
Transducers with origin information

Miko laj Bojańczyk⋆

University of Warsaw

Abstract. Call a string-to-string function regular if it can be realised by
one of the following equivalent models: mso transductions, two-way de-
terministic automata with output, and streaming transducers with reg-
isters. This paper proposes to treat origin information as part of the
semantics of a regular string-to-string function. With such semantics,
the model admits a machine-independent characterisation, Angluin-style
learning in polynomial time, as well as effective characterisations of natu-
ral subclasses such as one-way transducers or first-order definable trans-
ducers.

This paper is about string-to-string functions which can be described by de-
terministic two-way automata with output [AU70]. As shown in [EH01], this
model is equivalent to mso definable string transductions. Another equivalent
model, used in [AC10], is a deterministic one-way automaton with registers
that store parts of the output1. Examples of such functions include: duplica-
tion w 7→ ww; reversing w 7→ wR; a function w 7→ wwR which maps an input
to a palindrome whose first half is w; and a function which duplicates inputs
of even length and reverses inputs of odd length. As witnessed by the multiple
equivalent definitions, this class of string-to-string function is robust, and there-
fore, following [AC10], we call it the class of regular string-to-string functions.
Regular string-to-string functions have good closure properties. For instance, if
f and g are regular, then the composition w 7→ f(g(w)) is also regular, which
is straightforward if the mso definition is used, but nontrivial if the two-way
automata definition is used [CJ77]. Also the concatenation w 7→ f(w) · g(w) is
regular, which is apparent in any of the three definitions. Equivalence of reg-
ular string-to-string functions is decidable, as was shown in [Gur82] using the
two-way automata definition.

Origins. The motivation of this paper is the simple observation that the mod-
els discussed above, namely deterministic two-way automata with output, mso
definable string transductions, and automata with registers, provide more than
just a function from strings to strings. In each case, one can also reconstruct

⋆ Supported by ERC Starting Grant “Sosna”
1 Registers are similar to attributes in attribute grammars. The equivalence of mso

definable transductions with a form of attribute grammars, in the tree-to-tree case,
was shown in [BE00]. In the special case of string-to-string functions, the attribute
grammars from [BE00] correspond to left-to-right deterministic automata with reg-
isters and regular lookahead.

origin information, which says how positions of the output string originate from
positions in the input string. How do we reconstruct the origin of a position x in
an output string? In the case of a deterministic two-way automaton, this is the
position of the head when x was output. In the case of an mso definable trans-
ducer, this is the position in which x is interpreted. In the case of an automaton
with registers, this is the position in the input when the letter x was first loaded
into a register. In other words, for a transducer we can consider two semantics:
the standard semantics, where the output is a string, and the origin semantics,
where the output is a string with origin information. The second semantics is
finer in the sense that some transducers might be equivalent under the standard
semantics, but not under the origin semantics.

Tracking origin information for transducers has been studied before, for in-
stance in the programming language community, see e.g. [vDKT93]. Origin in-
formation has also been used as a technical tool in the study of tree-to-tree
transducers. Examples include [EM03], where origin information is used to char-
acterise those macro tree transducers which are mso definable, and [LMN10],
where origin information is used to get a Myhill-Nerode characterisation of de-
terministic top-down tree transducers. The novelty of this paper is that origin
information is built into the semantics of a transducer.

Origin semantics. To illustrate the difference between the two semantics (stan-
dard and origin) of a string-to-string transducer, consider a transducer which
is the identity on the string ab, and which maps other strings to the empty
string. If we care about origins, then this description is incomplete, and can be
instantiated in four different ways depicted below.

a b

a b

a b

a b

a b

a b

a b

a boutput

input

For example, the second diagram above describes a two-way automaton that
first reads it input to determine if it is ab, and then moves its head to the first
position, where it outputs both a and b.

Another example is the identity function on strings over a one letter alphabet,
which can be realised by copying the input left-to-right or right-to-left. Actually
the function can be realised in infinitely many different ways once origins are
taken into account: consider an automaton that outputs n letters in input posi-
tions divisible by n, and then outputs the remainder under division by n in the
last input position.

This paper is a study of the more refined semantics. Almost any “natural”
construction for transducers will respect origin information. For instance, the
translation from [EH01] which converts an mso interpretation into a determinis-
tic two-way automaton remains correct when the origin information is taken into
account. The same holds for the other translations between the three models. In
other words, one can also talk about regular string-to-string functions with origin
information. Various closure properties, such as composition and concatenation,

2

are retained when origins are taken into account. Some results become easier to
prove, e.g. decidability of equivalence of string-to-string transducers.

A machine independent characterisation. The main contribution of this paper
is a machine independent characterisation of regular string-to-string functions
with origin information, which is given in Theorem 1. The characterisation is
similar to the Myhill-Nerode theorem, which says that a language L is regular
if and only if it has finitely many left derivatives of the form

w−1L
def
= {v : wv ∈ L}.

From the usual Myhill-Nerode theorem for regular languages one obtains a
canonical device, which is the minimal deterministic automaton. The situation is
similar here. We define a notion of left and right derivatives for string-to-string
functions with origin information, and show that a function is regular if and only
if it has finitely many left and right derivatives (finitely many left derivatives is
not enough, same for right derivatives). The proof of the theorem yields a canon-
ical device, which is obtained from the function itself and not its representation
as a two-way automaton, mso transduction, or machine with registers. One use
for the canonical device is testing equivalence: two devices are equivalent if and
only if they yield the same canonical machine.

Another use of the canonical device is that it is easy to see when the under-
lying function actually belongs to a restricted class, e.g. if it can be defined by a
deterministic one-way automaton with output (see Theorem 4), or by functional
nondeterministic one-way automaton with output (see Theorem 3). A more ad-
vanced application is given in Theorem 5, which characterises the first-order
fragment of mso definable transducers with origin information.

Learning. One of the advantages of origin information is that it allows functions
to be learned, using an Angluin style algorithm. We show that a regular string-to-
string function with origin information can be learned with a number of queries
that is polynomial in the size of the canonical device. The queries are of two
types: the learner can ask for the output on a given input string; or the learner
can propose a transducer with origin information, and in case this is not the
correct one, then the teacher gives a counterexample string where the proposed
transducer produces a wrong output.

In the algorithm, the learner uses the origin information. However, it seems
that the learner’s advantage from the origin information does not come at any
significant cost to the teacher. Suppose that we want to learn a transducer inside
a text editor, e.g. the user wants to teach the text editor that she is thinking
of the transducer which replaces every = by :=. If a user is trying to show
an example of this transducer on some input, then she will probably place the
cursor on occurrences of = in the input, delete them, and retype :=, thus giving
origin information to the algorithm. A user who backspaces the whole input and
retypes a new version will possibly be thinking of some different transformation.
It would be wasteful to ignore this additional information supplied by the user.

3

Thank you. I would like to thank Sebastian Maneth and the anonymous ref-
erees for their valuable feedback; Anca Muscholl, Szymon Toruńczyk and Igor
Walukiewicz for discussions about the model; and Rajeev Alur for asking the
question about a machine-independent characterisation of transducers.

1 Regular string to string transducers

A string-to-string function is any function from strings over some fixed input
alphabet to strings over some fixed output alphabet, such that the empty string is
mapped to the empty string. A string-to-string function with origin information
is defined in the same way, but for every input string w it provides not only
an output string f(w), but also origin information, which is a function from
positions in f(w) to positions in w. We consider total functions, although the
results can easily be adapted to partial functions. In this section we recall three
equivalent models recognising string-to-string functions.

Streaming transducer. Following [AC10], a streaming transducer is defined as
follows. It has finite input and output alphabets. There is a finite set of control
states with a distinguished initial state, and a finite set of registers, with a
distinguished output register. The transition function inputs a control state and
an input letter, and outputs a new control state and a register update, which is
a sequence of register operations of two possible types:

– Concatenate. Replace the contents of register r with rs, and replace the
contents of register s by the empty string;

– Create. Replace the contents of register r with output letter b.

Finally, there is an end of input function, which maps each state to a sequence
of register operations of the first type2.

When given an input string, the transducer works as follows. It begins in
the initial state with all registers containing the empty string. Then it processes
each input letter from left to right, updating the control state and the registers
according to the transition function. Once the whole input has been processed,
the end of input function is applied to the last state, yielding another sequence
of register operations, and finally the value of the transducer is extracted from
the output register. For the origin semantics, we observe that every letter in a
register is created once using an operation of type create, and then moved around
using operations of type concatenate. The origin of an output letter is defined
to be the input position which triggered the transition whose register update
contained the appropriate create operation.

Observe that the register operations do not allow copying registers. This is
an important restriction which guarantees, among other things, that the size of
the output is linear in the size of the input.

2 The end of input function is prohibited to produce new output letters so that the
origin information can be assigned. Alternatively, one could assume that the positions
produced by the end of input function have a special origin, “created out of nothing”.

4

Example 1. By composing the atomic register operations and using additional
registers, we can recover additional register operations such as “add letter b to
the end of register r”, “add letter b to the beginning of register r”, “move register
r to register s, leaving r empty”. The examples use the additional operations.

Consider the function w 7→ wwR, where wR is the reverse of w. The trans-
ducer has one control state and two registers, used to store w and wR. When it
reads an input letter a, the transducer adds a to the end of the register storing w

and adds a to the beginning of the register storing wR. The end of input update
concatenates both registers, and puts the result in the first register, which is the
output register.

A transducer for the duplication function is obtained in a similar way. Ob-
serve that since the register operations do not allow copying, it is still necessary
to have two registers, both storing w.

Deterministic two-way automaton with output. A deterministic two-way au-
tomaton with output is like a deterministic two-way finite automaton, except
that every transition is additionally labelled by a string (possibly empty) over
the output alphabet. A run over an input w can be seen as a sequence of pairs
(δ1, x1), . . . , (δn, xn) where δi is a transition and xi a position in the string ⊢ w ⊣.
The transition δi reads the label of position xi and the state generated by the
previous transition, and chooses the new position xi+1, a new state, and what
will be appended to the output. The output of the automaton is the concatena-
tion of the strings labelling the transitions δ1, . . . , δn. The origin of a position
in the output string that is generated by the transition δi is defined to be the
position xi. To make the origin well-defined, we require that every output letter
is produced for transitions that have their source in input letters, and not over
the markers ⊢ and ⊣.

mso transduction. Following [Tho97], a string over an alphabet A can be treated
as a relational structure, whose universe is the positions of the string, and which
has a binary position order predicate x < y and label predicates a(x) for the
letters of the alphabet. To transform strings into strings, we can use mso inter-
pretations. An mso interpretation is a function from structures over some fixed
input vocabulary (set of relation names with their arities) to structures over
some fixed output vocabulary, which is specified by a system of mso formulas,
as follows. There is a universe formula with one free variable over the input vo-
cabulary, which selects the elements of the universe of the input structure that
will appear in the universe of the output structure. Furthermore, for every predi-
cate of the output vocabulary there is a formula over the input vocabulary of the
same arity, which says how the predicates are defined in the output structure.

Another function from structures to structures is called k-copying ; which
maps a structure to k disjoint copies of itself, together with binary relations
1(x, y), . . . , k(x, y) such that i(x, y) holds if y is the i-th copy of x. A copying
mso transduction consists of first a copying function, followed by an mso inter-
pretation. A string-to-string function f is called mso-definable if there is some
copying mso transduction such that for every input string w, the transduction

5

transforms the relational structure corresponding to w into a relational structure
corresponding to f(w). The origin information in such a transducer is defined in
the natural way: a position in the output string is interpreted in some copy of a
position in the input string, the latter is defined to be the origin.

Equivalence of the models. Deterministic two-way automata with output define
the same translations as copying mso transductions in [EH01]. The same proof
works if the semantics with origin information is used. Streaming transducers are
shown to be equivalent to the previous two models in [AC10]; the same proof
also works with the origin semantics. A string-to-string function with origin
information is called a regular string-to-string function with origin information
if it can be defined by any one of the three models mentioned above.

2 A machine independent characterisation

In this section we present a Myhill-Nerode style characterisation of regular trans-
ducers with origin information.

Factorised output. Suppose that f is a string-to-string function with origin infor-
mation and output alphabet B. A factorised input is a tuple of strings w1, . . . , wn

over the input alphabet, which is meant to describe an input string factorised
into n blocks. Given such a factorised input, define an output block of type i

to be a maximal connected subset of positions in the output f(w1 · · ·wn) that
originates in wi. Define the factorised output corresponding to a factorised input
w1, . . . , wn, denoted by

f(w1| . . . |wn) ∈
(
{1, . . . , n} ×B+

)
∗

.

to be the sequence of output blocks read from left to right, with each block
described by its type and corresponding part of the output. In particular, if
we concatenate all of the strings coming from B+, we obtain the output string
f(w1 · · ·wn). When n = 3, instead of numbers 1, 2, 3 we use “left”, “middle”
and “right” to indicate types of blocks. We use fraction-style notation for output
blocks, with the lower part indicating the type, and the upper part describing
the output. For instance, if f is the duplicating function, then

f(ab|cd|e) =
ab

left
cd

middle
e

right
ab

left
cd

middle
e

right.

Some input blocks might be empty, as in the following example:

f(ab||e) =
ab

left
e

right
ab

left
e

right.

If some of the input blocks are underlined, then in the output we just keep the
information that there is a nonempty output block, but we do not store the
actual output strings which originate in the underlined blocks. For example,

f(ab|cd|e) = left
cd

middle right left
cd

middle right.

6

Note that we will never have two consecutive blocks of the same type, e.g. left left,
in the factorised output, since blocks are maximal. In particular, for underlined
input blocks we lose track of how long their corresponding output blocks are.

Derivatives. Define a two-sided derivative of string-to-string function with origin
information f to be any function of the form

fu w
def
= v 7→ f(u|v|w),

for some choice of strings u and w over the input alphabet. Left derivatives and
right derivatives are the special cases of the two-sided derivative when either u

or w is empty, i.e. they are functions of the forms:

fu
def
= v 7→ f(u|v) f w

def
= v 7→ f(v|w).

Example 2. Let f be the function w 7→ wRw. Then

fu w(v) = right
vR

middle left
v

middle right

for every nonempty strings u or w. When the string u is empty, then the left
block disappears, likewise when w is empty then the right blocks disappear. In
particular, this function has four possible values for the two-sided derivative.
There are two possible values for the left derivative fu , namely the functions

v 7→
vRv

right v 7→
vR

right left
v

right.

Example 3. Let f be the function which is the identity on strings of even length,
and which maps strings of odd length to the empty string. This function has
three possible left derivatives fv , depending on whether v is empty, nonempty
and even length, or odd length. Below is the derivative for the last case.

w 7→

{

left
w

right if w has odd length

ǫ otherwise

Example 4. Here is a function with finitely many right derivatives, but infinitely
many left derivatives. Consider first the function which scans its input from left
to right, and outputs only those letters whose position is a prime number

f(a1 · · · an) = w1 · · ·wn where wi =

{

ai if i is a prime number

ǫ otherwise.

7

This particular function has infinitely many right derivatives, since

f w(v) =

f(v)

left right if there is a prime number in {|v| + 1, . . . , |vw|}
f(v)

left otherwise.

However finitely many right derivatives can be obtained by making the last
position to be output unconditionally, i.e. in the string-to-string function

g(a1 · · · an) = f(a1 · · · an−1)an.

In this case, g has only two right derivatives, namely

v 7→
g(v)

left v 7→
f(v)

left right.

The function has infinitely many left derivatives gv because the criterion “i is
a prime number” needs to be replaced by “i + |v| is a prime number”.

To present our machine independent characterisation, we need a notion of
regularity for functions from tuples of strings to a finite set. Define the language
encoding of a function f : (A∗)n → C, with C finite, to be

{w1#w2# · · ·#wn#f(w1, . . . , wn) : w1, . . . , wn ∈ A∗} ⊆ (A ∪ C ∪ {#})∗.

assuming # is a symbol outside A∪C. The function f is called a regular colouring
if its language encoding is regular. Among several models of automata reading
tuples of strings, regular colourings correspond to the weakest model, called
recognisable. For instance, the equality function, seen as a colouring of string
pairs by “equal” or “not equal”, is not a regular colouring.

Theorem 1 (Machine independent characterisation). For a string-to-string
function f with origin information, the following conditions are equivalent

1. f is regular;
2. f has finitely many left derivatives and finitely many right derivatives;
3. for every letter a in the input alphabet, the following is a regular colouring

(v, w) 7→ f(v|a|w).

The function (v, a, w) 7→ f(v|a|w), where v, w are words and a is a letter over
the input alphabet, is called the characteristic function of f .

Proof (rough sketch). The implication from 1 to 2 is shown by using deterministic
two-way automata with output. For the implication from 2 to 3, one observes
that the functions v 7→ fv and w 7→ f w are regular colorings, and that f(v|a|w)
is uniquely determined by fv , a and f w. For the implication from 3 to 1, one
shows that an arbitrary string-to-string function with origin information can
be uniquely reconstructed based on its characteristic function, and when the
characteristic function happens to be a regular coloring then this reconstruction
can be done by a finite state device.

8

Since a string-to-string function is uniquely determined by its characteristic
function, instead of studying string-to-string functions, one can study their char-
acteristic functions. This is the case in the learning algorithm from Section 3,
and the studies of subclasses of transducers in Sections 4 and 5. The character-
istic function can be computed based on a representation as a transducer model,
e.g. from a copying mso transduction. In particular, Theorem 1 gives a concep-
tually simple equivalence check for origin semantics: compute the characteristic
functions and test if they are equal. The complexity of this algorithm, especially
in the case when the function is given by streaming transducers, is left open.

As shown in Example 4, it is not enough to require finitely many derivatives
of one kind, say right derivatives, since a function might have finitely many
derivatives of one kind, but infinitely many derivatives of the other kind3.

3 Learning

This section shows that transducers with origin information can be learned. We
first recall the Angluin algorithm for regular languages, which will be used as a
black box in our learning algorithm for learning transducers. The setup for the
Angluin algorithm is as follows. A teacher knows a regular language. A learner
wants to learn this language, by asking two kinds of queries. In a membership
query, the learner gives a string and the teacher responds whether this string is
in the language. In an equivalence query, the learner proposes a candidate for the
teacher’s language, and the teacher either says that this candidate is correct, in
which case the protocol is finished by learner’s success, or otherwise the teacher
returns a counterexample, which is a string in the symmetric difference between
the candidate and teacher’s languages.

Angluin proposed an algorithm [Ang87], in which the learner learns the lan-
guage by asking a number of queries which is polynomial in the minimal deter-
ministic automaton for the teacher’s language, and the size of the counterex-
amples given during the interaction. Theorem 2 shows that a variant of this
algorithm works for regular string-to-string transducers with origin information.
In the case of transducers, the membership query becomes a value query, where
the learner gives a string and the teacher responds with the output of the trans-
ducer on that string. In the equivalence query, the counterexample becomes a
string where the transducer proposed by the learner gives a different value than
the transducer of the teacher. In both the value query and in the counterexample,
the teacher also provides the origin information.

Theorem 2. A regular string-to-string function with origin information can be
learned using value and equivalence queries in polynomial time (both number of
queries and computation time) in terms of the number of left and right deriva-
tives, and the size of the counterexamples given by the teacher.

3 It does follow from the theorem that a function with finitely many left and right
derivatives has finitely many two-sided derivatives. This is because every regular
string-to-string function has finitely many two-sided derivatives.

9

4 Order-preserving transducers

In this section, we present two characterisations of subclasses of transducers.
For semantics without origins, [FGRS13] shows how to decide if a determinis-
tic two-way transducer is equivalent to a nondeterministic one-way transducer,
while [WK94] shows how to decide (in polynomial time) if a nondeterministic
one-way transducer is equivalent to a deterministic one-way transducer. This sec-
tion shows analogous results for the origin semantics. Unlike [FGRS13,WK94],
the characterisations for the origin semantics are self-evident, which shows how
changing the semantics (and therefore changing the problem) makes some tech-
nical problems go away. A more difficult characterisation, about first-order de-
finable transducers, is presented in the next section.

In the following theorem, a string-to-string function with origin information
is called order preserving if for every input positions x < y, every output position
corresponding to x is before every output position corresponding to y.

Theorem 3. For a regular string-to-string function with origin information f ,
the following conditions are equivalent.

1. f is order-preserving.
2. f(v|w) is one of ǫ, left, right or left right for all input strings v, w.
3. f is recognised by a streaming transducer with lookahead which has only one

register, and which only appends output letters to that register.
4. f is recognised by a nondeterministic one-way automaton with output, which

has exactly one run over every input string.

Proof. The implication from item 1 to item 2 follows straight from the definition.
For the implication from item 2 to 3, we observe that if condition 1 is satisfied,
then the transducer constructed in the proof of Theorem 1 will only have one
register, and it will only append letters to that register during the run. For
the implication from item 3 to item 4, we observe that a nondeterministic one-
way automaton with output can guess, for each position of the input, what the
lookahead will say. Since the lookahead is computed by a deterministic right-to-
left automaton, this leads to a unique run on every input string. The implication
from item 4 to item 1 also follows straight from the definition.

Observe that the condition in item 2 can be decided, even in polynomial
time, when the characteristic function of the transducer is known.

We can further restrict the model by requiring that the transducer in item 3
does not use any lookahead, or equivalently, by requiring that the automaton in
item 4 be deterministic. This restricted model is characterised in the following
theorem.

Theorem 4. Let f be a regular string-to-string function which satisfies any
of the equivalent conditions in Theorem 3. Then f is defined by a left-to-right
deterministic automaton with output if and only if all input strings u, v, w satisfy

f(u|v) = f(u|w).

10

Proof. The left-to-right implication is immediate. For the right-to-left implica-
tion, we observe that the assumption implies that

f(u|a|v)

does not depend on v, but only on fu and the letter a. Furthermore, since f

satisfies the assumptions from Theorem 3, the above value is of the form

left
x

right,

where each block is possibly missing. After reading input u, the automaton stores
in its control state the derivative fu . When it reads a letter a, it updates its
control state, and outputs the string w, which depends only on the control state
and input letter a.

5 First-order definable transducers

In this section we consider first-order definable transducers. Recall that when
coding a string as a relational structure, we have a predicate for the order. We
underline this because, unlike for mso, for first-order logic order is more powerful
than successor. The notion of first-order definability makes sense for:

– languages: there is a first-order formula that is true in the strings from the
language and false in strings from outside the language.

– regular colourings: the language encoding is first-order definable.
– string-to-string functions with origin information: the same definition as for

mso-definable ones, except that set quantification is disallowed.

Theorem 5. The following conditions are equivalent for a regular string-to-
string function f with origin information.

1. it is definable by a first-order string-to-string transduction.
2. the colourings w 7→ fw and w 7→ f w are first-order definable.
3. for every letters a, b, the following is a first-order definable colouring

(u, v, w) 7→ f(u|a|v|b|w)

Before proving the theorem, we observe that condition in item 2 is effective. Us-
ing a straightforward extension of the the Schützenberger-McNaughton-Papert
Theorem, one can decide if a regular colouring is first-order definable. By ap-
plying the decision procedure to the functions w 7→ fw and w 7→ f w, we can
decide if a regular string-to-string function with origin semantics is first-order
definable. It is unclear if this sheds any light for the analogous question for
semantics without origins.

Without origin information, a variant of first-order definable transducers was
considered in [MSTV06], namely the transducers which are first-order definable
in the sense of Theorem 5 and simultaneously order preserving in the sense

11

of Theorem 3. For instance, the doubling transducer w 7→ ww is first-order
definable in the sense of Theorem 5, but not in the sense of [MSTV06], because
it is not order preserving. By testing for both Condition 2 from Theorem 5 and
Condition 2 of Theorem 3, we get an effective characterisation of the origin
version of the transducers from [MSTV06].

6 Further work

Preliminary work indicates that the ideas in this paper extend to mso-definable
tree-to-tree transducers; this should be followed up. Another direction for fur-
ther study is the computational complexity of equivalence with respect to origin
semantics; in particular finding models for which equivalence is polynomial time.

References

[AC10] Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transduc-
ers. In FSTTCS, pages 1–12, 2010.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Inf.
Comput., 75(2):87–106, 1987.

[AU70] Alfred V. Aho and Jeffrey D. Ullman. A characterization of two-way deter-
ministic classes of languages. J. Comput. Syst. Sci., 4(6):523–538, 1970.

[BE00] Roderick Bloem and Joost Engelfriet. A comparison of tree transductions
defined by monadic second order logic and by attribute grammars. J. Com-

put. Syst. Sci., 61(1):1–50, 2000.
[CJ77] Michal Chytil and Vojtech Jákl. Serial composition of 2-way finite-state

transducers and simple programs on strings. In ICALP, pages 135–147,
1977.

[EH01] Joost Engelfriet and Hendrik Jan Hoogeboom. mso definable string trans-
ductions and two-way finite-state transducers. ACM Trans. Comput. Log.,
2(2):216–254, 2001.

[EM03] Joost Engelfriet and Sebastian Maneth. Macro tree translations of linear
size increase are mso definable. SIAM J. Comput., 32(4):950–1006, 2003.

[FGRS13] Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Ser-
vais. From two-way to one-way finite state transducers. In LICS, pages
468–477. IEEE Computer Society, 2013.

[Gur82] Eitan M. Gurari. The equivalence problem for deterministic two-way se-
quential transducers is decidable. SIAM J. Comput., 11(3):448–452, 1982.

[LMN10] Aurélien Lemay, Sebastian Maneth, and Joachim Niehren. A learning algo-
rithm for top-down xml transformations. In Jan Paredaens and Dirk Van
Gucht, editors, PODS, pages 285–296. ACM, 2010.

[MSTV06] Pierre McKenzie, Thomas Schwentick, Denis Thérien, and Heribert
Vollmer. The many faces of a translation. J. Comput. Syst. Sci., 72(1):163–
179, 2006.

[Tho97] W. Thomas. Languages, automata, and logic. In Handbook of Formal Lan-

guage Theory, volume III, pages 389–455. Springer, 1997.
[vDKT93] Arie van Deursen, Paul Klint, and Frank Tip. Origin tracking. J. Symb.

Comput., 15(5/6):523–545, 1993.
[WK94] Andreas Weber and Reinhard Klemm. Economy of description for single-

valued transducers. In STACS, pages 607–618, 1994.

12

A Proof of Theorem 1

In this part of the appendix, we prove Theorem 1, which says that for a string-to-
string function with origin information, the following conditions are equivalent

1. f is regular string-to-string transducer with origin information;
2. f has finitely many left derivatives and finitely many right derivatives;
3. for every a in the input alphabet, the following is a regular colouring

(v, w) 7→ f(v|a|w).

Implication from 1 to 2. To show that there are finitely many derivatives in a
regular transducer, suppose that f is a function that is recognised by a two-way
deterministic automaton with output. When the head of this automaton enters a
suffix of the input from the left in some state q, then several things can happen:
it might not return from that suffix as in the following picture

a a ab a a ab

or it might return from that suffix in another state p as in the following picture

a a ab a a ab

In either case, whether it returns or not, the automaton can output an empty
or nonempty string. Define the suffix type of a string to be the partial function

Q → (Q ∪ {“no return”}) × {“empty”,“nonempty”},

which says what happens for each state q. It is not difficult to see that f(x|y)
depends only on the suffix type of y. Since there are finitely many suffix types,
there are also finitely many right derivatives. For the left derivatives, an almost
symmetric argument works. The symmetry is broken because a two way automa-
ton begins in the leftmost position, so the notion of prefix type also needs to
account for the first time that a prefix is exited by the head.

Implication from 2 to 3.

Lemma 1. Let w1, . . . , wn and w, v be input strings. Then

fw = fv implies f(w|w1| · · · |wn) = f(v|w1| · · · |wn)

13

Proof. By using the origin information, the value

f(w|w1| · · · |wn)

can be obtained from the value

f(w|w1 · · ·wn)
def
= fw (w1 · · ·wn).

Lemma 2. The functions w 7→ fw and w 7→ f v are regular colourings.

Proof. The images of the two functions are finite by the assumption 2, which
says that there are finitely many left and right derivatives. By symmetry, we
only study the left derivatives fw . By Lemma 1, it follows that

fw = fv implies f(w|a|u) = f(v|a|u)

hods for every input letter a and every input string u. Since f(w|a|u) uniquely
determines f(wa|u), it follows that

fw = fv implies fwa = fwa

for every input letter a. This means that the set of left derivatives can be
equipped with a transition function as in a deterministic left-to-right automaton,
so that after reading a string w from the state fǫ , the automaton ends up in
state fw .

Thanks to Lemma 1 and its symmetric version for right derivatives,

(v, w) 7→ f(v|a|w)

factors through the function

(v, w) 7→ (fv , f w),

meaning that when a is fixed then equal results for the second function imply
equal results for the first function. The second function is a regular colouring by
Lemma 2. A function which factors through a regular colouring must itself be a
regular colouring, which finishes the proof of item 3 in Theorem 1.

Implication from 3 to 1. In the proof, we use a two-way model called a lookaround
transducer, which is defined as follows. The control is given by two deterministic
automata: a past automaton, which is left-to-right deterministic, and a future
automaton, which is right-to-left deterministic. There is a set of registers, with a
designated output register. The registers are updated by a register update func-
tion, which inputs a state of the past automaton, an input letter, and a state of
the future automaton, and outputs a sequence of register operations.

The output of the transducer on a string over the input alphabet is defined
as follows. Define the type of a position i in the input string to be: the state
of the past automaton after doing a left-to-right pass from the beginning of the

14

string up to and including position i− 1; the label of position i; the state of the
future automaton after doing a right-to-left pass from the end of the string up to
and including position i + 1. To each type, the register update function assigns
a register update. The automaton begins with all registers empty, and then it
executes the register updates corresponding to the types of all positions in the
string, read from left to right. After all of these register updates are executed,
the value of the function is found in the output register.

Lookaround transducers define exactly the regular transducers, also under
the origin semantics. For instance, it is not difficult to see that a lookaround
transducer can be simulated in mso.

To prove item 1 in Theorem 1, we construct a lookaround transducer based
on the assumption that the characteristic function of f is a regular colouring.
We begin by describing the registers. The transducer has a register for every left
block in every partial output f(x|y). A partial output f(v|w) can be interpreted
as a register valuation, which is defined on the left blocks of f(v|w) and unde-
fined on all other registers. The transducer is designed to satisfy the following
invariant: when it has finished processing a prefix v of an input vw, then its
register valuation is f(v|w).

It remains to define the past and future automata, as well as the register
update function. Our assumption, namely item 3, says that for every letter a in
the input alpahbet, the function

(v, w) 7→ f(v|a|w)

is a regular colouring. This means that there is a left-to-right deterministic au-
tomaton, which we can choose to be the past automaton, and a right-to-left
deterministic automaton, which we can choose to be the future automaton, such
that f(v|a|w) depends only on the state of the past automaton after reading v,
the input letter a, and the state of the future automaton after reading w from
right-to-left. The following lemma shows that the register udpate function can
be defined to satisfy the invariant.

Lemma 3. Based on f(v|a|w), one can construct a sequence of register opera-
tions which transforms the register valuation corresponding to f(v|aw) into the
register valuation corresponding to f(va|w)

Proof. For every left block b in f(va|w) there is a corresponding sequence b′ of
left and middle blocks in f(v|a|w). The register update required by the lemma
is defined according to this sequence: for every left block b in f(va|w), its value
is defined to be the concatenation, according to the sequence b′, of the values of
the left and middle blocks in f(v|aw) and f(v|a|w), respectively.

B Learning

In this part of the appendix, we prove Theorem 2, which says that a regular
string-to-string transducer with origin information can be learned using value

15

and equivalence queries in polynomial time (both number of queries and com-
putation time) in terms of the number of left and right derivatives, and the size
of the counterexamples given by the teacher.

By Theorem 1, learning a transducer with origin information f is the same
as learning the characteristic function

(v, w) 7→ f(v|a|w).

We simply use the Angluin algorithm for the language encoding of the charac-
teristic function. To be more exact, in order to get the optimal complexity we
use a variant of the language encoding, with the string w written in reverse,
namely the language

Lf
def
= {v#a#wR#f(v|a|w)}.

It is not difficult to see that the minimal deterministic automaton of the language
Lf is polynomial in the parameters from the statement of the lemma. The reason
why the string w is reversed is that the automaton for the right derivatives reads
its input from right to left.

Therfore, we can apply the Angluin algorithm to learn the language Lf . The
only technical issue is that the queries for learning Lf need to be translated into
the queries for learning f . A membership query

u
?
∈ Lf

corresponds to a value query for the transducer f , as follows. If the string w does
not have the right format – exactly three apperances of #, with exactly one let-
ter between the second and third appearance – then the learner can immediately
answer “no” without bothering the teacher. Otherwise, the learner extracts the
(v, a, w) stored in u, and asks for the value of f(vaw). Using the origin informa-
tion, learner computes the value f(v|a|w), and can thus determine if u belongs
to Lf . The correspondence between equivalence queries and counterexamples is
done in a similar fashion.

C First-order definable transducers

In this part of the appendix, we prove Theorem 5, which says that the following
conditions are equivalent for a regular string-to-string transducer f with origin
information.

1. it is definable by a first-order string-to-string transduction.
2. the colorings w 7→ fw and w 7→ f w are first-order definable.
3. for every letters a, b, the following is a first-order definable coloring

(u, v, w) 7→ f(u|a|v|b|w)

16

Implication from 1 to 2. By symmetry, it suffices to show that w 7→ fw is first-
order definable. Since there are finitely many possible values of fw , there is a
finite set U of test strings such that

fv = fw iff fv (u) = fw (u) for every u ∈ U.

It is therefore sufficient to show that for every test string, one can compute in
first-order logic, given w, the value of fw on the test string. This is done in the
following lemma.

Lemma 4. If f is first-order definable, then for every string v the function
w 7→ f(w|v) is first-order definable.

Proof. Define the colored version of an alphabet to be two disjoint copies: one
called the black version, and one called the red version. Define f ′ to be a trans-
ducer which inputs a string over the colored version of the input alphabet, and
works the same way as f , except that it outputs strings over the colored version
of the output alphabet, and the color of an output letter is inherited from the
corresponding input letter. Consider a function which inputs a string w over the
original input alphabet, and outputs a black version of w, followed by a red ver-
sion of v. We denote this function by w 7→ wv. It is not difficult to see that both
functions described above are first-order definable transducers, and since these
are closed under composition, it follows that w 7→ f ′(wv) is first-order definable.
For every possible value x of f(w|v), one can write a first-order formula ϕx such
that

f(w|v) = x iff f ′(wv) |= ϕx for every w.

The property on the right side of the equivalence can be checked by a first-order
formula working on w.

Implication from 3 to 1. For the moment, we skip the implication from 2 to 3,
which is the most difficult4. We begin by showing that, under the assumption of
item 3, the characteristic function of the transducer is first-order definable. For
every letter b of the input alphabet, function

(v, w′) 7→ f(v|a|w′b)

must be first-order definable since it factors through the function

(v, w′) 7→ f(v|a|w′|b|ǫ),

which is first-order definable. It follows that, as long as we know that w ends
with b, then we can use first-order logic to obtain f(v|a|w). If w is nonempty,
then it has finitely many possiblities for the last letter, and therefore, we can use

4 The implication from 1 to 3 can be proved in the same way as in Lemma 4. Therefore
the theorem with only items 1 and 3 would be easier to prove. Such a weaker theorem
would still give an effective characterisation of first-order definable transduction.

17

first-order logic to obtainw f(v|a|w) as long as we know that w is nonempty. The
same argument works when v is nonempty. The remaining case is when both v

and w are empty, which can be detected in first-order logic.
We are now ready to define the first-order transduction. Define the contri-

bution of a position in an input to be the subsequence (a string) of the output
which originates from that position. The contribution depends only on f(v|a|w),
where v is the part of the input before the position, a is the label of the position,
and w is the part of w after the position.

Let N be the maximal length of a contribution, ranging over all finitely
many choices of the value of f(v|a|w). The first-order interpretation defining f

will copy each position of the input at most N times.
Given an input a1 · · · an, the fist-order interpretation works as follows.

– The universe formula. For i ∈ {1, . . . , N}, the i-th copy of a position x

in the input string belongs to the universe of the output string if and only
if i is at most the length of the contribution of the x-th letter in the input
string. For fixed i, this can be determined by a first-order formula with a
free variable x, because the characteristic function is first-order definable.

– The label formulas. The label formulas are defined in the same way as
the domain formula, only using the label of the i-th contribution.

– The order formula. For every i, j ∈ {1, . . . , N}, we need a first-order
formula with two free variables x and y which says if, in the output, the i-th
letter in the contribution of position x comes before the j-th letter in the
contribution of position y. Assuming that x is before y, this information is
entirely determined by partial output

f(a1 · · · ax−1|ax|ax+1 · · · ay−1|ay|ay+1 · · · an),

which can be obtained using first-order logic thanks to the assumption. The
case when x comes after y is symmetric, and in the special case when x = y

the formula simply returns the value of i ≤ j.

Implication from 2 to 3. We say that a regular coloring g of n-tuples of strings
is aperiodic on coordinate i if for every strings

w1, w2, . . . , wi−1, x, y, z, wi+1, . . . , wn,

the following function is ultimately constant

i 7→ g(w1, . . . , wi−1, xy
iz, wi+1, . . . , wn).

A straightforward consequence of the Schützenberger-McNaughton-Papert theo-
rem is that a regular colouring is first-order definable if and only if it is aperiodic
on every coordinate. Therefore, item 3 will follow once we show that for every
letters a, b the function

(u, v, w) 7→ (u|a|v|b|w)

18

is aperiodic on every coordinate. We begin with the first coordinate. Let then
x, y, z, v, w be strings. We need to show that the function

i 7→ f(xyiz|a|v|b|w)

is ultimately constant. For fixed a, v, b, w, the function above factors through

i 7→ fxyiz ,

which must be ultimately constant by the assumption in item 2, and therefore it
must also be ultimately constant. A symmetric argument shows that the function
from the statement of the lemma is aperiodic on the third coordinate. We are
left with the second coordinate. Let then u, x, y, z, w be strings. We need to show
that the function

i 7→ f(u|a|xyiz|b|w) (1)

is ultimately constant.

Lemma 5. Suppose that

f(uv|w) = f(u|w) = f(u|vw)

Then the function

i 7→ f(u|vi|w)

is ultimately constant.

Before proving the lemma, we show how it completes the proof of the im-
plication from item 2 to item 3 in Theorem 5, and therefore also completes the
proof of the theorem itself. Our goal is to show that the function (1) is ultimately
constant. We will show that for sufficiently large j, the function

i 7→ f(u|a|xyj |yi|yjz|b|w) (2)

is ultimately constant. This will imply that the function

i 7→ f(u|a|xyi+2jz|b|w)

is ultimately constant, and therefore also (1) is ultimately constant. We claim
that the function (2) factors through the following functions

i 7→ f(u|a|xyj |yi+jzbw) (3)

i 7→ f(uaxyj |yi|yjzbw) (4)

i 7→ f(uaxyj+i|yjz|b|w). (5)

Indeed, the value of (2) is obtained from (4) by replacing the left part with the
first three parts in (3), and replacing the right part with the last three parts
in (5). The function (3) factors through

i 7→ f yi+jzbw

19

and is therefore ultimately constant by the assumption that w 7→ f w is aperiodic.
For the same reason, the function (5) is ultimately constant. We are only left with
showing that (4) is ultimately constant. If j is large enough, then by aperiodicity
of w 7→ fw , we see that

fuaxyj = fuaxyj+1 and f yjzbw = f yj+1zbw

which implies that the assumptions of Lemma 5 for

u = uaxyj v = y w = yjzbw.

The conclusion of the lemma shows that (4) is ultimately constant.

Proof (of Lemma 5). Consider the partial output f(u|w), which consists of left
and right blocks in alternation. This output can be viewed as a graph (which
consists of a single directed path), call it G0, which is illustrated in the following
picture.

The vertices (black dots in the picture) in the left column correspond to left
blocks, the vertices in the right column correspond to right blocks. There is a
directed edge from a block to the following block; the edges in the picture are
implicitly directed so that the path goes from top to bottom. Now consider the
graph, call it G1, which corresponds to the partial output f(u|v|w), which is
illustrated in the following picture.

The middle blocks are the vertices in the grey area. Thanks to the assumption

f(u|vw) = f(u|w),

the left blocks are visited in the same order as in G0. Using the other assumption,
the right blocks are visited in the same order as in G0. However, the combined
order on both left and right blocks might be different in G0 and G1.

Finally, consider the graph, call it Gi, which corresponds to

f(u|

i times
︷ ︸︸ ︷

v|v| · · · |v|w),

which is illustrated below for i = 5.

20

Notice that the nodes in the left part of the graph, which correspond to the left
blocks, are the same in every graph Gi, the same holds for the right blocks; also
the order on left blocks and the order on right blocks are the same. The middle
blocks of f(u|vi|w) correspond to maximal paths which are entirely contained
in the grey area. For a left or right block x and a number i, consider a vertex
σi(x) and a boolean value τi(x), defined as follows.

– σi(x) is the first left or right block after x in the graph Gi (if it exists).
– τi(x) says if the path in Gi from x to σi(x) passes through a vertex in the

grey area.

The sequence of blocks in f(u|vi|w) consists of the left and right blocks listed
according to the function σi, with a middle block appended after those blocks x

for which τi(x) says yes. To prove the lemma, it therefore suffices to show that
for large enough i, the function σi is always the same, likewise for τi.

Define loopi to be the same as σi, but with its domain restricted to blocks
x such that x and σi(x) have the same type (meaning both are left blocks, or
both are right blocks).

Lemma 6. The function loopi is the same for large enough i, likewise for τi.

Proof. If in the graph Gi there is a path which connects two blocks on the same
type and does not pass through blocks of the other type, then same path is
present in Gj . This means that if i < j and loopi(x) is defined, then loopi(x) =
loopj(x). Therefore, the functions loopi stabisilse eventually. A similar argument
works for τi.

The following lemma finishes the proof.

Lemma 7. The function σi can be uniquely determined from loopi.

Proof. As we have observed, the ordering on left blocks does not depend on i,
likewise for right blocks. In othcolourords, there is a unique ordering <L on left
blocks and a unique ordering <R on right blocks. The function σi is a successor
function (i.e. a function that maps every element, except one, to a successor so
that a linear order is formed) which satisfies the following conditions:

– the ordering induced by σi on left blocks is <L.
– the ordering induced by σi on right blocks is <R.
– σi extends loopi.
– σ − loopi maps left blocks to right blocks and vice versa.

It is not difficult to see that for every loopi, there is at most one such function.

This compeletes the proof of Lemma 5.

21

