional estimates of the

expected variation in the relationship between age and brain

features (normative variance) as well as estimates of uncer-

tainty in this variance. Both normative variance and uncer-

tainty are learned by the GPR from the training subset28.

Then, for each participant (i) in the testing subset, we gen-

erated the predicted cortical volume (̂yij) and combined it

with the true cortical volume (yij), the predictive uncertainty

(σij), and the normative variance (σnj) to create a z-score that

quantified deviation from normative neurodevelopment28:

zij ¼
yij � ŷij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
ij þ σ

2
nj

q

This normative model stands in contrast to alternative

approaches, such as brain age models50, that typically use
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linear estimates of deviations in age rather than brain

features and that do not account for normative variance

and estimated uncertainty of deviations51. In the testing

subset, the application of the normative model yielded a

990 × 400 z-score deviation matrix, Z. Next, we used 10-

fold cross-validation to also generate deviations in the

training subset. The 281 individuals in the training subset

were split into 10 folds, wherein 90% of the subset were

used to re-train the GPR in order to generate z-score

deviations in the remaining 10%. This process yielded a

281 × 400 z-score deviation matrix, Zcv.

Machine learning prediction models

First, we tested our primary hypothesis that scoring

cortical volume as deviations from normative neurode-

velopment would yield improved predictive performance

compared to using raw volume values. Specifically, col-

umns of Z were taken as multivariate input features to a

ridge regression (RR, α= 1) to iteratively predict psy-

chopathology dimensions (y) (see Fig. S1 for schematic

representation). We performed 100 repeats52 of 10-fold

cross-validation scored by root mean squared error

(RMSE), mean absolute error (MAE), and the correlation

between true and predicted y. Scoring metrics were

averaged over folds. Note, to standardize the interpreta-

tion of all scoring metrics as higher scores represent

better performance, we flip the sign for RMSE and MAE

and examine negative RMSE and negative MAE. Within

each fold, we applied principal component analysis (PCA)

to reduce the dimensionality of Z to the 9 PCs that

explained ≥1% variance in the data. Additionally, age and

sex were controlled by regressing their effect out of y

before predicting y. Nuisance regression was fit on the

training data and applied to the test data to prevent

leakage. To assess the significance of prediction perfor-

mance, for each scoring metric, we averaged over the

100 repeats and compared the corresponding point

estimate against a null distribution generated from a

model trained on 100,000 random permutations of y. The

p-values were assigned as the proportion of permuted

scoring metrics that were greater than or equal to our

true point estimates. Then, p-values were corrected for

multiple comparisons over psychopathology dimensions

via the Benjamini and Hochberg false discovery rate

(FDR, q= 0.05) procedure53.

The above pipeline generated robust estimates of out-

of-sample prediction performance that included sig-

nificance testing. In order to directly compare predictive

performance of normative deviations against raw cortical

volume, we repeated this pipeline using a matrix of raw

cortical volume values as input features. Note, analysis of

raw volume was restricted to the testing subset to main-

tain equivalent statistical power, and the same number of

PCs was used to maintain consistency in the number

of input features. Together, for each psychopathology

dimension and scoring metric, this process yielded two

distributions of 100 performance values: one where pre-

diction performance was measured using deviations from a

normative model, estimated in an entirely independent

sample (training subset, n= 281), and the other where

performance was measured using raw cortical volume as

predictors. Critically, as both models included identical

nuisance regression applied to y, the only difference

between models was in the way the cortical features were

measured. For each psychopathology dimension and scor-

ing metric, we compared prediction performance across

input feature types using an exact test of differences54.

Correlations between psychopathology dimensions and

regional deviations from normative neurodevelopment

Our machine learning prediction model mapped the

relationships between dominant sources of variance in

cortical volume (deviations and raw) and psychopathology

dimensions. Next, we examined our second hypothesis

pertaining to the relative effect sizes of correlations

between deviations and overall psychopathology and

correlations between deviations and specific dimensions.

First, we calculated Pearson correlations between each

psychopathology dimension and deviations averaged over

subsets of Schaefer parcels that comprised the vmPFC/

mOFC, inferior temporal, daCC, and insular areas (see

Supplementary Methods). Next, for each region (e.g.,

daCC), we tested for differences in effect sizes (Pearson’s

r) between overall psychopathology and each specific

psychopathology dimension using bootstrapping. Specifi-

cally, in each of 10,000 bootstrapped samples, we sub-

tracted the absolute effect size for each specific dimension

from the absolute effect size for overall psychopathology.

Then, upon these distributions of effect size differences,

we calculated the 99% confidence interval (CI) and con-

sidered overall psychopathology to have yielded a sig-

nificantly stronger effect if the lower CI bound was

>0 (this point corresponded to a Bonferroni-corrected

threshold of p < 0.01). Second, we supplemented this

analysis with a whole-brain mass univariate analysis,

wherein Pearson correlations were calculated between

each psychopathology dimension and each column in Z

(i.e., Schaefer parcels). Here, multiple comparisons were

corrected across parcels and psychopathology dimensions

(2400 tests) using the Benjamini and Hochberg false dis-

covery rate (FDR, q= 0.05) procedure53 (see Supple-

mentary Methods).

Case-control comparisons of deviations from normative

neurodevelopment

Finally, we tested our third hypothesis that group-level

effects derived from case-control designs would be

confounded by insensitivity to disorder-specific effects.
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We selected a subsample of our testing subset with

clinically significant depression (n= 136, mean age=

17.57 ± 2.3 years, 32% males) and a subsample with

clinically significant ADHD (n= 163, mean age=

13.62 ± 3.11, 63% males), two disorders with distinct

clinical presentations, and performed case-control ana-

lyses. In each group, we excluded participants with

comorbid depression and ADHD. Next, we selected two

subsamples of HCs from our full HC cohort (i.e., n=

381) that were matched to each of our patient groups on

age, sex, T1 QA, and T1 signal-to-noise ratio (SNR). This

procedure yielded two independent subgroups of HCs.

Then, we estimated group-level deviations from norma-

tive neurodevelopment by calculating regional Cohen’s d

values comparing the deviations from each patient group

with their matched HC counterparts. This process not

only minimized the effects of the aforementioned con-

founds, but it also ensured that the Cohen’s d maps for

each patient group were estimated independently from

one another. Then, to assess the correspondence between

group-level effects for depression and ADHD, we esti-

mated the spatial (Pearson’s) correlation between regio-

nal Cohen’s d values. Finally, to examine the extent to

which regional variation in Cohen’s d values was

explained by overall psychopathology, we re-estimated

the spatial correlation between regional Cohen’s d values

after controlling for overall psychopathology. Note,

control of overall psychopathology was conducted inde-

pendently for each patient group.

Results
Participants

Sample demographics, including counts of individuals

who met diagnostic criteria for lifetime presence of a broad

array of disorders, are shown in Table 1 (see also Fig. S2 for

mean symptom dimensions as a function of diagnostic

groups). Figure S3 shows that males in our sample had

significantly higher scores on psychosis-positive (t= 2.30,

p < 0.05FDR), psychosis-negative (t= 3.84, p < 0.05FDR), and

externalizing (t= 4.84, p < 0.05FDR) factors. Females had

significantly higher scores on anxious-misery (t=−4.34,

p < 0.05FDR) and fear (t=−5.88, p < 0.05FDR) factors. No

significant effect of sex was observed for overall psycho-

pathology. Figure S4 shows that age correlated significantly

with higher overall psychopathology (r= 0.32, p < 0.05FDR)

and lower externalizing (r=−0.09, p < 0.05FDR) scores.

Finally, see Fig. S5 for characterization of trajectories

derived from the normative models (i.e., age effects on

cortical volume as a function of sex).

Modeling deviations from normative neurodevelopment

improves the prediction of dimensions of psychopathology

in out-of-sample testing

To address our primary hypothesis that examining

deviations from normative models of neurodevelopment

would improve predictive performance of dimensions of

psychopathology, we compared cross-validated out-of-

sample prediction performance when cortical features

were scored using deviations to when cortical features were

scored using raw volume values (see Figs. S6, S7, S8 for

illustration of the principal components that were used as

input features for prediction). First, our permutation test

revealed that we were only able to predict overall psycho-

pathology (see Fig. S9 for prediction as a function of indi-

vidual PCs), psychosis-positive, and fear above chance

levels (Fig. 1). Critically, for these dimensions, using

deviations yielded comparable or better predictive perfor-

mance compared to using raw volume across multiple

scoring metrics. For example, deviations yielded sig-

nificantly higher correlations between true and predicted y

(Fig. 1a), significantly higher negative RMSE (Fig. 1b) for

overall psychopathology and psychosis-positive, as well as

significantly higher negative MAE for psychosis-positive

and fear (Fig. 1c). Furthermore, even for dimensions where

predictive performance was not above chance levels (i.e.,

externalizing, psychosis-negative, anxious-misery), we still

observed instances where deviations yielded significantly

better predictive performance. For example, deviations

yielded significantly higher correlations between true and

predicted y for externalizing (Fig. 1a) and significantly

higher negative MAE for psychosis-negative (Fig. 1c). In

fact, we never observed a psychopathology dimension

where (i) raw volume yielded significantly better predictive

performance compared to deviations, or (ii) where raw

Table 1 Summary of demographic and

psychopathology data.

Sample Training subset Testing subset

(n= 1271) (n= 281) (n= 990)

Age, year, mean (±SD) 15.10 (±3.64) 14.79 (±3.97) 15.13 (±3.54)

Sex, n (%)

Male 603 (47.44) 146 (51.96) 457 (46.16)

Female 668 (52.56) 135 (48.04) 533 (53.84)

Psychopathology categories, n (%)

Psychosis spectrum 364 (28.64) 0 (0) 364 (28.64)

Manic episode 13 (1.02) 0 (0) 13 (1.02)

Major depressive episode 179 (14.08) 0 (0) 179 (14.08)

Bulimia 5 (0.39) 0 (0) 5 (0.39)

Anorexia 16 (1.26) 0 (0) 16 (1.26)

Social anxiety disorder 295 (23.21) 0 (0) 295 (23.21)

Panic 13 (1.02) 0 (0) 13 (1.02)

Agoraphobia 73 (5.74) 0 (0) 73 (5.74)

Obsessive compulsive 41 (3.23) 0 (0) 41 (3.23)

Post-traumatic stress 156 (12.27) 0 (0) 156 (12.27)

Attention deficit hyperactivity 206 (16.21) 0 (0) 206 (16.21)

Oppositional defiant 407 (32.02) 0 (0) 407 (32.02)

Conduct 102 (8.03) 0 (0) 102 (8.03)

Owing to comorbidity, individual participants may be present in more than 1
category of lifetime prevalence. All individuals who met criteria for lifetime
prevalence were in the testing subset.
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volume yielded above-chance predictive performance, but

deviations did not. Thus, in partial support of hypothesis 1,

our results demonstrate that modeling deviations from

normative neurodevelopment provided better out-of-

sample prediction of overall psychopathology, psychosis-

positive, and fear compared to using raw cortical volume

(see Fig. S10 showing that externalizing and psychosis-

negative scores could be predicted above chance levels

when excluding individuals on psychoactive medication).

Finally, see Figs. S11–15 for a series of sensitivity analyses

spanning an extensive set of additional nuisance covariates,

including years of maternal education, indices of T1 QA,

and general intelligence.

Psychopathology dimensions explain regional deviations

from normative neurodevelopment

Next, we tested our second hypothesis pertaining to

the relationships between psychopathology dimensions

and deviations from normative neurodevelopment in our

a priori regions of interest. First, as expected, we found

that overall psychopathology correlated significantly with

deviations in the vmPFC/mOFC (r=−0.15, p < 0.05FDR),

inferior temporal (r=−0.15, p < 0.05FDR), daCC (r=

−0.12, p < 0.05FDR), and insular cortices (r=−0.11, p <

0.05FDR), wherein greater scores corresponded to greater

negative deviations. Additionally, the psychosis-positive

dimension significantly correlated with deviations in the

inferior temporal cortex (r=−0.08, p < 0.05FDR) and

daCC (r=−0.07, p < 0.05FDR). Finally, the fear dimension

significantly correlated with deviations in the vmPFC/

mOFC (r=−0.07, p < 0.05FDR), inferior temporal (r=

−0.11, p < 0.05FDR) and insular cortices (r=−0.13, p <

0.05FDR). Notably, the psychosis-negative, anxious-misery,

and externalizing dimensions did not yield significant

correlations to deviations in any of our regions of interest.

Second, we directly compared the effect sizes between

those observed for overall psychopathology and those

observed for each specific dimension (Fig. 2; Pearson’s ∆r).

Fig. 1 Deviations from normative neurodevelopment yield improved predictive performance of overall psychopathology, positive

psychosis, and fear symptoms in out-of-sample testing. Predictive performance for each of six dimensions of psychopathology (rows) as a

function of multiple scoring metrics (columns A–C). In each subplot two distributions are presented: one that illustrates predictive performance

derived from raw cortical volume (white distribution with colored outline), and one that illustrates predictive performance derived from deviations

from normative models (colored distribution). Distributions of predictive performance that did not yield above chance performance are shown with

partial transparency and lighter stroke. Predictive performance for overall psychopathology, positive psychosis, and fear was above chance levels and

are shown with heavier stroke. The scoring metrics based on model error (i.e., RMSE, MAE) are shown with a negative sign so that higher values equal

better performance across all scoring metrics. Thus, neg[RMSE]= negative root mean squared error, and neg[MAE]= negative mean absolute error.

Differences in scoring metrics between raw cortical volume and deviations were assessed using an exact test of differences. Significant effects are

marked with p < 0.05FDR.
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We found that, for most of our regions of interest, corre-

lations between deviations and overall psychopathology

were larger (average ∆r > 0) than those observed for specific

psychopathology dimensions. The only exception was for

the comparison with the fear dimension in the insular

cortex, where Pearson’s ∆r was approximately 0. These

positive ∆r values were significantly >0 in the vmPFC/

mOFC for the psychosis-negative and anxious-misery

dimensions, in the inferior temporal cortex for the

psychosis-negative and externalizing dimensions, as well as

in the daCC for the psychosis-negative and anxious-misery

dimensions. In each of these cases, correlations between

deviations and overall psychopathology were significantly

larger than those observed for the other psychopathology

dimensions at the p < 0.01 level. At a more relaxed

threshold of p < 0.05 (i.e., lower bounds of 95% CI > 0),

positive ∆r values were significantly >0 in the vmPFC/

mOFC for all psychopathology dimensions, in the inferior

temporal cortex for all dimensions except fear, in the daCC

for the psychosis-negative, anxious-misery, and externaliz-

ing dimensions, as well as in the insular cortex for the

anxious-misery dimension (Fig. S16). Thus, in partial sup-

port of our second hypothesis, these results demonstrate

that abnormalities in regions commonly reported in the

case-control literature may be predominantly associated

with overall psychopathology.

Consistent with the above findings, our mass univariate

analysis of the 400 Schaefer parcels revealed that greater

scores on overall psychopathology was associated with

widespread negative deviations across the cortex, includ-

ing in the vmPFC/mOFC, inferior temporal cortex, daCC,

and the insular cortex, albeit to a lesser extent (Fig. 3a).

Furthermore, compared to overall psychopathology, sig-

nificant correlations for the specific psychopathology

dimensions were relatively sparse and infrequently

occurred in our a priori regions of interest with the

exception of fear (Fig. 3b–f). Finally, our mass univariate

analysis revealed a notable consistency in our results,

which was that overall psychopathology, fear, and to a

lesser extent psychosis-positive, psychosis-negative, and

externalizing, each showed relatively widespread effects in

the visual and somatomotor systems.

Fig. 2 Correlations between overall psychopathology and deviations from normative neurodevelopment are stronger than correlations

observed for specific dimensions of psychopathology. In each subplot, distributions of absolute Pearson’s correlation coefficients between each

specific psychopathology dimension (rows) and regional deviations (columns A–D) were subtracted from absolute correlations observed for overall

psychopathology in the same region. Note, Pearson’s correlations were calculated after residualizing both psychopathology dimensions and

deviations with respect to T1 QA and T1 SNR (see Supplementary Methods for details). Performing this subtraction 10,000 times across bootstrapped

samples generated distributions of effect size differences, ∆r. Positive ∆r indicates that correlations for overall psychopathology were greater when

compared to those observed for the specific dimensions. The ∆r distributions for which the lower bound of the 99% confidence interval was >0 are

shown with heavier stroke and no transparency.
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Group effects yield non-specific patterns of deviations

from normative neurodevelopment

Above, we demonstrated that overall psychopathology

tracked variation in deviations from normative neurode-

velopment in regions commonly implicated in the case-

control literature. Next, we examined the extent to which

overall psychopathology accounted for the spatial overlap

between group-level differences observed for case-control

analyses conducted in two specific disorders that are

conceptualized as dissimilar: depression and ADHD.

Figure 4a shows the distribution of Cohen’s d values for

ADHD and depression for cortical volume with and

without controlling for overall psychopathology. For both

groups, controlling for overall psychopathology resulted

in a significant shift in the Cohen’s d distribution towards

zero (ADHD, t= 9.65, p < 0.001; depression, t= 24.42,

p < 0.001). Figure 4b shows the relationship between

regional Cohen’s d values in each group without con-

trolling for overall psychopathology (r= 0.15, p= 0.002),

while Fig. 4c shows the relationship between regional

Cohen’s d when controlling for the effect of overall psy-

chopathology (r= 0.08, p= 0.13). Notably, controlling for

overall psychopathology reduced the correlation between

depression and ADHD to r= 0.08; a ∆ of 0.07. We

repeated this analysis using each of the other psycho-

pathology dimensions and found that this relationship

was specific to overall psychopathology; when controlling

for other dimensions, the spatial correlation ∆ was, on

average, 0.006. Together, these results suggest that the

spatial correspondence between group-level deviations for

two clinically dissimilar disorders was explained by overall

psychopathology.

Fig. 3 The bivariate relationship between dimensions of psychopathology and deviations from normative neurodevelopment for cortical

volume. A–F Significant Pearson’s correlation coefficients between dimensions of psychopathology and deviations from the normative model. For

negative correlations, greater scores on the psychopathology dimension are associated with greater negative deviations from normative

neurodevelopment. For positive correlations, greater scores on the psychopathology dimension are associated with greater positive deviations from

normative neurodevelopment (note: this only occurred for anxious-misery; see panel F).

Parkes et al. Translational Psychiatry          (2021) 11:232 Page 8 of 13



Discussion
Mental disorders are increasingly viewed as disorders of

neurodevelopment3–5,55. However, heterogeneity in both

neurodevelopmental trajectories and symptom profiles

have confounded case-control designs and made it diffi-

cult to precisely characterize the relationship between

abnormalities in neurodevelopment and the symptoms of

psychopathology. Here, we showed that modeling cortical

volume as deviations from normative models of neuro-

development improved the prediction of overall psycho-

pathology, psychosis-positive and fear dimensions in

out-of-sample testing. Furthermore, at the regional level,

we demonstrated that overall psychopathology correlated

with greater negative deviations in vmPFC/mOFC, infer-

ior temporal, daCC, and insular cortices—all regions

previously implicated in case-control literature across a

broad spectrum of disorders35–40—and that these corre-

lations were, in some cases, significantly larger than those

observed for the psychosis-negative, anxious-misery, and

externalizing dimensions. Finally, we found that case-

control comparisons between two clinically dissimilar

groups (depression and ADHD) and healthy controls

showed spatially correlated group differences in devia-

tions that diminished when controlling for overall psy-

chopathology, suggesting that overall psychopathology

confounded case-control comparisons. Overall, our

results demonstrate that the combination of normative

models of neurodevelopment and p-factor models of

psychopathology not only have the potential to improve

prediction of the symptoms of mental disorder but may

also help to tease apart disorder-general from disorder-

specific biomarkers in psychiatry.

Previous studies have revealed non-uniform gray matter

reductions concentrated in vmPFC/mOFC, inferior tem-

poral, daCC and insular cortices across major depressive,

bipolar, schizophrenia, and anxiety disorders35–40. Here,

our analysis of our a priori regions of interest and our

mass univariate analysis indicated that deviations in each

of these regions were implicated predominantly, and in

some cases most strongly, by overall psychopathology.

The main exception was the insular cortex, where cor-

relations between overall psychopathology and deviations

were not significantly larger than those observed for the

specific dimensions in our model. Together, our findings

suggest that the effects commonly reported in the case-

control literature pertaining to the vmPFC/mOFC, daCC,

and inferior temporal cortices may reflect the general

neural correlates of mental disorder more than disorder-

specific signatures39, and that the use of p-factor models

may assist psychiatry researchers in separating the two.

Beyond our a priori regions of interest, our mass uni-

variate analysis revealed that regions in the visual and

somatomotor systems were broadly impacted by overall

psychopathology. This observation is consistent with

recent functional connectivity work56,57. Elliot et al.56

showed that overall psychopathology correlated with

Fig. 4 Deviations from normative neurodevelopment in depression and ADHD groups show correlated whole-brain effects confounded

by overall psychopathology. Case-control comparisons were conducted examining group differences in deviations between individuals with

depression and individuals with ADHD compared to independent samples of healthy individuals matched on age, sex, T1 QA, and T1 SNR. A Regional

Cohen’s d values from the ADHD group (top) and depression group (bottom) with and without controlling for overall psychopathology. For both

groups, controlling for overall psychopathology resulted in a significant shift in Cohen’s d values towards zero. B Regional Cohen’s d values from the

depression group correlate with regional Cohen’s d values from the ADHD group. C Correlations between depression and ADHD groups decrease

when controlling for overall psychopathology.
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dysconnectivity between the visual systems and the

frontoparietal and default mode systems, and Kebets

et al.57 showed that overall psychopathology correlated

with dysconnectivity within and between somatomotor

and visual systems. Although there are several clear dif-

ferences between the research of Elliot et al. and Kebets

et al. and the current study, including neuroimaging

modality, clinical assessments, statistical methodology,

and sample age, the results converge on the idea that

disruptions to lower-order brain systems may be common

across mental disorders. Indeed, given that our sample

was, on average, younger than the sample used by Elliot

et al. (which in turn was younger than that used by Kebets

et al.), our results suggest that these markers of disorder-

general pathophysiology may emerge early during disease

progression and persist into adulthood. Datasets covering

the lifespan will be critical to testing precise develop-

mental timing effects associated with visual and somato-

motor pathophysiology, including the relationship

between brain structure and function.

Limitations

A limitation of this study is the use of cross-sectional

data to model neurodevelopment. It is well documented

that individual variability in neurodevelopment occurs at

both the inter-individual and intra-individual level2, and

characterizing the factors that explain the latter will be

critical for predicting the emergence of psychopathology

over time. Thus, future work should test whether the

brain regions identified using our approach explain var-

iance in psychopathology dimensions at follow-up time

points. Another limitation is the focus on T1-weighted

cortical brain features. The underlying white matter

pathways change throughout development in parallel with

the cortex, giving rise to segregated processing modules

that increase the functional efficiency of the brain58–60.

Here, we focused on cortical volume derived from T1-

weighted imaging data owing to the robust relationship

with age, which is well suited to normative modeling.

Future work that builds multimodal normative models of

neurodevelopment may provide additional insights into

the physiology of psychopathology, which is critical to

progressing the field of psychiatry towards personalized

medicine.

Finally, we note that controlling for socioeconomic

status and general intelligence in our predictive models

resulted in many of our prediction models dropping

below significance under our permutation test (see Sup-

plementary Materials), suggesting that these measures

confounded our prediction models. However, we note

that predictive performance of overall psychopathology

from deviations was still significantly higher than from

raw brain volume, suggesting that the benefit of using the

normative model persisted. Nevertheless, this result

suggests future work should examine the extent to which

socioeconomic status and general intelligence might

mediate the relationship between deviations from nor-

mative neurodevelopment and psychopathology.

Conclusions
Our results represent an important step toward

understanding the link between neurodevelopment and

psychopathology. We explicitly modeled normative var-

iance in neurodevelopment, allowing us to estimate

multivariate continuous single-subject neurodevelop-

mental abnormalities. Combining this approach with a

dimensional model of psychopathology allowed us to

improve the out-of-sample prediction of psychiatric

symptoms compared to raw cortical volume, particularly

for overall psychopathology. This result provides proof of

principle that recasting structural neuroimaging data

obtained from one sample as deviations from a separate

normative cohort can improve the predictive relationship

between brain and symptom data. This is encouraging

because it supports the viability of generating standar-

dized normative models that may then be deployed to

understand variance in brain data acquired across multi-

ple different clinical sites. However, this interpretation

remains speculative, since our analysis was restricted to a

single site. In order to examine whether the improved

predictive performance observed here generalizes to new

samples, future work should consider using a normative

model trained on one site to understand variance in brain

data acquired from a different site. Indeed, new methods

from normative modeling are being developed that may

facilitate this goal61.

Our work also underscores the importance of decou-

pling specific forms of psychopathology from overall

psychopathology. Not doing so may confound the capa-

city of case-control designs to discover disorder-specific

signatures of abnormal neurodevelopment. This con-

found, in turn, renders case-control designs less likely to

yield clinically useful biomarkers in psychiatry. Finally,

our work contributes to a growing body of literature

demonstrating that, in order to discover neurodevelop-

mental biomarkers for mental health, psychiatric research

could benefit from supplementing examination of the

statistical ‘average patient’ with dimensional approaches

to psychopathology and brain pathophysiology14,15,28.

Such a neurobiologically-grounded framework may pro-

vide a step towards personalized medicine in psychiatry,

and ultimately allow for the improved outcome for

patients.
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Recent work in several fields of science has identified a

bias in citation practices such that papers from women

and other minority scholars are under-cited relative to the
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number of such papers in the field62–66. Here we sought

to proactively consider choosing references that reflect

the diversity of the field in thought, form of contribution,

gender, race, ethnicity, and other factors. First, we

obtained the predicted gender of the first and last author

of each reference by using databases that store the

probability of a first name being carried by a woman66,67.

By this measure (and excluding self-citations to the first

and last authors of our current paper), our references

contain 15.19% woman(first)/woman(last), 16.24% man/

woman, 22.1% woman/man, and 46.46% man/man. This

method is limited in that (a) names, pronouns, and social

media profiles used to construct the databases may not, in

every case, be indicative of gender identity and (b) it

cannot account for intersex, non-binary, or transgender

people. Second, we obtained predicted racial/ethnic

category of the first and last author of each reference by

databases that store the probability of a first and last name

being carried by an author of color68,69. By this measure

(and excluding self-citations), our references contain

13.06% author of color (first)/author of color(last), 22.88%

white author/author of color, 18.62% author of color/

white author, and 45.44% white author/white author. This

method is limited in that (a) names and Wikipedia profiles

used to make the predictions may not be indicative of

racial/ethnic identity, and (b) it cannot account for Indi-

genous and mixed-race authors, or those who may face

differential biases due to the ambiguous racialization or

ethnicization of their names. We look forward to future

work that could help us to better understand how to

support equitable practices in science.
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