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Abstract—The problem of multilabel classification has attracted great interest in the last decade, where each instance can be

assigned with a set of multiple class labels simultaneously. It has a wide variety of real-world applications, e.g., automatic image

annotations and gene function analysis. Current research on multilabel classification focuses on supervised settings which assume

existence of large amounts of labeled training data. However, in many applications, the labeling of multilabeled data is extremely

expensive and time consuming, while there are often abundant unlabeled data available. In this paper, we study the problem of

transductive multilabel learning and propose a novel solution, called TRAsductive Multilabel Classification (TRAM), to effectively assign

a set of multiple labels to each instance. Different from supervised multilabel learning methods, we estimate the label sets of the

unlabeled instances effectively by utilizing the information from both labeled and unlabeled data. We first formulate the transductive

multilabel learning as an optimization problem of estimating label concept compositions. Then, we derive a closed-form solution to this

optimization problem and propose an effective algorithm to assign label sets to the unlabeled instances. Empirical studies on several

real-world multilabel learning tasks demonstrate that our TRAM method can effectively boost the performance of multilabel

classification by using both labeled and unlabeled data.

Index Terms—Data mining, machine learning, multilabel learning, transductive learning, semi-supervised learning, unlabeled data
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1 INTRODUCTION

CONVENTIONAL classification approaches assume that
each instance is associated with only one class label

within a number of candidate classes. However, many real-
world applications often involve the scenario where each
instance can be assigned with a set of multiple labels. For
example, in image annotation, one image can be tagged with
a set of multiple words, such as urban, building, and road,
indicating the contents of the image [6], [27]. In bioinfor-
matics, one gene sequence can be associated with a set of
multiple functions, such as metabolism and protein synthesis
indicating the functions of the gene sequence within a cell’s
life circle [10]. In text categorization, one news article can
cover multiple aspects of an event, thus being assigned with
a set of multiple topics, such as economics and politics [24],
[28]. An effective classification model for these real-world
data should be able to adopt the multiple labels of each
training example and predict a label set, instead of one
single label, for each testing example. Motivated by these
challenges, the problem of multilabel learning has received
considerable attention in the last decade.

In the literature, multilabel learning has been extensively

studied [30]. Conventional approaches focus on supervised

settings, which require a sufficiently large amount of labeled

examples in order to train an accurate model. However, in
many real world applications, the labeling process is
extremely expensive and time consuming, especially with
multilabel data. Creating a large training data set, where each
example is labeled with a set of multiple labels within the
candidate classes, is usually infeasible in practice. For
example, in image annotation, human experts have to go
through the entire list of all candidate words in order to
decide the set of all possible tags for an image. It requires time,
efforts, and excessive resources to manually tag each image
with all its labels, and hence only a limited amount of labeled
images can be obtained in practice. Moreover, there are often
copious amounts of unlabeled images available from various
sources. Thus, it is much desired that the large amount of
unlabeled data can be effectively utilized together with the
limited amount of labeled data to improve the multilabel
classification performances. Transductive learning [32] is a
type of approaches to exploit unlabeled data in classification
processes. Transductive learning assumes all the testing data
are available, and the goal is to achieve better performances
on these testing data by exploiting the unlabeled testing data
in the classificationprocess. It has been shownuseful inmany
single-label classification tasks [17], [32].

Formally, the transductive multilabel classification pro-
blem corresponds to predicting the label sets of a group of
unlabeled instances simultaneously by utilizing the informa-
tion from both labeled and unlabeled data. Transductive
learning is particularly challenging in multilabel settings.
The reason is that, in the single-label case, conventional
transductive learning methods can be applied to propagate
class labels among the unlabeled data and predict each
unlabeled instance with the class label which has the highest
confidence. But in multilabel cases, each instance contains
multiple label concepts and the transductive classification
task corresponds to finding a label set for each unlabeled
instance within the space of label sets, i.e., the power set of all
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labels. The number of possible label sets is exponential to the
number of candidate labels, which is extremely large even
with a small number of candidate labels.

If we consider the transductive learning and multilabel
classification as a whole, the major research challenges on
transductive multilabel classification can be summarized
as follows:

1. Lack of labeled data. One fundamental problem in
transductive multilabel classification lies in the
labeling cost of the training data. Conventional
multilabel classification approaches focuses on su-
pervised settings [30]. The training of classification
models strictly follows the assumption that there
exists a large amount of labeled data. However,
many real-world multilabel classification problems
usually suffer from a lack of training data due to the
labeling costs. Thus, it is ineffective to only use the
limited training data and directly adopt existing
multilabel classification approaches. For example, in
Fig. 1, we show an illustrative example on multilabel
classification. In Fig. 1a, we have three labeled
instances with a large number of unlabeled in-
stances. Figs. 1b and 1c show that supervised
classification methods, either based upon combining
single-label methods or multilabel approaches, can
only make use of the information from labeled
instances to make predictions on the unlabeled data,
where the predictions are not quite effective when
the number of labeled data is small. To cope with
this issue, it is deemed that the information within
the unlabeled data should be exploited to facilitate
multilabel classification.

2. Multiple labels. Another problem in transductive
multilabel classification lies in the multiple labels of
each instance. Conventional transductive learning
approaches focus on single-labeled classification
problems [7], [38], [42]. The classification strategy
strictly follows the assumption that each instance has
only one label. However in multilabel classification
problem, each instance can be associated with a set of
labels within the power set of all labels. Directly
adopting conventional single-label transductive ap-
proaches may not be effective for multilabel classifi-
cation. For example, in Fig. 1d, we directly adopt a
single-label transductive classification approach by
treating each type of label set as a “class” (i.e., we
directly convent a multilabel classification problem
to a single-label classification problem with three
classes). Since we only have a limited number of
labeled instances, not every ground-truth label set
has a representative instance being labeled in the
training set, e.g., the label set {b, d}. Thus, the trivial
application of single-label transductive classification
method will not be able to predict new label sets like
{b, d} in the unlabeled data.

In this paper, we study the problem of transductive
multilabel classification and propose a novel solution,
called TRAsductive Multilabel Classification (TRAM), to
effectively assign multiple labels to each instance using both
labeled and unlabeled data. Different from supervised
multilabel classification methods, we estimate the label sets
of the unlabeled instances effectively by utilizing the
information from both labeled and unlabeled data. We first
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Fig. 1. An illustrative example for transductive multilabel classification problem.



formulate the transductive multilabel classification as an
optimization problem of estimating label concept composi-
tions. Then, we derive a closed-form solution to this
optimization problem and propose an effective algorithm
to assign label sets to the unlabeled instances. Empirical
studies on several real-world multilabel classification tasks
demonstrate that our TRAM method can effectively boost
the performance of multilabel classification by using both
labeled and unlabeled data.

The rest of this paper is organized as follows: Section 2
gives a brief summary of related work on multilabel
classification and transductive learning. In Section 3, we
formulate transductive multilabel classification as an
optimization problem, and then derive a closed-form
solution. Section 4 introduces label set prediction methods.
Evaluation metrics used in multilabel classification are then
briefly introduced and experiments of TRAM on real-world
multilabel classification tasks are reported in Section 6.
Finally, we give some concluding remarks in Section 7.

2 RELATED WORK

2.1 Multilabel Classification

Multilabel classification deals with the problem where each
example can belong to multiple different classes simulta-
neously. Traditional two class and multiclass problems can
both be cast as special cases of multilabel classification
problem. Thus, multilabel problems are inevitably more
difficult and complicated to solve than traditional single-
label problems (i.e., two class or multiclass problems). Until
now, multilabel classification problem has been studied by
a lot of researchers and many algorithms have been
developed to solve different real-world application tasks,
such as text categorization [8], [13], [20], [24], [28], [31],
bioinformatics [10], [34], scene classification [4], image or
video annotation [27].

Some multilabel learning algorithms are derived from
traditional learning techniques. One famous approach
proposed by Schapire and Singer, BOOSTEXTER [28], is
extended from the popular ensemble learning method
ADABOOST [11]. In the training phase, BOOSTEXTER main-
tains a set of weights over both training examples and their
labels, which will be incrementally enlarged if examples or
labels are hard to be predicted correctly. Elisseeff andWeston
[10] presented a kernel method RANK-SVM for multilabel
classification, by minimizing a loss function named ranking
loss. Experimental results on the Yeast gene functional
classification problem demonstrate its effectiveness. Zhang
and Zhou [35] extended the lazy learning algorithm, kNN, to
a multilabel version, Ml-KNN. It employs label prior
probabilities gained from each example’s k nearest neighbors
and useMaximum a Posteriori (MAP) principle to determine
labels. Extension of other traditional learning techniques
have also been studied, such as probabilistic generative
models [24], [31], decision trees [8], neural networks [34],
maximal margin methods [15], [20], maximum entropy
methods [14], [41], and ensemble methods [12].

Unlike the previous works that only consider the
correlations among different categories, Liu et al. [22]
present a semi-supervised multilabel classification method
to exploit unlabeled data as well as category correlations.
This approach is based on constrained non-negative matrix

factorization. Generally, in comparison with supervised
methods, semi-supervised methods can efficiently make
use of the information provided by unlabeled instances.
Zhou et al. [39], [40] proposed the MIML framework which
deals withmultilabel examples each is represented as a set of
instances. Sun et al. [29] employed hypergraph spectral
learning to solve multilabel classification problems.

2.2 Transductive Learning

The use of unlabeled data has been increasingly popular
these years in machine learning society. As in many
practical learning problems, we usually need to handle
situations when a small size of labeled data with a large
amount of unlabeled data is available. The unlabeled data
are usually much easier to obtain but quite expensive to
identify their labels. Roughly speaking, there are three main
paradigms of approaches to utilize unlabeled data [38], that
is, semi-supervised learning, transductive learning and
active learning. Semi-supervised learning approaches at-
tempt to automatically exploit unlabeled data usually
assuming the testing data are different from the unlabeled
data; transductive learning approaches attempt to auto-
matically exploit unlabeled data where the testing data are
exactly the unlabeled data; active learning approaches
query an oracle for the labels of specific instances in the
input space, in order to get better models while minimizing
the number of required queries.

In this paper, we focus on transductive learning.
Transductive learning was proposed by Vapnik [32] in the
1990s where all unlabeled points belong to the testing set.
Many transductive learning approaches have been pro-
posed. One famous approach is Transductive SVMs,
introduced by [32] and applied to text classification by
[17]. They exploit the structure in both training and testing
data for better positioning the maximum margin hyper-
plane. Another type of approaches are graph-based
methods, which define a graph with the nodes representing
both labeled and unlabeled instances, and edges reflect the
similarity of instances (e.g., [1], [37], [42]). Graph-based
approaches usually assume label smoothness over the
graph. One example is to exploit the structure of the entire
data set in search for mincuts [3] or for min average cuts
[18] on the graph.

3 PROBLEM FORMULATION

3.1 Transductive Multilabel Classification

Before presenting the transductive multilabel classification
model, we first introduce the notations that will be used
throughout this paper. Let D ¼ fxx1; . . . ; xxng denote the
entire data set, which consists of n instances (xxi 2 IRd). The
data set includes both labeled and unlabeled instances.
Without loss of generality, we assume the first nlðnl � nÞ
instances within D are labeled by fY1; . . . ; Ynl

g, where Yi � C
denotes the set of multiple labels assigned to xxi. Here, C ¼
fl1; . . . ; lmg is the set of all possible label concepts. For
convenience, we also denote L ¼ f1; . . . ; nlg as the index set
for the labeled instances and U ¼ fnl þ 1; . . . ; ng for the
unlabeled instances (n ¼ nl þ nu). The multilabel classifica-
tion task corresponds to finding an optimal label set Yi for
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each unlabeled instance xxi in the space of label sets PðCÞ,
i.e., the power set of C.

As reviewed in Section 1, previous approaches in
multilabel classification are focused on supervised settings.
In this paper, we address the multilabel classification
problem under the transductive setting. Our goal is to find
a simple and efficient way to improve the performance of
multilabel classification by exploiting both labeled and
unlabeled data.

The key issue of transductive multilabel classification is
how to predict a set of multiple labels for each unlabeled
instance based on a limited number of labeled examples
and a large number of unlabeled examples, which is a
nontrivial task due to the following problems:

P1. How to properly estimate the composition of label
concepts within the label set of an unlabeled instance
based upon information from both labeled instances
and all the other unlabeled instances? Intuitively, all
the unlabeled instances should be estimated simul-
taneously and similar instances should contain
similar label concepts in their label set. The question
is how to jointly and effectively estimate the
composition of label concepts on each instance
within the unlabeled data set.

P2. How to predict the label set for each unlabeled
instance based on the estimated label concept
composition with only a limited number of training
examples? Some types of the label sets may not even
have any representative labeled data in the training
set. The question is how to predict new label sets
based upon only limited examples of label sets in the
training data set.

In the following sections, we will introduce the optimi-
zation framework for transductive multilabel classification.
Then, we will derive our closed-form solution to the
optimization problem and propose an effective algorithm
to predict multiple labels for each unlabeled instance.

3.2 Basic Idea

We address Problem (P1) discussed as in Section 3.1 by
defining transductive multilabel classification as an opti-
mization problem of estimating the label composition for
each unlabeled instance. Our target is to first effectively
estimate the label concept composition for each unlabeled
instance and then make the multilabel predictions based
upon the estimated concept compositions. Here, we define
the label concept composition for a multilabel instance as
follows: suppose, we have a multilabel instance xxi, and its
label set Yi contains a set of multiple label concepts. For
example, if we have a text document with 20 percent of the
paragraphs writing about the label concept “politics” (l1),
50 percent of the paragraphs writing about “economics”
(l2), and the rest about “culture” (l3). Now we can say the
label set for xxi is fl1; l2; l3g and the label concept
composition is ðl1 : 0:2; l2 : 0:5; l3 : 0:3; l4 : 0; . . . ; lm : 0Þ.
Here, the label concept composition means that in the text
document, only 20 percent of the paragraphs were writing
about concept l1. Of course this is just an extreme example,
since in most cases there is no clear “fraction” of the
instance belonging to different labels. Indeed, the label

concept composition expresses the typicality of the
belongingness of the example to the labels, or the
probability for the example to have different labels.

Formally, we denote the concept composition for
instance xxi as ��i ¼ ð�i1; �i2; . . . ; �imÞ

>, where �ij represents
the fraction of label concept lj in instance xxi. Here, we
assume �ij � 0 and ��>i 1 ¼ 1 (8i). For convenience of
representation, we denote ��ðjÞ ¼ ð�1j; . . . ; �njÞ

> and illus-
trate our notations as follow:

��ð1Þ � � � ��ðjÞ � � � ��ðmÞ

# # #

�11 � � � �1j � � � �1m

..

. ..
. ..

.

�i1 � � � �ij � � � �im

..

. ..
. ..

.

�n1 � � � �nj � � � �nm

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

��>1

..

.

��>i

..

.

��>n

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

 xx1

 xxi

 xxn:

In multilabel classification problems, we only know the
label set of each training instance. There is no concept
composition information available explicitly. We can only
assume that, in a labeled training instance, all label
concepts in its label set have equal weights or importance
for concept composition, i.e., the ground-truth concept
composition ���i ¼ ð��i1; . . . ; ��imÞ

> for a labeled instance xxi is
defined as follow:

��ij ¼
1

jYij
; if lj 2 Yi;

0; otherwise;

8

<

:

ði 2 LÞ:

And our target is to estimate the concept compositions of all
the unlabeled instances based upon both labeled and
unlabeled data.

We assume that the optimal estimation of concept
compositions should have the following property: smooth-
ness, i.e., similar instances should have similar concept
compositions within their label sets. If an unlabeled
instance xxi is similar to a labeled instance xxj, the ��i should
be similar to ��j ¼ ���j. Moreover, if two unlabeled instances
are similar to each other, their concept compositions should
also be similar. Thus, it is deemed that we need the estimate
the concept compositions for all the unlabeled instances
jointly/simultaneously in order to find optimal solutions on
all the unlabeled data.

3.3 Optimization

In order to characterize the relation between similar
instances, we build a weighted neighborhood graph G ¼
ðV ;EÞ on both labeled and unlabeled instances. Each vertex
corresponds to an instance xxi, an edge is put between xxi and
xxz, iff xxi is among the k nearest neighbors of xxz or xxz is
among the k nearest neighbors of xxi.

In order to reduce computational cost of kNN search
among the labeled and unlabeled instances, we use kd-tree to
efficiently search for approximate k nearest neighbors for
each instance. Since kd-trees suffer seriously from the curse of
dimensionalitywhichwill degenerate to linear search in high
dimensions [33], in our work a multilabel dimensionality
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reduction approach (MDDM [36]) is used before using kd-tree

to construct kNN graphs, which finds a linear subspace from

the original features to maximize the dependence between

the label information and the subspace.
After the kNN search, we define a sparse n� n matrix W

indicating the similarities among neighboring instances

Wiz ¼
1

Zi

exp �
kxxi � xxzk

2

2�2

 !

; ifz 2 N i;

0; otherwise:

8

>

<

>

:

ð1Þ

where N i is the index set of ith instance’s k nearest

neighbors. Typically, k � k refers to the euclidean distance.

And parameter � is empirically estimated as the average

distance between instances. Zi ¼
P

z2N i
expð� kxxi�xxzk

2

2�2
Þ, thus

P

z Wiz ¼ 1 for instances.
Thus, based on the smoothness assumption in the

previous section, we propose the following general optimi-
zation framework to estimate the optimal alpha values for
unlabeled instances

min
��nlþ1

;...;��n

X

i2U

X

m

j¼1

�ij �
X

z2N i

Wiz�zj

 !2

s:t:
�ij � 0;

Pm
j¼1 �ij ¼ 1

�ij ¼ ��ij ð8i 2 LÞ:
ð2Þ

Here, the ��ij is defined as

��ij ¼
1

jYij
; if lj 2 Yi;

0; otherwise;

8

<

:

ði 2 LÞ:

The optimization objective is to minimize the weighted
differences among the concept compositions of similar/
neighboring instances. As for the labeled instances, the
concept compositions are “known,” and hence we put
constraints �ij ¼ ��ij in the optimization. In an optimal
solution to the above problem, it guarantees that the
estimated concept compositions of any pair of instances,
that are closely connected in the weighted neighborhood
graph G, will be similar. Intuitively, the estimation process
corresponds to the propagation of concept compositions
among instances along the graph G.

To simplify the optimization, we have

X

i2U

X

m

j¼1

�ij �
X

z2N i

Wiz�zj

 !2

¼
X

m

j¼1

Du ��ðjÞ �W��ðjÞ
� ��

�

�

�

2
;

where Du ¼ ð
0 0
0 Iu
Þðn�nÞ, and the vector ��ðjÞ ¼ ð�1j; . . . ;

�njÞ
> ¼ ½��Lj

��Uj
�. Then, the optimization problem in (2) can be

simplified into matrix form as

min
��ð1Þ;...;��ðmÞ

X

m

j¼1

DuðI �WÞ��ðjÞ
�

�

�

�

2
s:t:

��ðjÞ � 00;
X

m

j¼1

��ðjÞ ¼ 1

��Lj ¼ ����Lj:

8

<

:

ð3Þ

3.4 A Closed-Form Solution

We note that the objective function and the constraints in (3)
are convex. Therefore, a global minimizer exists [25]. Let
A ¼ I �W in (3). We partition the matrix A and ��ðjÞ vectors
into blocks according to the labeled and unlabeled data,

A ¼
ALL ALU
AUL AUU

� �

and ��ðjÞ ¼
��Lj
��Uj

� �

; ðj ¼ 1; . . . ;mÞ:

By ignoring the constraints ��ðjÞ � 0, the Lagrange function
for (3) becomes

Lð��; ��; ��Þ ¼
1

2

X

m

j¼1

DuA��ðjÞ
�

�

�

�

2

� ��>
X

m

j¼1

��Uj � 11

 !

�
X

m

j¼1

�j
>ð��Lj � ���LjÞ;

where �� � 00 and ��j � 00. The optimal condition for ��ðjÞ is

@L

@��ðjÞ
¼ A>D>uDuA��ðjÞ �

00

��

� �

�
�j
00

� �

¼ 0: ð4Þ

By summing over the optimal conditions in (4) for all �ðjÞ
ðj ¼ 1; . . . ;mÞ, we have

X

m

j¼1

ðA>D>uDuA��ðjÞÞ ¼

Pm
j¼1 �j
m��

� �

:

Then, using the constraints
Pm

j¼1 ��ðjÞ ¼ 1, we have

A>D>uDuA1 ¼

Pm
j¼1 �j
m��

� �

:

Notice that the A1 ¼ ðI �WÞ1 ¼ 1�W1 ¼ 0. So, the
following equations can be derived, � ¼ 0,

Pm
j¼1 �j ¼ 0

and then we substitute them into (4),

A>ULAUL A>ULAUU
A>UUAUL A>UUAUU

� �

��Lj
��Uj

� �

¼
�j
0

� �

:

Therefore, we get

A>UU
�

AUL��
j
L þAUU��

j
U

�

¼ 0: ð5Þ

Here, A>UU is guaranteed to be nonsingular for a connected
graph [2]. By substituting the constraints ��Lj ¼ ���Lj into (5),
the optimal alpha values of unlabeled instances for class j,
i.e., �Uj, can be calculated by the following linear equation:

AUU��Uj ¼ �AUL���Lj; ð6Þ

which is a sparse, symmetric linear system. The number of
equations equals to nu and the number of nonzero entries
is less than ðkþ 1Þ � nu. Here, the solution ��Uj is
guaranteed to exist and be unique with values guaranteed
to lie between 0 and 1. The proofs can be found in [25],
we put them in the Appendix section to make the paper
self-contained.

After the optimal alpha values are solved in (6), we will
show how to use the optimal alpha values to predict a set of
labels for each unlabeled instance in the following section.
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4 LABEL SET PREDICTION

In this section, we address Problem (P2) as discussed in
Section 3.1 to predict a set of labels for each unlabeled
instance based on the optimal alpha values. We propose a
supervised version of label set prediction method, and a
transductive version of label set prediction method. The
differences between these two versions are as follows: 1) In
the supervised version, we only make use of the labeled
instances to learn a threshold function and directly predict a
label set based upon the estimated alpha values. 2) In the
transductive version, we make use of both labeled and
unlabeled instances to estimate the cardinality of the label set
for each unlabeled instance. After the label set cardinality is
estimated, we sort all the labels based on instance’s concept
composition (i.e., the estimated alpha values), and predict
the label set with the top ranked labels with the estimated
label set cardinality.

4.1 Supervised Label Set Prediction via Linear
Regression

In this section, we propose a supervised label set predicting
mechanism based on the optimal alpha values on unlabeled
instances. More precisely, a label set predicting function
fð�ðxxÞÞ is modeled by a linear function fð�ðxxÞÞ ¼ P�ðxxÞ,
where �ðxxÞ ¼ ð�1ðxxÞ; . . . ; �mðxxÞÞ is the m-dimensional
vector of the optimal alpha values for unlabeled instance
xx, and P is a m�m linear transformation matrix. The
procedure used to learn the optimal linear transformation
matrix P is described as follows:

We perform the leave-one-out process using (6) on the
training set to calculate the estimated optimal alpha
values on each training instance, denoted by �̂ijs. By
combining �̂ij; ði 2 LÞ into a vector, the estimated alpha
outputs on every training instance can be solved by the
following equation:

�̂�Lj ¼ ðI �ALLÞ��Lj ¼WLL��Lj ðj ¼ 1; . . . ;mÞ: ð7Þ

Suppose, the output vector for instance i is �̂�i ¼ ð�̂i1;

�̂i2; . . . ; �̂imÞ
> ði 2 LÞ. The ground-truth labels for instance

i are known, i.e., Yi � C. Here, for convenience of
prediction, we denote the vector of ground-truth labels
as ~yyi 2 f�1; 1g

m. Then, transformation matrix P can be
calculated by minimizing the following sum-of-squares
error function with a regular term,

P ¼ argmin
P

X

i2L

k~yyi � P�̂�ik
2
2 þ �

X

j
kPj�k

2
2;

where Pj� denotes the jth row of matrix P . Then, the
solution is

P ¼ ~yyL�̂�
>ð�̂��̂�> þ �IÞ�1: ð8Þ

Here, � is used to avoid the singularity of the linear system
in (8). In practice, we set � as a very small number (it is set
to be 1� 10�7 in the experiment). Then, with the linear
transforms matrix P , we can predict label vector for
unlabeled instances from their optimal alpha values by

yyi ¼ signðP��iÞ ð8i 2 UÞ:

Where yyi ¼ ðyi1; . . . ; yimÞ
>. Then, the outputted label set

for the ith instance is Yi ¼ flj : yij ¼ 1g.

4.2 Transductive Label Set Prediction

In this section, we propose a transductive label set
predicting method based on the optimal alpha values.
Different from the supervised method in the previous
section, the transductive label set prediction method can
utilize information from both labeled and unlabeled data.

As we have already found the optimal alpha values for
any unlabeled instance xxi. A sorted list of all potential labels
for xxi can be find by ranking all candidate labels using their
alpha values in descending order. The larger the alpha
value is the more likely xxi will have the corresponding label.
For example, suppose there are three class labels l1; l2; l3,
and the optimal alpha values xxi are ð�i1 ¼ 0:25; �i2 ¼ 0:4;

�i3 ¼ 0:35Þ. The sorted list for instance xxi is ðl2; l3; l1Þ. Now
the only problem is how to decide how many labels should
be predicted into the label set of xxi using both labeled and
unlabeled data. As long as the number of labels on instance
xxi is decided, say �i, we can predict the top �i labels on the
sorted list as the label set of instance xxi.

Let �i denote the number of labels in the label set for
instance xxi. The �i values on the labeled instances are fixed
according to the ground truth of their label sets, i.e., �i ¼ jYij
(i 2 L). For unlabeled data, the number of labels (�i) should
be a non-negative integer, here we can relax the �i 2 IR and
�i � 0 (i 2 U). Then, by using similar smoothness assumption
in Section 3.2, we assume similar instances should have
similar number of labels.

Then, the optimal �i values can be solved by the
following optimization problem:

min
�1;...;�n

X

i2U

�i �
X

z2N i

Wiz�z

 !2

s:t: �i ¼ jYij ð8i 2 LÞ: ð9Þ

Similar to the optimization problem in Section 3.4, optimal
solutions of the (9) can be found by solving the following
linear equation:

AUU��U ¼ �AUL��L; ð10Þ

where �� ¼ ð�1; . . . ; �nÞ
> ¼ ½��L

��U
�. We can now use the optimal

solutions (�	i ) on each unlabeled data to predict its label set.
The number of labels for unlabeled instance xxi is predicted
as the closest integer to �	i .

The TRAM method is briefly summarized in Fig. 2. Note
the default label set prediction method in TRAM is the
transductive version described in Section 4.2. The TRAM
method using supervised version of label set prediction in
Section 4.1 is denoted as TRAMS .

5 COMPUTATIONAL COMPLEXITY

In this section, we briefly analyze the computational
complexity of TRAM as follows: beyond the computational
cost of MDDM dimensionality reduction (Oðm � nÞ) in the
training step and the neighborhood graph searched by kd-
tree (Oðn lognÞ) in the testing step, the alpha solutions and
the label learning procedure of TRAM involve the following
costs: in the worst case, the least squares solution of the
linear systems in (6) requires Oðn3

u þ nl � nuÞÞ operations
when all data points are connected in a full graph
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(i.e., k ¼ n). However, this cost can be significantly reduced
using a k-nearest neighbor graph (k� n) which leads
directly to a sparse matrix (AUU ). Thus, the linear systems
are large, sparse, and symmetric, many good solvers can be
employed, e.g., direct methods (e.g., LU factorizations), or
iterative solvers [16]. In practice, “the cost of computing the
sparse LU factorization depends in a complicated way on
the size of AUU , the number of nonzero elements, its sparsity
pattern, but is often dramatically smaller than the cost of a
dense LU factorization. In many cases the cost grows
approximately linearly with nu, when nu is large. This
means that when AUU is sparse, we can solve AUU��Uj ¼ bb

very efficiently, often with an order approximately nu” [5].
For simplicity, we have used QR factorization designed

for sparse matrix in MATLAB to compute the R factor very
cheaply, which avoids the expensive computation of an
explicit Q, details are described in [23]. Then, for label
learning procedure of TRAM, the computation of �̂

j
L and

transforms matrix P costs Oðm � nlÞ and Oðnl �mþm3Þ,
respectively.

The computational complexity of RANK-SVM [10] is
currently of the order Oðm � nl

2Þ in each iteration for
training. Ml-KNN [35] as a lazy learning algorithm requires
(Oðn2

l þ nl �mÞ) for training, and Oðnl � nu þ nu �mÞ for
testing. BOOSTEXTER [28] requires Oðnl �mÞ for each
iteration round in training with additional cost for the
training of base learners. CNMF [22] as a transductive
learning method requires Oðn2Þ for similarity calculation
between samples and Oðm � nuÞ in each iteration for testing.

6 EXPERIMENTS

In this section, we show the performance of TRAMon several
real-world multilabel classification tasks. Table 1 sum-
marizes the characteristics of the data sets used. For
comparison, we also compare with several general-purpose
multilabel classification algorithms, including CNMF [22],
BOOSTEXTER [28], RANK-SVM [10], and Ml-KNN [35], which
are applicable to various multilabel problems, and represent
the state-of-the-art techniques in multilabel classification:

1. TRAM. The proposed algorithm TRAM, i.e., a
transductive multilabel classification algorithm via
label set propagation (implementation in MATLAB).
For label set prediction step, the default setting is
using transductive version of label set prediction.
TRAM with supervised version of label set predic-
tion is also compared, denoted by TRAMS .

2. CNMF. The CNMF [22] is a semi-supervised multi-
label classification algorithm by constrained non-
negative matrix factorization. The key assumption
behind CNMF is that two instances tend to have
large overlap in their assigned class memberships if
they share high similarity in their input patterns. By
minimizing the difference between inputs similarity
with class label overlaps, CNMF can determine the
labels of unlabeled data.

3. BOOSTEXTER. The BOOSTEXTER [28] (implementa-
tion in C) is a Boosting style multilabel ranking
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Fig. 2. The TRAM algorithm.



system, which has been shown with excellent
performance in previous studies, especially on text
categorization tasks.

4. RANK-SVM. The RANK-SVM [10] (implementation in
MATLAB) is an SVM style multilabel classification
algorithm which minimizes ranking loss directly
and has also exhibited excellent performance in
previous studies.

5. ML-KNN. The ML-KNN [35] (implementation in
MATLAB) is a kNN style multilabel classification
algorithm which often outperforms other existing
multilabel algorithms.

Parameters are used in their default settings unless
otherwise specified. For BOOSTEXTER,1 the number of
boosting rounds is set to 500 because on all data sets
studied in this paper, the performance of BOOSTEXTER will
not significantly change after the specified boosting rounds;
For RANK-SVM the best parameters reported in the
literature [10] are used; For CNMF, the best parameters in
[22] are used.

Our TRAM implementation is in MATLAB and the size of
neighbors k is 10. Moreover, the influence of TRAM’s
parameters will be discussed in Section 6.7.

6.1 Evaluation Metrics

Multilabel classification systems require much more
complicated evaluation criteria than traditional single-
label systems. In this section, we briefly summarize the
criteria used for performance evaluation from various
perspectives. Since our approach not only produces a
ranked list of class labels, but also produces a predicted
label set, in this paper, we employ two sets of evaluation
metrics to evaluate the performance of label ranking as
well as the label set prediction. Adopting the same
notations as used in Section 3, for a test set DU ¼ fðxxlþ1;
Ylþ1Þ; . . . ; ðxxn; YnÞg, the following multilabel evaluation
criteria are used in this paper, which have been used in
[10], [28], [34], and [35].

Label Set Prediction Performances. The first set of evalua-
tion criteria are concerning algorithm’s performance on
label set prediction for each instance. It is based on
multilabel classifier’s label set prediction function
h : IRd ! PðCÞ, assume hðxxiÞ be the set of labels predicted
by a multilabel classifier for instance xxi.

1. MicroF1. Evaluates both microaverage of Precision
and micro average of Recall with equal importance.

MicroF1 ¼
2�

P

i2U jhðxxÞ \ Yij
P

i2U jhðxxÞj þ
P

i2U jYij
:

The bigger the value, the better the performance.
This criterion has been used in [19], and [22].

2. Hamming loss. Evaluates how many times an
instance-label pair is misclassified.

HammingLossðh;DUÞ ¼
1

jDU j

X

i2U

1

m
jhðxxiÞ�Yij;

where � stands for the symmetric difference of two

sets. The smaller thevalue, the better theperformance.

Label Ranking Performances. The second group of evalua-
tion criteria are concerning algorithm’s label ranking
performance for each instance, they are based on the real-
valued output function f : IRd � C ! IR of each algorithm.
For TRAM method, the optimal alpha values are used as the
real-valued outputs.

3. Ranking loss. Evaluates the average fraction of label
pairs that are not correctly ordered.

RankLossðf;DUÞ ¼
1

jDU j
X

i2U

1

jYikYij
jfðy1; y2Þ 2 Yi � Yijfðxxi; y1Þ 
 fðxxi; y2Þgj;

where the Yi denotes the complementary set of Yi in C.
The performance is perfect when RankLossðfÞ ¼ 0.
The smaller the value, the better the performance.

4. Average Precision. Evaluates the average fraction of
labels ranked above a particular label y 2 Yi which
actually is in Yi

AvePrecðf;DUÞ

¼
1

jDU j

X

i2U

1

jYij

X

y2Yi

jfy0 2 Yijrfðxxi; y
0Þ 
 rfðxxi; yÞgj

rfðxxi; yÞ
:

The bigger the value, the better the performance.

Note that all the criteria evaluate the performance of
multilabel classification systems from different aspects.
Usually, few algorithms could outperform another algorithm
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Summary of Experimental Data Sets



on all those criteria. In order to make our evaluation criteria
more comprehensive, we will use the value of 1�AvePrec
and 1�MicroF1 to replace the originalAverage Precision and
MicroF1. Thus, under all evaluation criteria, smaller values
are always indicating better performances.

6.2 Application to Automatic Image Annotation

We test the automatic image annotation task on Corel data
set used in [9]. The original data set contains 5,000 images
each was segmented into several regions and tagged with
several words. The regions of similar features are
clustered into 500 clusters, known as blobs [9]. Then, each
image is represented by a binary vector of these 500 blobs.
The average annotated words for each image is 3.5. We
remove the words that occur less than 100 times, and
obtain 4,800 images and 43 annotation words.

This data set is partitioned randomly into labeled/
unlabeled data sets according to certain ratios. In detail, we
randomly draw from 1 to 9 percent of the data as labeled
training examples and randomly selection 50 percent of the
data from the remaining as unlabeled examples. For instance,
assuming the data set contains 4,800 examples and the label
rate is 1 percent, we randomly draw 48 examples as labeled
training examples; and 2,400 examples from the remaining
data set as unlabeled testing examples. Thirty runs of

experiments are conducted under every label rate; in each
run, algorithms are evaluated on random data set partitions.
We also compared against the RANK-SVM algorithm [10], but
on the ImageAnnotation data set alone, the algorithmdid not
get good results.

The results of multilabel classification on image annota-
tion task are shown in Fig. 3.2 In label set prediction
performances, TRAM with transductive version of label set
prediction gets much better performances on MicroF1 than
other algorithms including the supervised version of TRAM
on label set prediction (i.e., TRAMS). It is not strange that
the classic multilabel classification methods such as Ml-
KNN could not work well in this setting since they were
designed for supervised scenarios where there are lots of
labeled training examples. When the number of labeled
data is extremely small, the supervised version of TRAM
becomes unstable in MicroF1 performance, since TRAMS

only use labeled data to train the label set prediction
function, and the supervised information in labeled data
can be weak in these cases. Although TRAMS gets better
performance in Hamming Loss than TRAM, this may be
explained by the fact that Hamming Loss treats two types of
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Fig. 3. Results on automatic image annotation task under different label rates. The lower the value, the better the performance. Along with the
curves, we also plot the mean � std on each point for different random data set partitions.

2. Evaluation results of Hamming Loss and MicroF1 are not available for
CNMF.



misclassification errors (false alarm and missing prediction)
equally, which is quite similar to the sum-of-squares error
function in TRAMS’s label set prediction step. In image
annotation task each image usually has a small number of
labels compared with the large number of classes. In other
words, the label distribution on each class is quite
imbalanced. Classification methods like TRAMS with better
Hamming Loss and bad MicroF1 are biased to avoid
predicting any label for each instance. TRAMS obtains
bad Micro-Recall performance and good Micro-Precision
performance. Since MicroF1 is treating both Micro-Precision
and Micro-Recall equally, MicroF1 can better evaluated the
label set prediction performances in this case.

On evaluation criteria concerning label ranking, i.e.,
ranking loss and average precision, TRAM’s performances

are better than other methods. TRAM can make use of both

labeled and unlabeled data to get an optimal set of alpha
values on each unlabeled instance, which may significantly

help to improve the ranking performance especially when
there are not sufficient but reasonable size of training data.

6.3 Application to Yeast Gene Functional Analysis

The task of the yeast gene functional analysis has been

studied as a multilabel classification problem inmanyworks

(e.g., [10] and [26]). Following [10], we aim at predicting the
functional classes in the gene of yeast Saccharomyces cerevisiae.
These functional classes are structured into four levels of
hierarchies.3 As in [10], only top level hierarchy is consid-
ered. The whole data set has 2,417 instances of genes and
14 possible class labels. Each of the gene is represented by a
103D vector and the average number of class labels is 4:24�
1:57 for each instance.

The data set is partitioned randomly into labeled/
unlabeled data sets according to certain ratios, the same
setup as in the automatic image annotation task. Thirty runs
of experiments are conducted under every label rate; in
each run, algorithms are evaluated on random data set
partitions and the average performance is recorded.

The results of multilabel classification on Yeast Gene
Functional Analysis are shown in Fig. 4. For label set
prediction performances, TRAM gets better performances
than the other methods on MicroF1, while getting
comparable performances with other methods on Ham-
ming Loss. For label ranking performances, TRAM out-
performs the other methods on all evaluation criteria and
all label rates.
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Fig. 4. Results on yeast gene function analysis task with different label rates. The lower the value, the better the performance. Along with the curves,

we also plot the mean � std on each point for different random data set partitions.

3. Details in http://mips.gsf.de/proj/yeast/catalogues/funcat/.



6.4 Application to Automatic Web Page
Categorization

The web page categorization task has been studied in [20],
[31], [35]. In this experiment, our task is to classify web
pages in a collection of eleven data subsets.4 The web pages
were collected from the “yahoo.com” domain, represented
by the form of “Bag-of-Words,” i.e., each dimension of the
feature vector represents the number of times a word
appearing in the web page. Each data subset corresponds to
a top-level category (e.g., “Entertainment,” “Education,”
etc.), which contains 2,000 web pages in the training set and
3,000 web pages in the test set. Each web page is assigned to
several second-level categories and may belongs to multiple
categories simultaneously.

The web page data subsets are briefly summarized in
Table 2. Details of these data subsets can also be found in [35].
Comparing with the data sets used in previous tasks, the
number of instances and size of vocabulary size in these
11 data subsets are much larger. Furthermore, a larger
percentage of instances (about 30 to 40 percent) are assigned
to multiple labels. Thus, the data subsets used in automatic
webpagecategorization tasksaremoredifficult to learn from.

The same experiment settings are used to randomly
partition the data subset into labeled/unlabeled sets accord-
ing to different label rates. To make a more meaningful
comparison among 11 data subsets, we used the geometrical
means of the evaluation values across the 11 data subsets
instead of simply using the average values. Such that, only
the algorithms that have good performances over all 11 data
subsets can have good performance values after the
geometrical means.

The results of multilabel classification on automatic web
page categorization task are shown in Fig. 5. For label set
prediction performances, TRAM has better MicroF1 results
after the geometrical mean over 11 data subsets on this
task, in other words, TRAM achieves better performances
on average over 11 data subsets. On web page categoriza-
tion task, the average number of labels on each webpage is
much smaller than the number of classes. Thus, TRAM’s
performance on Hamming Loss is not as good as TRAMS ,
but the difference is not quite significant. For label ranking
performances, TRAM gets better or comparable perfor-
mances than other methods after the geometrical mean on
11 data subsets.

6.5 Application to Text Categorization

In this Section, we perform text categorization using RCV1-
v2 data set [21]. The original data set has 804,414 documents,
and 47,236 features. We use a benchmark subset, rcv1v2
(topics;subset),5 which contains 6,000 documents. We
removed the words that occur less than 200 times and topics
with less than 50 positive examples, thus obtain 662 words
and 54 topics. Note that the number of examples in this
subset (6,000) is much larger than in the previous tasks in
this paper. Here, the dimensionality (662) is also very high.

The results of multilabel classification on automatic text
categorization task are reported in Fig. 6. The performance
of TRAM and BOOSTEXTER get best performances on label
set prediction and label ranking. BOOSTEXTER is originally
designed and one of the state-of-the-art multilabel classifi-
cation methods on text data. Although on some label rates,
BOOSTEXTER gets better performances than TRAM, but
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TABLE 2
Data Subsets Used in the Automatic Web Page Categorization Task

“MDoc%” denotes the percentage of web pages belonging multiple categories, and “#AveLabel” represents the average number of labels for each
web page.

4. Data set available at http://www.kecl.ntt.co.jp/as/members/ueda/
yahoo.tar.gz.

5. Data set available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/multilabel.html.



TRAM is still getting better performances than the other
comparing methods on MicroF1, Ranking Loss, and
Average Precision.

6.6 Application to Natural Scene Classification

The last multilabel task studied in this paper is natural
scene classification. The data set is relatively small, and
consists of 2,400 natural scene images belonging to different
classes, which is also used in [4]. Following [4], we convert
each color image to the CIE Luv space, where the euclidean
distances closely correspond to the color differences
perceived by human. Then, the image is divided into 7�
7 blocks using grids of equal width, and in each block the
first and second moments of each color band are calculated,
which is equal to resizing the image to a low resolution and
calculating simple texture features. Thus, each image is
represented as a feature vector with 7� 7� 3� 2 ¼ 294-
dimensions. The percentage of images that have multiple
labels is over 22 percent. The same setting as in the previous
experiments are used to randomly partition the data set into
labeled/unlabeled sets according to different label rates.

The results of multilabel classification on natural scene
classification task are reported in Fig. 7. TRAM is among the
most accurate methods on both label set prediction and
label ranking. Since this data set is relatively small, the

number of labeled data set is smaller than all the other
tasks. The TRAM’s performances are still stable as the
labeled instances decrease to small label rates.

6.7 The Influence of Parameters

As observed in previous sections, when TRAM is used with
the same parameters in all the multilabel tasks, it can all
achieve satisfactory classification performances as accurate
as the others. In this section, we analyze the influence of
parameters in TRAM.

The first exploration is about the number of nearest
neighbors during the instance graph construction. The
experiment is based on automatic image annotation task.
We randomly partition the data set into labeled and
unlabeled data with 5 percent label rate. The experiment
result of TRAM is reported in Table 3, when the number of
nearest neighbor during the graph construction varies from 8
to 12. The value following “�” gives the standard deviation
and the best result on eachmetric is shown in bold face.With
respect to above configurations, Table 3 shows that the
number of nearest neighbors used in graph construction step
does not significantly affect TRAMs performance. Therefore,
all the results of TRAMshown in this paper are obtainedwith
the parameter k set to be the moderate value of 10.
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Fig. 5. Results on automatic web page categorization task with different label rates. Note that the values in each figure are reported as the

geometrical means across the 11 data subsets.



Besides the number of nearest neighbor, another para-
meter is about the number of dimensions in the subspace
used by MDDM. Note that due to the curse of the
dimensionality, the similarities directly calculated based on
distances between instances in the input space may be
unreliable, especially when these similarities are the key
parameters for the TRAM model. A simple, but often very
effective, way of dealing with high-dimensional data is to
reduce the number of dimensions, by finding a subspace
from the input features that is most relevant to label
information. Therefore, we need to utilize MDDM before
the graph construction among instances. In order to verify
this assumption, the results under different percentage of
dimensions in the preprocess stage are reported in Fig. 8. The
experiment is based on automatic image annotation task, and
results on other tasks are similar to the case in this task.

Fig. 8 shows that on automatic image annotation task, the
MicroF1 and Ranking Loss of TRAM are significantly im-
proved by introducing the dimensionality reduction
(MDDM) before constructing the instance graph. TRAM’s
best performance are more likely to appear at the relatively
low percentage of dimensions. Nonetheless, the number of
dimensions does not have to be prespecified, which can
automatically be determined by setting MDDM’s threshold
parameter thr as preserving 99.99 percent of the eigenvalues.

7 CONCLUSION

In this paper, we propose TRAM, a transductive multilabel

classification method by label set propagation. At first, we

formulate the task as an optimization problem which is able

to exploit unlabeled data to obtain an effective model for

assigning appropriate multiple labels to instances. Then, we

develop an efficient algorithm which has a closed-form

solution for this optimization problem. Empirical studies on

a broad range of real-world tasks demonstrate that our

TRAM method can effectively boost the performance of

multilabel classification by using unlabeled data in addition

to labeled data.

APPENDIX

Here, we study the properties of the linear system solutions

for (5) and (6). For convenience of study, we combine the (5)

with the constrains for labeled data as

AUU��Uj þAUL��Lj ¼ 0; ð11Þ

��Lj ¼ ���Lj; ð12Þ
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Fig. 6. Results on text categorization task under different label rates. The lower the value, the better the performance. Along with the curves, we also

plot the mean � std on each point for different random data set partitions.



which is equivalent to

~A��ðjÞ ¼ bbðjÞ; j ¼ 1; . . . ;m; ð13Þ

where

~A ¼
AUU AUL
0 I

� �

and bbðjÞ ¼
00

���Lj

� �

Then, we show that the solution of ~A��ðjÞ ¼ bbðjÞ automati-

cally satisfies the bilateral constrains 0 
 ��ðjÞ 
 1.
Instance i and z are connected by an edge if and only

if they are a neighbor of each other, and Wiz and Wzi are

both positive. Let � ¼ ð�iÞ be a discrete function defined

on U
S

L, then the (strong) discrete maximum principle says

that � can only attain its maximum in L, unless � is

constant in U
S

L. It is similar for the minimum principle.

KONG ET AL.: TRANSDUCTIVE MULTILABEL LEARNING VIA LABEL SET PROPAGATION 717

Fig. 7. Results on natural scene classification task with different label rates. The lower the value, the better the performance. Along with the curves,

we also plot the mean � std on each point for different random data set partitions.

TABLE 3
Results (Mean � Std) of TRAM with Different Number of Nearest Neighbors Considered in the Instance Graph Construction Step on

Automatic Image Annotation Task ( “# ” Indicates “the Smaller the Better,” and “" ” Indicates “the Larger the Better”)



If there are more than one connected components in U,
we can apply the principle to each component indepen-
dently. We also assume that each point in L is a neighbor
of some instance in U.

Theorem 1. The solution to ~A�� ¼ bb satisfies the discrete
maximum principle.

Proof. Suppose that the maximum of � can be attained at an
interior point i0 2 U . Then, the i0th equation of (13) is
ð ~A��Þi0 ¼ 0 since bi0 ¼ 0. Notice that the i0th row of ~A is the
same as the i0th row of A ¼ I �W . Therefore,

ð ~A��Þi0 ¼ �i0 �
X

z2N i0

Wi0z�z ¼ 0;

or

�i0 ¼
X

z2N i0

Wi0z�z:

Note thatWi0z > 0 for z 2 N i0 and
P

z2N i0
Wi0z ¼ 1, which

means the maximum value �i0 equals a weighted average
of {�z : z 2 N i0 }, thus for all z 2 N i0 , �z is also the
maximum. Similarly, since the domain U is connected,
we can conclude that the values of � in U and the neighbor
of U which coversL are all maximum. This shows that if �
has an interior maximum, then � is constant in U

S

L. tu

Corollary 1. The solution to ~A�� ¼ bb satisfies the the bilateral
constraints 00 
 �� 
 1, if f�i ¼ 0 : i 2 Lg and f�i ¼ 1 : i 2
Lg are nonempty sets.

Proof. According to maximum principle, �z 
 maxi2L�i ¼ 1

for all z 2 U. Similarly, we have � � mini2L�i ¼ 0.
Therefore, 0 
 �z 
 1 for all z 2 U. tu
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