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Abstract

We develop a technique for deriving data-dependent error bounds for transductive
learning algorithms based on transductive Rademacher complexity. Our technique is based
on a novel general error bound for transduction in terms of transductive Rademacher com-
plexity, together with a novel bounding technique for Rademacher averages for particular
algorithms, in terms of their “unlabeled-labeled” representation. This technique is relevant
to many advanced graph-based transductive algorithms and we demonstrate its effective-
ness by deriving error bounds to three well known algorithms. Finally, we present a new
PAC-Bayesian bound for mixtures of transductive algorithms based on our Rademacher
bounds.

1. Introduction

Alternative learning models that utilize unlabeled data have received considerable attention
in the past few years. Two prominent models are semi-supervised and transductive learn-
ing. The main attraction of these models is theoretical and empirical evidence (Chapelle,
Schölkopf, & Zien, 2006) indicating that they can often allow for more efficient and signifi-
cantly faster learning in terms of sample complexity. In this paper we support the theoretical
evidence by providing risk bounds for a number of state-of-the-art transductive algorithms.
These bounds utilize both labeled and unlabeled examples and can be much tighter than
the bounds relying on labeled examples alone.

Here we focus on distribution-free transductive learning. In this setting we are given a
labeled training sample as well as an unlabeled test sample. The goal is to guess the labels of
the given test points as accurately as possible1. Rather than generating a general hypothesis
capable of predicting the label of any point, as in inductive learning, it is advocated by
Vapnik (1982) that we should aim in transduction to solve an easier problem by transferring
knowledge directly from the labeled points to the unlabeled ones.

Transductive learning was already proposed and briefly studied more than thirty years
ago by Vapnik and Chervonenkis (1974), but only lately has it been empirically recognized
that transduction can often facilitate more efficient or accurate learning than the tradi-
tional supervised learning approach (Chapelle et al., 2006). This recognition has motivated
a flurry of recent activity focusing on transductive learning, with many new algorithms

1. Many papers refer to this model as semi-supervised learning. However, the setting of semi-supervised
learning is different from transduction. In semi-supervised learning the learner is given randomly drawn
training set consisting of labeled and unlabeled examples. The goal of the learner is to generate a
hypothesis providing accurate predictions on the unseen examples.
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and heuristics being proposed. Nevertheless, issues such as the identification of “univer-
sally” effective learning principles for transduction remain unresolved. Statistical learning
theory provides a principled approach for attacking such questions through the study of
error bounds. For example, in inductive learning such bounds have proven instrumental in
characterizing learning principles and deriving practical algorithms (Vapnik, 2000).

In this paper we consider the classification setting of transductive learning. So far,
several general error bounds for transductive classification have been developed by Vap-
nik (1982), Blum and Langford (2003), Derbeko, El-Yaniv, and Meir (2004), El-Yaniv and
Pechyony (2006). We continue this fruitful line of research and develop a new technique
for deriving explicit data-dependent error bounds. These bounds are less tight than im-
plicit ones, developed by Vapnik and by Blum and Langford. However the explicit bounds
may potentially be used for model selection and guide the development of new learning
algorithms.

Our technique consists of two parts. In the first part we develop a novel general error
bound for transduction in terms of transductive Rademacher complexity. While this bound
is syntactically similar to known inductive Rademacher bounds (see, e.g., Bartlett &Mendel-
son, 2002), it is fundamentally different in the sense that the transductive Rademacher com-
plexity is computed with respect to the hypothesis space that can be chosen after observing
unlabeled training and test examples. This opportunity is unavailable in the inductive
setting where the hypothesis space must be fixed before any example is observed.

The second part of our bounding technique is a generic method for bounding Rademacher
complexity of transductive algorithms based on their unlabeled-labeled representation (ULR).
In this representation the soft-classification vector generated by the algorithm is a product
Uα, where U is a matrix that depends on the unlabeled data and α is a vector that may
depend on all given information, including the labeled training set. Any transductive al-
gorithm has infinite number of ULRs, including a trivial ULR, with U being an identity
matrix. We show that many state-of-the-art algorithms have non-trivial ULR leading to
non-trivial error bounds. Based on ULR representation we bound Rademacher complexity
of transductive algorithms in terms of the spectrum of the matrix U in their ULR. This
bound justifies the spectral transformations, developed by Chapelle, Weston, and Schölkopf
(2003), Joachims (2003), Johnson and Zhang (2008), that are commonly done to improve
the performance of transductive algorithms. We instantiate the Rademacher complexity
bound for the “consistency method” of Zhou et al. (2004), the spectral graph transducer
(SGT) algorithm of Joachims (2003) and the Tikhonov regularization algorithm of Belkin,
Matveeva, and Niyogi (2004). The bounds obtained for these algorithms are explicit and
can be easily computed.

We also show a simple Monte-Carlo scheme for bounding the Rademacher complexity of
any transductive algorithm using its ULR. We demonstrate the efficacy of this scheme for the
“consistency method” of Zhou et al. (2004). Our final contribution is a PAC-Bayesian bound
for transductive mixture algorithms. This result, which is stated in Theorem 4, is obtained
as a consequence of Theorem 2 using the techniques of Meir and Zhang (2003). This result
motivates the use of ensemble methods in transduction that are yet to be explored in this
setting.

The paper has the following structure. In Section 1.1 we survey the results that are
closely related to our work. In Section 2 we define our learning model and transductive
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Rademacher complexity. In Section 3 we develop a novel concentration inequality for func-
tions over partitions of the finite set of points. This inequality and transductive Rademacher
complexity are used in Section 4 to derive uniform risk bound, which depends on trans-
ductive Rademacher complexity. In Section 5 we introduce a generic method for bounding
Rademacher complexity of any transductive algorithm using its unlabeled-labeled represen-
tation. In Section 6 we exemplify this technique to obtain explicit risk bounds for several
known transductive algorithms. Finally, in Section 7 we instantiate our risk bound to
transductive mixture algorithms. We discuss directions for future research in Section 8.
The technical proofs of our results are presented in Appendices A-I.

Preliminary (and shorter) version of this paper has appeared in the Proceedings of the
20th Annual Conference on Learning Theory, page 157–171, 2007.

1.1 Related Work

Vapnik (1982) presented the first general 0/1 loss bounds for transductive classification.
His bounds are implicit in the sense that tail probabilities are specified in the bound as
the outcome of a computational routine. Vapnik’s bounds can be refined to include prior
“beliefs” as noted by Derbeko et al. (2004). Similar implicit but somewhat tighter bounds
were developed by Blum and Langford (2003) for the 0/1 loss case. Explicit PAC-Bayesian
transductive bounds for any bounded loss function were presented by Derbeko et al. (2004).
Catoni (2004, 2007) and Audibert (2004) developed PAC-Bayesian and VC dimension-
based risk bounds for the special case when the size of the test set is a multiple of the
size of the training set. Unlike our PAC-Bayesian bound, the published transductive PAC-
Bayesian bounds hold for deterministic hypotheses and for Gibbs classifiers. The bounds of
Balcan and Blum (2006) for semi-supervised learning also hold in the transductive setting,
making them conceptually similar to some transductive PAC-Bayesian bounds. General
error bounds based on stability were developed by El-Yaniv and Pechyony (2006).

Effective applications of the general bounds mentioned above to particular algorithms
or “learning principles” is not automatic. In the case of the PAC-Bayesian bounds several
such successful applications were presented in terms of appropriate “priors” that promote
various structural properties of the data (see, e.g., Derbeko et al., 2004; El-Yaniv & Gerzon,
2005; Hanneke, 2006). Ad-hoc bounds for particular algorithms were developed by Belkin
et al. (2004) and by Johnson and Zhang (2007). Unlike other bounds (including ours)
the bound of Johnson and Zhang does not depend on the empirical error but only on the
properties of the hypothesis space. If the size of the training and test set increases then
their bound converges to zero2. Thus the bound of Johnson and Zhang effectively proves the
consistency of transductive algorithms that they consider. However this bound holds only
if the hyperparameters of those algorithms are chosen w.r.t. to the unknown test labels.
Hence the bound of Johnson and Zhang cannot be computed explicitly.

Error bounds based on Rademacher complexity were introduced by Koltchinskii (2001)
and are a well-established topic in induction (see Bartlett & Mendelson, 2002, and references
therein). The first Rademacher transductive risk bound was presented by Lanckriet et al.
(2004, Theorem 24). This bound, which is a straightforward extension of the inductive

2. in all other known explicit bounds the increase of training and test sets decreases only the slack term
but not the empirical error.
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Rademacher techniques of Bartlett and Mendelson (2002), is limited to the special case
when training and test sets are of equal size. The bound presented here overcomes this
limitation.

2. Definitions

In Section 2.1 we provide a formal definition of our learning model. Then in Section 2.2 we
define transductive Rademacher complexity and compare it with its inductive counterpart.

2.1 Learning Model

In this paper we use a distribution-free transductive model, as defined by Vapnik (1982,
Section 10.1, Setting 1). Consider a fixed set Sm+u

�= {(xi, yi)}m+u
i=1 of m + u points xi

in some space together with their labels yi. The learner is provided with the (unlabeled)
full-sample Xm+u

�= {xi}m+u
i=1 . A set consisting of m points is selected from Xm+u uniformly

at random among all subsets of size m. These m points together with their labels are given
to the learner as a training set. Re-numbering the points we denote the unlabeled training
set points by Xm

�= {x1, . . . , xm} and the labeled training set by Sm
�= {(xi, yi)}mi=1. The

set of unlabeled points Xu
�= {xm+1, . . . , xm+u} = Xm+u \ Xm is called the test set. The

learner’s goal is to predict the labels of the test points in Xu based on Sm ∪Xu.

Remark 1 In our learner model each example xi has unique label yi. However we allow
that for i �= j, xi = xj but yi �= yj.

The choice of the set of m points as described above can be viewed in three equivalent
ways:

1. Drawing m points from Xm+u uniformly without replacement. Due to this draw, the
points in the training and test sets are dependent.

2. Random permutation of the full sample Xm+u and choosing the first m points as a
training set.

3. Random partitioning of m+ u points into two disjoint sets of m and u points.

To emphasize different aspects of the transductive learning model, throughout the paper
we use interchangeably these three views on the generation of the training and test sets.

This paper focuses on binary learning problems where labels y ∈ {±1}. The learning
algorithms we consider generate “soft classification” vectors h = (h(1), . . . h(m + u)) ∈
R
m+u, where h(i) (or h(xi)) is the soft, or confidence-rated, label of example xi given by

the “hypothesis” h. For actual (binary) classification of xi the algorithm outputs sgn(h(i)).
We denote by Hout ⊆ R

m+u the set of all possible soft classification vectors (over all possible
tranining/test partitions) that are generated by the algorithm.

Based on the full-sample Xm+u, the algorithm selects an hypothesis space H ⊆ R
m+u

of soft classification hypotheses. Note that Hout ⊆ H. Then, given the labels of training
points the algorithm outputs one hypothesis h from Hout ∩ H for classification. The goal
of the transductive learner is to find a hypothesis h minimizing the test error Lu(h) �=
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1
u

∑m+u
i=m+1 �(h(i), yi) w.r.t. the 0/1 loss function �. The empirical error of h is L̂m(h) �=

1
m

∑m
i=1 �(h(i), yi) and the full sample error of h is Lm+u(h)

�= 1
m+u

∑m+u
i=1 �(h(i), yi). In

this work we also use the margin loss function �γ . For a positive real γ, �γ(y1, y2) = 0 if
y1y2 ≥ γ and �γ(y1, y2) = min{1, 1 − y1y2/γ} otherwise. The empirical (margin) error of
h is L̂γm(h) �= 1

m

∑m
i=1 �γ(h(i), yi). We denote by Lγu(h) the margin error of the test set and

by Lγm+u(h) the margin full sample error.
We denote by Isr , r < s, the set of natural numbers {r, r + 1, . . . , s}. Throughout the

paper we assume that the vectors are column ones. We mark all vectors with the boldface.

2.2 Transductive Rademacher Complexity

We adapt the inductive Rademacher complexity to our transductive setting but generalize
it a bit to also include “neutral” Rademacher values.

Definition 1 (Transductive Rademacher complexity) Let V ⊆ R
m+u and p ∈ [0, 1/2].

Let σ = (σ1, . . . , σm+u)T be a vector of i.i.d. random variables such that

σi
�=

⎧⎪⎨
⎪⎩
1 with probability p;
−1 with probability p;
0 with probability 1− 2p.

(1)

The transductive Rademacher complexity with parameter p is

Rm+u(V, p) �=
(
1
m
+
1
u

)
·Eσ

{
sup
v∈V

σT · v
}

.

The need for this novel definition of Rademacher complexity is technical. Two main
issues that lead to the new definition are:

1. The need to bound the test error Lu(h) = 1
u

∑m+u
i=m+1 �(h(i), yi). Notice that in induc-

tive risk bounds the standard definition of Rademacher complexity (see Definition 2
below), with binary values of σi, is used to bound the generalization error, which is
an inductive analogue of the full sample error Lm+u(h) = 1

m+u

∑m+u
i=1 �(h(i), yi).

2. Different sizes (m and u respectively) of training and test set.

See Section 4.1 for more technical details that lead to the above definition of Rademacher
complexity.

For the sake of comparison we also state the inductive definition of Rademacher com-
plexity.

Definition 2 (Inductive Rademacher complexity, Koltchinskii, 2001) Let D be a
probability distribution over X . Suppose that the examples Xn = {xi}ni=1 are sampled in-
dependently from X according to D. Let F be a class of functions mapping X to R. Let
σ = {σi}ni=1 be an independent uniform {±1}-valued random variables, σi = 1 with prob-
ability 1/2 and σi = −1 with the same probability. The empirical Rademacher complex-
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ity is3 R̂
(ind)
n (F) �= 2

nEσ

{
supf∈F

∑n
i=1 σif(xi)

}
and the Rademacher complexity of F is

R
(ind)
n (F) �= EXn∼Dn

{
R̂
(ind)
n (F)

}
.

For the case p = 1/2, m = u and n
�= m + u we have that Rm+u(V) = 2R̂(ind)

m+u(V).
Whenever p < 1/2, some Rademacher variables will attain (neutral) zero values and reduce
the complexity (see Lemma 1). We use this property to tighten our bounds.

Notice that the transductive complexity is an empirical quantity that does not depend
on any underlying distribution, including the one over the choices of the training set. Since
in distribution-free transductive model the unlabeled full sample of training and test points
is fixed, in transductive Rademacher complexity we don’t need the outer expectation, which
appears in the inductive definition. Also, the transductive complexity depends on both the
(unlabeled) training and test points whereas the inductive complexity only depends only
on the (unlabeled) training points.

The following lemma, whose proof appears in Appendix A, states that Rm+u(V, p) is
monotone increasing with p. The proof is based on the technique used in the proof of
Lemma 5 in the paper of Meir and Zhang (2003).

Lemma 1 For any V ⊆ R
m+u and 0 ≤ p1 < p2 ≤ 1/2, Rm+u(V, p1) < Rm+u(V, p2).

In the forthcoming results we utilize the transductive Rademacher complexity with
p0

�= mu
(m+u)2

. We abbreviate Rm+u(V) �= Rm+u(V, p0). By Lemma 1, all our bounds also
apply to Rm+u(V, p) for all p > p0. Since p0 < 1

2 , the Rademacher complexity involved in
our results is strictly smaller than the standard inductive Rademacher complexity defined
over Xm+u. Also, if transduction approaches the induction, namely m is fixed and u→∞,
then R̂

(ind)
m+u(V)→ 2Rm+u(V).

3. Concentration Inequalities for Functions over Partitions

In this section we develop a novel concentration inequality for functions over partitions
and compare it to the several known ones. Our concentration inequality is utilized in the
derivation of the forthcoming risk bound.

Let Z �= Zm+u
1

�= (Z1, . . . , Zm+u) be a random permutation vector where the variable
Zk, k ∈ Im+u

1 , is the kth component of a permutation of Im+u
1 that is chosen uniformly at

random. Let Zij be a perturbed permutation vector obtained by exchanging the values of Zi

and Zj in Z. Any function f on permutations of Im+u
1 is called (m,u)-permutation symmet-

ric if f(Z) �= f(Z1, . . . , Zm+u) is symmetric on Z1, . . . , Zm as well as on Zm+1, . . . , Zm+u.
In this section we present a novel concentration inequality for (m,u)-permutation sym-

metric functions. Note that an (m,u)-permutation symmetric function is essentially a func-
tion over the partition of m + u items into sets of sizes m and u. Thus, the forthcoming
inequalities of Lemmas 2 and 3, while being stated for (m,u)-permutation symmetric func-
tions, also hold in exactly the same form for functions over partitions. Conceptually it is

3. The original definition of Rademacher complexity, as given by Koltchinskii (2001), is slightly different
from the one presented here, and contains supf∈F

˛
˛Pn

i=1 σif(xi)
˛
˛ instead of supf∈F

Pn
i=1 σif(xi). How-

ever, from the conceptual point of view, Definition 2 and the one given by Koltchinskii are equivalent.
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more convenient to view our results as concentration inequalities for functions over par-
titions. However, from a technical point of view we find it more convenient to consider
(m,u)-permutation symmetric functions.

The following lemma (that will be utilized in the proof of Theorem 1) presents a con-
centration inequality that is an extension of Lemma 2 of El-Yaniv and Pechyony (2006).
The proof (appearing in Appendix B) relies on McDiarmid’s inequality (McDiarmid, 1989,
Corollary 6.10) for martingales.

Lemma 2 Let Z be a random permutation vector over Im+u
1 . Let f(Z) be an (m,u)-

permutation symmetric function satisfying
∣∣f(Z)− f(Zij)

∣∣ ≤ β for all i ∈ Im1 , j ∈ Im+u
m+1 .

Then

PZ {f(Z)−EZ {f(Z)} ≥ ε} ≤ exp
(
−2ε

2(m+ u− 1/2)
muβ2

(
1− 1

2max(m,u)

))
. (2)

The right hand side of (2) is approximately exp
(
−2ε2

β2

(
1
m + 1

u

))
. A similar, but less tight

inequality can be obtained by reduction of the draw of random permutation to the draw
of min(m,u) independent random variables and application of the bounded difference in-
equality of McDiarmid (1989):

Lemma 3 Suppose that the conditions of Lemma 2 hold. Then

PZ {f(Z)−EZ {f(Z)} ≥ ε} ≤ exp
(
− 2ε2

β2min(m,u)

)
. (3)

The proof of Lemma 3 appears in Appendix C.

Remark 2 The inequalities developed in Section 5 of Talagrand (1995) imply a concentra-
tion inequality that is similar to (3), but with worse constants.

The inequality (2) is defined for any (m,u)-permutation symmetric function f . By
specializing f we obtain the following two concentration inequalities:

Remark 3 If g : Im+u
1 → {0, 1} and f(Z) = 1

u

∑m+u
i=m+1 g(Zi) − 1

m

∑m
i=1 g(Zi), then

EZ{f(Z)} = 0. Moreover, for any i ∈ Im1 , j ∈ Im+u
m+1 , |f(Z)− f(Zij)| ≤ 1

m + 1
u . Therefore,

by specializing (2) for such f we obtain

PZ

{
1
u

m+u∑
i=m+1

g(Zi)− 1
m

m∑
i=1

g(Zi) ≥ ε

}
≤ exp

(
−ε2mu(m+ u− 1/2)

(m+ u)2
· 2max(m,u)− 1

max(m,u)

)
.

(4)
The right hand side of (4) is approximately exp

(
−2ε2mu

m+u

)
. The inequality (4) is an ex-

plicit (and looser) version of Vapnik’s absolute bound (see El-Yaniv & Gerzon, 2005). We
note that using (2) we were unable to obtain an explicit version of Vapnik’s relative bound
(inequality 10.14 of Vapnik, 1982).
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Remark 4 If g : Im+u
1 → {0, 1}, f(Z) = 1

m

∑m
i=1 g(Zi), then EZ{f(Z)} = 1

m+u

∑m+u
i=1 g(Zi).

Moreover, for any i ∈ Im1 , j ∈ Im+u
m+1 , |f(Z) − f(Zij)| ≤ 1

m . Therefore, by specializing (2)
for such f we obtain

PZ

{
1
m

m∑
i=1

g(Zi)− 1
m+ u

m+u∑
i=1

g(Zi) ≥ ε

}
≤ exp

(
−ε2(m+ u− 1/2)m

u
· 2max(m,u)− 1

max(m,u)

)
.

(5)
The right hand side of (5) is approximately exp

(
−2ε2(m+u)m

u

)
. This bound is asymptotically

the same as following bound, which was developed by Serfling (1974):

PZ

{
1
m

m∑
i=1

g(Zi)− 1
m+ u

m+u∑
i=1

g(Zi) ≥ ε

}
≤ exp

(
−2ε

2(m+ u)m
u+ 1

)
.

4. Uniform Rademacher Error Bound

In this section we develop a transductive risk bound, which is based on transductive
Rademacher complexity (Definition 1). The derivation follows the standard two-step scheme,
as in induction4:

1. Derivation of a uniform concentration inequality for a set of vectors (or functions).
This inequality depends on the Rademacher complexity of the set. After substituting
to the vectors (or functions) the values of the loss functions, we obtain an error bound
depending on the Rademacher complexity of the values of the loss function. This step
is done in Section 4.1.

2. In order to bound the Rademacher complexity in terms of the properties of the hy-
pothesis space, the Rademacher complexity is ‘translated’, using its contraction prop-
erty (Ledoux & Talagrand, 1991, Theorem 4.12), from the domain of loss function
values to the domain of soft hypotheses from the hypothesis space. This step is done
in Section 4.2.

As we show in Sections 4.1 and 4.2, the adaptation of both these steps to the transductive
setting is not immediate and involves several novel ideas. In Section 4.3 we combine the
results of these two steps and obtain a transductive Rademacher risk bound. We also
provide a thorough comparison of our risk bound with the corresponding inductive bound.

4.1 Uniform Concentration Inequality for a Set of Vectors

As in induction (Koltchinskii & Panchenko, 2002), our derivation of a uniform concentration
inequality for a set of vectors consists of three steps:

1. Introduction of the “ghost sample”.

2. Bounding the supremum suph∈H g(h), where g(h) is some random real-valued func-
tion, with its expectation using a concentration inequality for functions of random
variables.

4. This scheme was introduced by Koltchinskii and Panchenko (2002). The examples of other uses of this
technique can be found in the papers of Bartlett and Mendelson (2002) and Meir and Zhang (2003).
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3. Bounding the expectation of the supremum using Rademacher variables.

While we follow these three steps as in induction, the establishment of each of these steps can
not be achieved using inductive techniques. Throughout this section, after performing the
derivation of each step in transductive context we discuss its differences from its inductive
counterpart.

We introduce several new definitions. Let V be a set of vectors in [B1, B2]m+u, B1 ≤
0, B2 ≥ 0 and set B

�= B2 − B1, Bmax = max(|B1|, |B2|). Consider two independent
permutations of Im+u

1 , Z and Z′ . For any v ∈ V denote by

v(Z) �= (v(Z1), v(Z2), . . . , v(Zm+u)) ,

the vector v permuted according to Z. We use the following abbreviations for averages of
v over subsets of its components: Hk{v(Z)} �= 1

m

∑k
i=1 v(Zi), Tk{v(Z)} �= 1

u

∑m+u
i=k+1 v(Zi)

(note that H stands for ‘head’ and T, for ’tail’). In the special case where k = m we set
H{v(Z)} �= Hm{v(Z)}, and T{v(Z)} �= Tm{v(Z)}. The uniform concentration inequality
that we develop shortly states that for any δ > 0, with probability at least 1−δ over random
permutation Z of Im+u

1 , for any v ∈ V,

T{v(Z)} ≤ H{v(Z)} +Rm+u(V) +O

(√
1

min(m,u)
ln
1
δ

)
.

Step 1: Introduction of the ghost sample.

We denote by v̄ �= 1
m+u

∑m+u
i=1 v(i) the average component of v. For any v ∈ V and

any permutation Z of Im+u
1 we have

T{v(Z)} = H{v(Z)} +T{v(Z)} −H{v(Z)}
≤ H{v(Z)} + sup

v∈V

[
T{v(Z)} − v̄ + v̄ −H{v(Z)}

]
= H{v(Z)} + sup

v∈V

[
T{v(Z)} −EZ′T{v(Z′)}+EZ′H{v(Z′)} −H{v(Z)}

]
≤ H{v(Z)} +EZ′ sup

v∈V

[
T{v(Z)} −T{v(Z′)}+H{v(Z′)} −H{v(Z)}

]
︸ ︷︷ ︸

�
=ψ(Z)

. (6)

Remark 5 In this derivation the “ghost sample” is a permutation Z′ of m + u elements
drawn from the same distribution as Z. In inductive Rademacher-based risk bounds the
ghost sample is a new training set of size m, independently drawn from the original one.
Note that in our transductive setting the ghost sample corresponds to the independent draw
of training/test set partition, which is equivalent to the independent draw of random per-
mutation Z′.

Remark 6 In principle we could avoid the introduction of the ghost sample Z′ and consider
m elements in H{v(Z)} as ghosts of u elements in T{v(Z)}. This approach would lead to
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a new definition of Rademacher averages (with σi = −1/m with probability m/(m+ u) and
1/u with probability u/(m+ u)). With this definition we can obtain Corollary 1. However,
since the distribution of alternative Rademacher averages is not symmetric around zero,
technically we do not know how to prove the Lemma 5 (the contraction property).

Step 2: Bounding the supremum with its expectation.

Let S
�= m+u

(m+u−1/2)(1−1/(2 max(m,u))) . For sufficiently large m and u, the value of S is al-
most 1. The function ψ(Z) is (m,u)-permutation symmetric in Z. It can be verified that
|ψ(Z) − ψ(Zij)| ≤ B

(
1
m + 1

u

)
. Therefore, we can apply Lemma 2 with β

�= B
(
1
m + 1

u

)
to

ψ(Z). We obtain, with probability of at least 1 − δ over random permutation Z of Im+u
1 ,

for all v ∈ V:

T{v(Z)} ≤ H{v(Z)} +EZ {ψ(Z)}+B

√
S

2

(
1
m
+
1
u

)
ln
1
δ

. (7)

Remark 7 In induction this step is performed using an application of McDiarmid’s bounded
difference inequality (McDiarmid, 1989, Lemma 1.2). We cannot apply this inequality in
our setting since the function under the supremum (i.e. ψ(Z)) is not a function over in-
dependent variables, but rather over permutations. Our Lemma 2 replaces the bounded
difference inequality in this step.

Step 3: Bounding the expectation over the supremum using Rademacher random variables.

Our goal is to bound the expectation EZ {ψ(Z)}. This is done in the following lemma.

Lemma 4 Let Z be a random permutation of Im+u
1 . Let c0

�=
√

32 ln(4e)
3 < 5.05. Then

EZ {ψ(Z)} ≤ Rm+u(V) + c0Bmax

(
1
u
+
1
m

)√
min(m,u) .

Proof: The proof is based on ideas from the proof of Lemma 3 from Bartlett and Mendelson
(2002). For technical convenience we use the following definition of pairwise Rademacher
variables.

Definition 3 (Pairwise Rademacher variables) Let v = (v(1), . . . , v(m+u)) ∈ R
m+u.

Let V be a set of vectors from R
m+u. Let σ̃ = {σ̃i}m+u

i=1 be a vector of i.i.d. random variables
defined as:

σ̃i = (σ̃i,1, σ̃i,2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(− 1
m ,− 1

u

)
with probability mu

(m+u)2 ;(− 1
m , 1

m

)
with probability m2

(m+u)2
;(

1
u ,

1
m

)
with probability mu

(m+u)2
;(

1
u ,− 1

u

)
with probability u2

(m+u)2
.

(8)

We obtain Definition 3 from Definition 1 (with p = mu
(m+u)2

) in the following way. If the
Rademacher variable σi = 1 then we split it to σ̃i =

(
1
u ,

1
m

)
. If the Rademacher variable
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σi = −1 then we split it to σ̃i =
(− 1

m ,− 1
u

)
. If the Rademacher variable σi = 0 then we

split it randomly to
(− 1

m , 1
m

)
or

(
1
u ,− 1

u

)
. The first component of σ̃i indicates if the ith

component of v is in the first elements of v(Z) or in the last u elements of v(Z). If the
former case the value of σ̃i is − 1

m and in the latter case the value of σ̃i is 1
u . The second

component of σ̃i has the same meaning as the first one, but with Z replaced by Z′.
The values ± 1

m and ± 1
u are exactly the coefficients appearing inside T{v(Z)}, T{v(Z′)},

H{v(Z′)} and H{v(Z)} in (6). These coefficients are random and their distribution is
induced by the uniform distribution over permutations. In the course of the proof we will
establish the precise relation between the distribution of ± 1

m and ± 1
u coefficients and the

distribution (8) of pairwise Rademacher variables.
It is easy to verify that

Rm+u(V) = Eσ̃

{
sup
v∈V

m+u∑
i=1

(σ̃i,1 + σ̃i,2)v(i)

}
. (9)

Let n1, n2 and n3 be the number of random variables σ̃i realizing the value
(− 1

m ,− 1
u

)
,(− 1

m , 1
m

)
,
(
1
u ,

1
m

)
, respectively. Set N1

�= n1 + n2 and N2
�= n2 + n3. Note that the ni’s

and Ni’s are random variables. Denote by Rad the distribution of σ̃ defined by (8) and by
Rad(N1, N2), the distribution Rad conditioned on the events n1+n2 = N1 and n2+n3 = N2.
We define

s(N1, N2)
�= Eσ̃∼Rad(N1,N2)

{
sup
v∈V

m+u∑
i=1

(σ̃i,1 + σ̃i,2) v(i)

}
.

The rest of the proof is based on the following three claims:

Claim 1. Rm+u(V) = EN1,N2{s(N1, N2)}.
Claim 2. EZ{ψ(Z)} = s (Eσ̃N1,Eσ̃N2).

Claim 3. s (Eσ̃N1,Eσ̃N2)−EN1,N2{s(N1, N2)} ≤ c0Bmax

(
1
u +

1
m

)√
m.

Having established these three claims we immediately obtain

EZ {g(Z)} ≤ R̃m+u(V) + c0Bmax

(
1
u
+
1
m

)√
m . (10)

The entire development is symmetric in m and u and, therefore, we also obtain the same
result but with

√
u instead of

√
m. By taking the minimum of (10) and the symmetric

bound (with
√
u) we establish the theorem.

The proof of the above three claims appears in Appendix D. �

Remark 8 The technique we use to bound the expectation of the supremum is more com-
plicated than the technique of Koltchinskii and Panchenko (2002) that is commonly used
in induction. This is caused by the structure of the function under the supremum (i.e.,
g(Z)). From a conceptual point of view, this step utilizes our novel definition of transduc-
tive Rademacher complexity.

By combining (7) and Lemma 4 we obtain the next concentration inequality, which is
the main result of this section.
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Theorem 1 Let B1 ≤ 0, B2 ≥ 0 and V be a (possibly infinite) set of real-valued vectors
in [B1, B2]m+u. Let B

�= B2 − B1 and Bmax
�= max(|B1|, |B2|). Let Q

�=
(
1
u +

1
m

)
, S

�=
m+u

(m+u−1/2)(1−1/2(max(m,u))) and c0
�=

√
32 ln(4e)

3 < 5.05. Then with probability of at least 1− δ

over random permutation Z of Im+u
1 , for all v ∈ V,

T{v(Z)} ≤ H{v(Z)} +Rm+u(V) +Bmaxc0Q
√
min(m,u) +B

√
S

2
Q ln

1
δ
. (11)

We defer the analysis of the slack terms Bmaxc0Q
√
min(m,u) and B

√
S
2Q ln

1
δ to Sec-

tion 4.3. We now instantiate the inequality (11) to obtain our first risk bound. The idea
is to apply Theorem 1 with an appropriate instantiation of the set V so that T{v(Z)} will
correspond to the test error and H{v(Z)} to the empirical error. For a true (unknown)
labeling of the full-sample y and any h ∈ Hout we define

�y(h) �= (�(h(1), y1), . . . , �(h(m+ u), ym+u))

and set LH = {v : v = �y(h), h ∈ Hout}. Thus �y(h) is a vector of the values of the
0/1 loss over all full sample examples, when transductive algorithm is operated on some
training/test partition. The set LH is the set of all possible vectors �y(h), over all possible
training/test partitions. We apply Theorem 1 with V �= LH, v

�= �(h), Bmax = B = 1 and
obtain the following corollary:

Corollary 1 Let Q, S and c0 be as defined in Theorem 1. For any δ > 0, with probability
of at least 1− δ over the choice of the training set from Xm+u, for all h ∈ Hout,

Lu(h) ≤ L̂m(h) +Rm+u(LH) +Bmaxc0Q
√
min(m,u) +

√
S

2
Q ln

1
δ

. (12)

We defer the analysis of the slack terms Bmaxc0Q
√
min(m,u) andB

√
S
2Q ln

1
δ to Section 4.3.

While the bound (12) is obtained by a straightforward application of the concentration
inequality (11), it is not convenient to deal with. That’s because it is not clear how to bound
the Rademacher complexity Rm+u(LH) of the 0/1 loss values in terms of the properties of
transductive algorithm. In the next sections we eliminate this deficiency by utilizing margin
loss function.

4.2 Contraction of Rademacher Complexity

The following lemma is a version of the well-known ‘contraction principle’ of the theory of
Rademacher averages (see Theorem 4.12 of Ledoux & Talagrand, 1991, and Ambroladze,
Parrado-Hernandez, & Shawe-Taylor, 2007). The lemma is an adaptation, which accommo-
dates the transductive Rademacher variables, of Lemma 5 of Meir and Zhang (2003). The
proof is provided in Appendix E.

Lemma 5 Let V ⊆ R
m+u be a set of vectors. Let f and g be real-valued functions. Let

σ = {σi}m+u
i=1 be Rademacher variables, as defined in (1). If for all 1 ≤ i ≤ m+ u and any
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v,v′ ∈ V, |f(vi)− f(v′i)| ≤ |g(vi)− g(v′i)|, then

Eσ sup
v∈V

[
m+u∑
i=1

σif(vi)

]
≤ Eσ sup

v∈V

[
m+u∑
i=1

σig(vi)

]
.

Let y = (y1, . . . , ym+u) ∈ R
m+u be a true (unknown) labeling of the full-sample. Sim-

ilarly to what was done in the derivation of Corollary 1, for any h ∈ Hout we define
�yγ (h(i))

�= �γ(h(i), yi) and

�y
γ (h)

�= (�yγ (h(1)), . . . , �
Y
γ (h(m+ u)))

and set Lγ
H = {v : v = �y

γ (h),h ∈ Hout}. Noting that �yγ satisfies the Lipschitz condition
|�yγ (h(i)) − �yγ (h′(i))| ≤ 1

γ |h(i) − h′(i)|, we apply Lemma 5 with V �= Lγ
H, f(vi)

�= �yγ (h(i))

and g(vi)
�= h(i)/γ, to get

Eσ

{
sup

h∈Hout

m+u∑
i=1

σi�
y
γ (h(i))

}
≤ 1

γ
Eσ

{
sup

h∈Hout

m+u∑
i=1

σih(i)

}
. (13)

It follows from (13) that

Rm+u(L
γ
H) ≤

1
γ
Rm+u(Hout) . (14)

4.3 Risk Bound and Comparison with Related Results

Applying Theorem 1 with V �= Lγ
H, v �= �γ(h), Bmax = B = 1, and using the inequality

(14) we obtain5:

Theorem 2 Let Hout be the set of full-sample soft labelings of the algorithm, generated
by operating it on all possible training/test set partitions. The choice of Hout can de-

pend on the full-sample Xm+u. Let c0 =
√

32 ln(4e)
3 < 5.05, Q

�=
(
1
u +

1
m

)
and S

�=
m+u

(m+u−1/2)(1−1/(2 max(m,u))) . For any fixed γ, with probability of at least 1− δ over the choice
of the training set from Xm+u, for all h ∈ Hout,

Lu(h) ≤ Lγu(h) ≤ L̂γm(h) +
Rm+u(Hout)

γ
+ c0Q

√
min(m,u) +

√
SQ

2
ln
1
δ

. (15)

For large enough values of m and u the value of S is close to 1. Therefore the slack

term c0Q
√
min(m,u) +

√
S
2Q ln

1
δ is of order O

(
1/

√
min(m,u)

)
. The convergence rate of

O
(
1/

√
min(m,u)

)
can be very slow if m is very small or u � m. Slow rate for small m

is not surprising, but a latter case of u� m is somewhat surprising. However note that if
u � m then the mean μ of u elements, drawn from m+ u elements, has a large variance.
Hence, in this case any high-confidence interval for the estimation of μ will be large. This
confidence interval is reflected in the slack term of (15).

5. This bound holds for any fixed margin parameter γ. Using the technique of the proof of Theorem 18 of
Bousquet and Elisseeff (2002), we can also obtain a bound that is uniform in γ.
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We now compare the bound (15) with the Rademacher-based inductive risk bounds.
We use the following variant of Rademacher-based inductive risk bound of Meir and Zhang
(2003):

Theorem 3 Let D be a probability distribution over X . Suppose that a set of examples
Sm = {(xi, yi)}mi=1 is sampled i.i.d. from X according to D. Let F be a class of functions
each maps X to R and R̂

(ind)
m (F) be the empirical Rademacher complexity of F (Defini-

tion 2). Let L(f) = E(x,y)∼D{�(f(x), y)} and L̂γ(f) = 1
m

∑m
i=1 �γ(f(xi), yi) be respectively

the 0/1 generalization error and empirical margin error of f . Then for any δ > 0 and
γ > 0, with probability of at least 1− δ over the random draw of Sm, for any f ∈ F ,

L(f) ≤ L̂γ(f) + R̂
(ind)
m (F)

γ
+

√
2 ln(2/δ)

m
. (16)

The slack term in the bound (16) is of order O(1/
√
m). The bounds (15) and (16) are

not quantitatively comparable. The inductive bound holds with high probability over the
random selection of m examples from some distribution D. This bound is on average
(generalization) error, over all examples in D. The transductive bound holds with high
probability over the random selection of a training/test partition. This bound is on the test
error of some hypothesis over a particular set of u points.

A kind of meaningful comparison can be obtained as follows. Using the given full
(transductive) sample Xm+u, we define a corresponding inductive distribution Dtrans as
the uniform distribution over Xm+u; that is, a training set of size m will be generated
by sampling from Xm+u m times with replacements. Given an inductive hypothesis space
F = {f} of function we define the transductive hypothesis space HF as a projection of F
into the full sample Xm+u: HF = {h ∈ R

m+u : ∃f ∈ F ,∀1 ≤ i ≤ m + u, h(i) = f(xi)}.
By such definition of HF , L(f) = Lm+u(h).

Our final step towards a meaningful comparison would be to translate a transductive
bound of the form Lu(h) ≤ L̂γm(h)+slack to a bound on the average error of the hypothesis6
h:

Lm+u(h) ≤ Lγm+u(h) =
mL̂γm(h) + uLγu(h)

m+ u
≤

mL̂γm(h) + u
(
L̂γm(h) + slack

)
m+ u

= L̂γm(h) +
u

m+ u
· slack (17)

We instantiate (17) to the bound (15) and obtain

Lm+u(h) ≤ L̂γm(h) +
u

m+ u

Rm+u(HF )
γ

+
u

m+ u

[
c0Q

√
min(m,u) +

√
SQ

2
ln
1
δ

]
. (18)

6. Alternatively, to compare (15) and (16), we could try to express the bound (16) as the bound on the
error of f on Xu (the randomly drawn subset of u examples). The bound (16) holds for the setting of
random draws with replacement. In this setting the number of unique training examples can be smaller
than m and thus the number of the remaining test examples is larger than u. Hence the draw of m
training examples with replacement does not imply the draw of the subset of u test examples, as in
transductive setting. Thus we cannot express the bound (16) as the bound on the randomly drawn Xu
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Now given a transductive problem we consider the corresponding inductive bound obtained
from (16) under the distribution Dtrans and compare it to the bound (18).

Note that in the inductive bound (16) the sampling of the training set is done with
replacement, while in the transductive bound (18) it is done without replacement. Thus, in
the inductive case the actual number of distinct training examples may be smaller than m.

The bounds (16) and (18) consist of three terms: empirical error term (first summand
in (16) and (18)), the term depending on the Rademacher complexity (second summand in
(16) and (18)) and the slack term (third summand in (16) and third and fourth summands
in (18)). The empirical error terms are the same in both bounds. It is hard to compare
analytically the Rademacher complexity terms. This is because the inductive bound is
derived for the setting of sampling with replacement and the transductive bound is derived
for the setting of sampling without replacement. Thus, in the transductive Rademacher
complexity each example xi ∈ Xm+u appears in Rm+u(Hout) only once and is multiplied
by σi. In contrast, due to the sampling with replacement, in the inductive Rademacher
term the example xi ∈ Xm+u can appear several times in R̂

(ind)
m+u(F), multiplied by different

values of the Rademacher variables.
Nevertheless, in transduction we have a full control over the Rademacher complexity

(since we can choose Hout after observing the full sample Xm+u) and can choose an hypoth-
esis space Hout with arbitrarily small Rademacher complexity. In induction we choose F
before observing any data. Hence, if we are lucky with the full sample Xm+u then R̂

(ind)
m+u(F)

is small, and if we are unlucky with Xm+u then R̂
(ind)
m+u(F) can be large. Thus, under these

provisions we can argue that the transductive Rademacher term is not larger than the
inductive counterpart.

Finally, we compare the slack terms in (16) and (18). If m ≈ u or m� u then the slack
term of (18) is of order O (1/

√
m), which is the same as the corresponding term in (16).

But if m � u then the slack term of (18) is of order O (1/(m
√
u)), which is much smaller

than O(1/
√
m) of the slack term in (16).

Based on the comparison of the corresponding terms in (16) and (18) our conclusion
is that in the regime of u � m the transductive bound is significantly tighter than the
inductive one.7

5. Unlabeled-Labeled Representation (ULR) of Transductive Algorithms

Let r be any natural number and let U be an (m+u)× r matrix depending only on Xm+u.
Let α be an r × 1 vector that may depend on both Sm and Xu. The soft classification
output h of any transductive algorithm can be represented by

h = U ·α . (19)

We refer to (19) as an unlabeled-labeled representation (ULR). In this section we develop
bounds on the Rademacher complexity of algorithms based on their ULRs. We note that
any transductive algorithm has a trivial ULR, for example, by taking r = m+ u, setting U

7. The regime of u � m occurs in the following class of applications. Given a large library of tagged
objects, the goal of the learner is to assign the tags to a small quantity of the newly arrived objects. The
example of such application is the organization of daily news.
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to be the identity matrix and assigning α to any desired (soft) labels. We are interested in
“non-trivial” ULRs and provide useful bounds for such representations.8

In a “vanilla” ULR, U is an (m+ u)× (m+ u) matrix and α = (α1, . . . , αm+u) simply
specifies the given labels in Sm (where αi = yi for labeled points, and αi = 0 otherwise).
From our point of view any vanilla ULR is not trivial because α does not encode the
final classification of the algorithm. For example, the algorithm of Zhou et al. (2004)
straightforwardly admits a vanilla ULR. On the other hand, the natural (non-trivial) ULR
of the algorithms of Zhu et al. (2003) and Belkin and Niyogi (2004) are not of the vanilla
type. For some algorithms it is not necessarily obvious how to find non-trivial ULRs. In
Sections 6 we consider two such cases – in particular, the algorithms of Joachims (2003)
and Belkin et al. (2004).

The rest of this section is organized as follows. In Section 5.1 we present a generic
bound on the Rademacher complexity of any transductive algorithm based on its ULR. In
Section 5.2 we consider a case when the matrix U is a kernel matrix. For this case we
develop another bound on the transductive Rademacher complexity. Finally, in Section 5.3
we present a method of computing high-confidence estimate of the transductive Rademacher
complexity.

5.1 Generic Bound on Transductive Rademacher Complexity

We now present a bound on the transductive Rademacher complexity of any transductive
algorithm based on its ULR. Let {λi}ri=1 be the singular values of U . We use the well-known

fact that ‖U‖Fro =
√∑r

i=1 λ
2
i , where ‖U‖Fro

�=
√∑

i,j(U(i, j))2 is the Frobenius norm of

U . Suppose that ‖α‖2 ≤ μ1 for some μ1. Let Hout
�= Hout(U) be the set of all possible

outputs of the algorithm when operated on all possible training/test set partitions of the
full-sample Xm+u. Let Q

�= 1
m +

1
u . Using the abbreviation U(i, ·) for the ith row of U and

following the proof idea of Lemma 22 of Bartlett and Mendelson (2002), we have that

Rm+u(Hout) = Q · Eσ

{
sup

h∈Hout

m+u∑
i=1

σih(xi)

}
= Q ·Eσ

{
sup

α:‖α‖2≤μ1

m+u∑
i=1

σi〈α, U(i, ·)〉
}

= Q · Eσ

{
sup

α:‖α‖2≤μ1
〈α,

m+u∑
i=1

σiU(i, ·)〉
}

= Qμ1Eσ

{∥∥∥∥∥
m+u∑
i=1

σiU(i, ·)
∥∥∥∥∥
2

}
(20)

= Qμ1Eσ

⎧⎨
⎩
√√√√m+u∑

i,j=1

σiσj〈U(i, ·), U(j, ·)〉
⎫⎬
⎭

≤ Qμ1

√√√√m+u∑
i,j=1

Eσ {σiσj〈U(i, ·), U(j, ·)〉} (21)

8. For the trivial representation where U is the identity matrix multiplied by constant we show in Lemma 6
that the risk bound (15), combined with the forthcoming Rademacher complexity bound (22), is greater
than 1.
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= μ1

√√√√m+u∑
i=1

2
mu

〈U(i, ·), U(i, ·)〉 = μ1

√
2

mu
‖U‖2Fro = μ1

√√√√ 2
mu

r∑
i=1

λ2i . (22)

where (20) and (21) are obtained using, respectively, the Cauchy-Schwarz and Jensen in-
equalities. Using the bound (22) in conjunction with Theorem 2 we immediately get a
data-dependent error bound for any algorithm, which can be computed once we derive an
upper bound on the maximal length of possible values of the α vector, appearing in its
ULR. Notice that for any vanilla ULR (and thus for the “consistency method” of Zhou
et al. (2004)), μ1 =

√
m. In Section 6 we derive a tight bound on μ1 for non-trivial ULRs

of SGT of Joachims (2003) and of the consistency method of Zhou et al. (2004).
The bound (22) is syntactically similar in form to a corresponding inductive Rademacher

bound for kernel machines (Bartlett & Mendelson, 2002). However, as noted above, the
fundamental difference is that in induction, the choice of the kernel (and therefore Hout)
must be data-independent in the sense that it must be selected before the training examples
are observed. In our transductive setting, U and Hout can be selected after the unlabeled
full-sample is observed.

The Rademacher bound (22), as well as the forthcoming Rademacher bound (25), de-
pend on the spectrum of the matrix U . As we will see in Section 6, in non-trivial ULRs
of some transductive algorithms (the algorithms of Zhou et al., 2004 and of Belkin et al.,
2004) the spectrum of U depends on the spectrum of the Laplacian of the graph used by the
algorithm. Thus by transforming the spectrum of Laplacian we control the Rademacher
complexity of the hypothesis class. There exists strong empirical evidence (see Chapelle
et al., 2003; Joachims, 2003; Johnson & Zhang, 2008) that such spectral transformations
improve the performance of the transductive algorithms.

The next lemma (proven in Appendix F) shows that for “trivial” ULRs the resulting
risk bound is vacuous.

Lemma 6 Let α ∈ R
m+u be a vector depending on both Sm and Xu. Let c ∈ R, U

�= c · I
and A be transductive algorithm generating soft-classification vector h = U ·α. Let {λi}ri=1

be the singular values of U and μ1 be the upper bound on ‖α‖2. For the algorithm A the
bound (22) in conjunction with the bound (15) is vacuous; namely, for any γ ∈ (0, 1) and
any h generated by A it holds that

L̂γm(h) +
μ1

γ

√√√√ 2
mu

k∑
i=1

λ2i + c0Q
√
min(m,u) +

√
S

2
Q ln

1
δ
≥ 1 .

5.2 Kernel ULR

If r = m+ u and the matrix U is a kernel matrix (this holds if U is positive semidefinite),
then we say that the decomposition is a kernel-ULR. Let G ⊆ R

m+u be the reproducing
kernel Hilbert space (RKHS), corresponding to U . We denote by 〈·, ·〉G the inner product in
G. Since U is a kernel matrix, by the reproducing property9 of G, U(i, j) = 〈U(i, ·), U(j, ·)〉G .

9. This means that for all h ∈ G and i ∈ Im+u
1 , h(i) = 〈U(i, ·),h〉G .
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Suppose that the vector α satisfies
√

αTUα ≤ μ2 for some μ2. Let {λi}m+u
i=1 be the eigen-

values of U . By similar arguments used to derive (22) we have:

Rm+u(Hout) = Q · Eσ

{
sup

h∈Hout

m+u∑
i=1

σih(xi)

}
= Q ·Eσ

⎧⎨
⎩supα

m+u∑
i=1

σi

m+u∑
j=1

αjU(i, j)

⎫⎬
⎭

= Q · Eσ

⎧⎨
⎩supα

m+u∑
i=1

σi

m+u∑
j=1

αj〈U(i, ·), U(j, ·)〉G

⎫⎬
⎭

= Q · Eσ

⎧⎨
⎩supα

〈
m+u∑
i=1

σiU(i, ·),
m+u∑
j=1

αjU(j, ·)
〉
G

⎫⎬
⎭

≤ Q · Eσ

⎧⎨
⎩supα

∥∥∥∥∥
m+u∑
i=1

σiU(i, ·)
∥∥∥∥∥
G
·
∥∥∥∥∥∥
m+u∑
j=1

αjU(j, ·)
∥∥∥∥∥∥
G

⎫⎬
⎭ (23)

= Qμ2Eσ

⎧⎨
⎩
∥∥∥∥∥
m+u∑
i=1

σiU(i, ·)
∥∥∥∥∥
G

⎫⎬
⎭

= Qμ2Eσ

⎧⎨
⎩
√√√√

〈
m+u∑
i=1

σiU(i, ·),
m+u∑
j=1

σjU(j, ·)
〉
G

⎫⎬
⎭

= Qμ2Eσ

⎧⎨
⎩
√√√√m+u∑

i,j=1

σiσjU(i, j)

⎫⎬
⎭ ≤ Qμ2

√√√√m+u∑
i,j=1

Eσ {σiσjU(i, j)} (24)

= μ2

√√√√m+u∑
i=1

2
mu

U(i, i) = μ2

√
2 · trace(U)

mu
= μ2

√√√√ 2
mu

m+u∑
i=1

λi . (25)

The inequalities (23) and (24) are obtained using, respectively, Cauchy-Schwarz and Jensen
inequalities. Finally, the first equality in (25) follows from the definition of Rademacher
variables (see Definition 1).

If transductive algorithm has kernel-ULR then we can use both (25) and (22) to bound
its Rademacher complexity. The kernel bound (25) can be tighter than its non-kernel
counterpart (22) when the kernel matrix has eigenvalues larger than one and/or μ2 < μ1.
In Section 6 we derive a tight bound on μ1 for non-trivial ULRs of “consistency method”
of Zhou et al. (2004) and of the Tikhonov regularization method of Belkin et al. (2004).

5.3 Monte-Carlo Rademacher Bounds

We now show how to compute Monte-Carlo Rademacher bounds with high confidence for
any transductive algorithm using its ULR. Our empirical examination of these bounds
(see Section 6.3) shows that they are tighter than the analytical bounds (22) and (25).
The technique, which is based on a simple application of Hoeffding’s inequality, is made
particularly simple for vanilla ULRs.
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Let V ⊆ R
m+u be a set of vectors, Q �= 1

m + 1
u , σ ∈ R

m+u to be a Rademacher vector
(1), and g(σ) = supv∈V σT · v. By Definition 1, Rm+u(V) = Q · Eσ{g(σ)}. Let σ1, . . . ,σn

be an i.i.d. sample of Rademacher vectors. We estimate Rm+u(V) with high confidence
by applying the Hoeffding inequality on

∑n
i=1

1
ng(σi). To apply the Hoeffding inequality

we need a bound on supσ |g(σ)|, which is derived for the case where V = Hout. Namely
we assume that V is a set of all possible outputs of the algorithm (for a fixed Xm+u).
Specifically, suppose that v ∈ V is an output of the algorithm, v = Uα, and assume that
‖α‖2 ≤ μ1.

By Definition 1, for all σ, ‖σ‖2 ≤ b
�=
√
m+ u. Let λ1 ≤ . . . ≤ λk be the singular

values of U and u1, . . . ,uk and w1, . . . ,wk be their corresponding unit-length right and left
singular vectors10. We have that

sup
σ
|g(σ)| = sup

‖σ‖2≤b, ‖α‖2≤μ1
|σTUα| = sup

‖σ‖2≤b, ‖α‖2≤μ1

∣∣∣∣∣σT
k∑

i=1

λiuiwT
i α

∣∣∣∣∣ ≤ bμ1λk .

Applying the one-sided Hoeffding inequality on n samples of g(σ) we have, for any given δ,
that with probability of at least 1−δ over the random i.i.d. choice of the vectors σ1, . . . ,σn,

Rm+u(V) ≤
(
1
m
+
1
u

)
·
⎛
⎝ 1

n

n∑
i=1

sup
α:‖α‖2≤μ1

σT
i Uα+ μ1λk

√
m+ u

√
2 ln 1

δ

n

⎞
⎠ . (26)

To use the bound (26), the value of supα:‖α‖2≤μ1 σT
i Uα should be computed for each ran-

domly drawn σi. This computation is algorithm-dependent and in Section 6.3 we show how
to compute it for the algorithm of Zhou et al. (2004).11 In cases where we can compute the
supremum exactly (as in vanilla ULRs; see below) we can also get a lower bound using the
symmetric Hoeffding inequality.

6. Applications: Explicit Bounds for Specific Algorithms

In this section we exemplify the use of the Rademacher bounds (22), (25) and (26) to
particular transductive algorithms. In Section 6.1 we instantiate the generic ULR bound
(22) for the SGT algorithm of Joachims (2003). In Section 6.2 we instantiate kernel-ULR
bound (25) for the algorithm of Belkin et al. (2004). Finally, in Section 6.3 we instantiate
all three bounds (22), (25) and (26) for the algorithm of Zhou et al. (2004) and compare
the resulting bounds numerically.

6.1 The Spectral Graph Transduction (SGT) Algorithm of Joachims (2003)

We start with a description of a simplified version of SGT that captures the essence of the
algorithm.12 Let W be a symmetric (m+ u)× (m+ u) similarity matrix of the full-sample

10. These vectors can be found from the singular value decomposition of U .
11. An application of this approach in induction seems to be very hard, if not impossible. For example, in

the case of RBF kernel machines we will need to optimize over (typically) infinite-dimensional vectors
in the feature space.

12. We omit a few heuristics that are optional in SGT. Their exclusion does not affect the error bound we
derive.
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Xm+u. The (i, j)th entry of W represents the similarity between xi and xj. The matrix W
can be constructed in various ways, for example, it can be a k-nearest neighbors graph. In
such graph each vertex represents example from the full sample Xm+u. There is an edge
between a pair of vertices if one of the corresponding examples is among k most similar
examples to the other. The weights of the edges are proportional to the similarity of the
adjacent vertices (points). The examples of commonly used measures of similarity are cosine
similarity and RBF kernel. Let D be a diagonal matrix, whose (i, i)th entry is the sum of
the ith row in W . An unnormalized Laplacian of W is L = D −W .

Let r ∈ {1, . . . ,m + u − 1} be fixed, {λi,vi}m+u
i=1 be eigenvectors and eigenvalues of L

such that 0 = λ1 ≤ . . . ≤ λm+u and L̃ =
∑r+1

i=2 i2vvT . Let τ = (τ1, . . . , τm+u) be a vector
that specifies the given labels in Sm; that is, τi ∈ {±1} for labeled points, and τi = 0
otherwise. Let c be a fixed constant and 1 be an (m+u)× 1 vector whose entries are 1 and
let C be a diagonal matrix such that C(i, i) = 1/m iff example i is in the training set (and
zero otherwise). The soft classification h∗ produced by the SGT algorithm is the solution
of the following optimization problem:

min
h∈Rm+u

hT L̃h+ c(h− �τ)TC(h− �τ) (27)

s.t. hT1 = 0, hTh = m+ u. (28)

It is shown by Joachims (2003) that h∗ = Uα, where U is an (m+ u)× r matrix whose
columns are vi’s, 2 ≤ i ≤ r + 1, and α is an r × 1 vector. While α depends on both the
training and test sets, the matrix U depends only on the unlabeled full-sample. Substituting
h∗ = Uα for the second constraint in (28) and using the orthonormality of the columns of
U , we get m + u = h∗Th∗ = αTUTUα = αTα. Hence, ‖α‖2 =

√
m+ u and we can take

μ1 =
√
m+ u. Since U is an (m+u)×r matrix with orthonormal columns, ‖U‖2Fro = r. We

conclude from (22) the following bound on transductive Rademacher complexity of SGT

Rm+u(Hout) ≤
√
2r

(
1
m
+
1
u

)
, (29)

where r is the number of non-zero eigenvalues of L. Notice that the bound (29) is oblivious
to the magnitude of these eigenvalues. With the small value of r the bound (29) is small,
but, as shown by Joachims (2003) the test error of SGT is bad. If r increases then the bound
(29) increases but the test error improves. Joachims shows empirically that the smallest
value of r achieving nearly optimal test error is 40.

6.2 Kernel-ULR of the Algorithm of Belkin et al. (2004)

By defining the RKHS induced by the graph (unnormalized) Laplacian, as it was done by
Herbster, Pontil, and Wainer (2005), and applying a generalized representer theorem of
Schölkopf, Herbrich, and Smola (2001), we show that the algorithm of Belkin et al. (2004)
has a kernel-ULR. Based on this kernel-ULR we derive an explicit risk bound for this. We
also derive an explicit risk bound based on generic ULR. We show that the former (kernel)
bound is tighter than the latter (generic) one. Finally, we compare our kernel bound with
the risk bound of Belkin et al. (2004). The proofs of all lemmas in this section appear in
Appendix G.
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The algorithm of Belkin et al. (2004) is similar to the SGT algorithm, described in
Section 6.1. Hence in this appendix we use the same notation as in the description of SGT
(see Section 6.1). The algorithm of Belkin et al. is formulated as follows.

min
h∈Rm+u

hTLh+ c(h− �τ)TC(h− �τ) (30)

s.t. hT1 = 0 (31)

The difference between (30)-(31) and (27)-(28) is in the constraint (28), which may change
the resulting hard classification. Belkin et al. developed a stability-based error bound for
the algorithm based on a connected graph. In the analysis that follows we also assume that
the underlying graph is connected, but as shown at the end of this section, the argument
can be also extended to unconnected graphs.

We represent a full-sample labeling as a vector in the Reproducing Kernel Hilbert Space
(RKHS) associated with the graph Laplacian (as described by Herbster et al., 2005) and
derive a transductive version of the generalized representer theorem of Schölkopf et al.
(2001). Considering (30)-(31) we set H = {h | hT1 = 0, h ∈ R

m+u}. Let h1,h2 ∈ H be
two soft classification vectors. We define their inner product as

〈h1,h2〉L �= hT
1 Lh2 . (32)

We denote by HL the set H along with the inner product (32). Let λ1, . . . , λm+u be the
eigenvalues of L in the increasing order. Since L is a Laplacian of the connected graph,
λ1 = 0 and for all 2 ≤ i ≤ m + u, λi �= 0. Let ui be an eigenvector corresponding to λi.
Since L is symmetric, the vectors {ui}m+u

i=1 are orthogonal. We assume also w.l.o.g. that
the vectors {ui}m+u

i=1 are orthonormal and u1 = 1√
m+u

1. Let

U
�=

m+u∑
i=2

1
λi

uiuT
i . (33)

Note that the matrix U depends only on the unlabeled full-sample.

Lemma 7 (Herbster et al., 2005) The space HL is an RKHS with a reproducing kernel
matrix U .

A consequence of Lemma 7 is that the algorithm (30)-(31) performs the regularization in the
RKHS HL with the regularization term ‖h‖2L = hTLh (this fact was also noted by Herbster
et al., 2005). The following transductive variant of the generalized representer theorem
of Schölkopf et al. (2001) concludes the derivation of the kernel-ULR of the algorithm of
Belkin et al. (2004).

Lemma 8 Let h∗ ∈ H be the solution of the optimization problem (30)-(31), and let U be
defined as above. Then, there exists α ∈ R

m+u such that h∗ = Uα.

Remark 9 We now consider the case of an unconnected graph. Let t be the number of
connected components in the underlying graph. Then the zero eigenvalue of the Laplacian
L has multiplicity t. Let u1, . . . ,ut be the eigenvectors corresponding to the zero eigen-
value of L. Let ut+1, . . . ,um+u be the eigenvectors corresponding to non-zero eigenvalues
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λt+1, . . . , λm+u of L. We replace constraint (31) with t constraints hTui = 0 and define the
kernel matrix as U

�=
∑m+u

i=t+1
1
λi

uiuT
i . The rest of the analysis is the same as for the case

of the connected graph.

To obtain the explicit bounds on the transductive Rademacher complexity of the algo-
rithm of Belkin et al. it remains to bound

√
αTUα and ‖α‖2. We start with bounding√

αTUα.
We substitute h = Uα into (30)-(31). Since u2, . . . ,um+u are orthogonal to u1 =

1√
m+u

1, we have that hT1 = αTUT1 = αT
∑m+u

i=2
1
λi

uiuT
i 1 = 0. Moreover, we have that

hTLh = αTUTLUα = αT
(
I − 1

m+u1 · 1T
)
Uα = αTUα. Thus (30)-(31) is equivalent to

solving
min

α∈Rm+u
αTUα+ c(Uα− �τ)TC(Uα− �τ) (34)

and outputting h∗ = Uαout, where αout is the solution of (34). Let 0 be the (m + u) × 1
vector consisting of zeros. We have

αT
outUαout ≤ αT

outUαout + c(Uαout − �τ)TC(Uαout − �τ)
≤ 0TU0+ c(U0− �τ)TC(U0− �τ) = c .

Thus √
αT
outUαout ≤

√
c

�= μ2 . (35)

Let λ1, . . . , λm+u be the eigenvalues of U , sorted in the increasing order. It follows from
(33) that λ1 = 0 and for any 2 ≤ i ≤ m + u, λi = 1

λm+u−i+2
, where λ1, . . . , λm+u are the

eigenvalues of L sorted in the increasing order.
We substitute the bound (35) into (25), and obtain that the kernel bound is√√√√ 2c

mu

m+u∑
i=2

λi =

√√√√ 2c
mu

m+u∑
i=2

1
λi

.

Suppose that13
∑m+u

i=2
1
λi
= O(m + u). We substitute the kernel bound into (15) and

obtain that with probability at least 1− δ over the random training/test partition,

Lu(h) ≤ L̂γm(h) +O

(
1√

min(m,u)

)
. (36)

We briefly compare this bound with the risk bound for the algorithm (30)-(31) given by
Belkin et al. (2004). Belkin et al. provide the following bound for their algorithm14. With
probability of at least 1− δ over the random draw of m training examples from Xm+u,

Lm+u(h) ≤ L̂γm(h) +O

(
1√
m

)
. (37)

13. This assumption is not restricting since we can define the matrix L and its spectrum after observing the
unlabeled full-sample. Thus we can set L in a way that this assumption will hold.

14. The original bound of Belkin et al. is in terms of squared loss. The equivalent bound in terms of 0/1
and margin loss can be obtained by the same derivation as in the paper of Belkin et al. (2004).
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Similarly to what was done in Section 4.3, to bring the bounds to ‘common denominator’,
we rewrite the bound (36) as

Lu(h) ≤ L̂γm(h) +
u

m+ u
O

(
1√

min(m,u)

)
. (38)

If m� u or m ≈ u then the bounds (37) and (38) have the same convergence rate. However
if m� u then the convergence rate of (38) (which is O(1/(m

√
u))) is much faster than the

one of (37) (which is O(1/
√
m)).

6.3 The Consistency Method of Zhou et al. (2004)

In this section we instantiate the bounds (22), (25) and (26) to the “consistency method”
of Zhou et al. (2004) and provide their numerical comparison.

We start with a brief description of the Consistency Method (CM) algorithm of Zhou
et al. (2004). The algorithm has a natural vanilla ULR (see definition at the beginning
of Section 5), where the matrix U is computed as follows. Let W and D be matrices as
in SGT (see Section 6.1). Let L

�= D−1/2WD−1/2 and β be a parameter in (0, 1). Then,
U

�= (1 − β)(I − βL)−1 and the output of CM is h = U · α, where α specifies the given
labels. Consequently ‖α‖2 =

√
m. The following lemma, proven in Appendix H, provides

a characterization of the eigenvalues of U :

Lemma 9 Let λmax and λmin be, respectively, the largest and smallest eigenvalues of U .
Then λmax = 1 and λmin > 0.

It follows from Lemma 9 that U is a positive definite matrix and hence is also a kernel
matrix. Therefore, the decomposition with the above U is a kernel-ULR. To apply the kernel
bound (25) we compute the bound μ2 on

√
αTUα. By the Rayleigh-Ritz theorem (Horn

& Johnson, 1990), we have that αTUα
αT α

≤ λmax. Since by the definition of the vanilla ULR,
αTα = m, we obtain that

√
αTUα ≤

√
λmaxαTα =

√
λmaxm.

We obtained that μ1 =
√
m and μ2 =

√
λmaxm, where λmax is the maximal eigenvalue

of U . Since by Lemma 9 λmax = 1, for the CM algorithm the bound (22) is always tighter
than (25).

It turns out that for CM, the exact value of the supremum in (26) can be analytically
derived. Recall that the vectors α, which induce the CM hypothesis space for a particular
U , have exactly m components with values in {±1}; the rest of the components are zeros.
Let Ψ be the set of all possible such α’s. Let t(σi) = (t1, . . . , tm+u)

�= σT
i U ∈ R

1×(m+u)

and |t(σi)| �= (|t1|, . . . , |tm+u|). Then, for any fixed σi, supα∈Ψ σT
i Uα is the sum of the m

largest elements in |t(σi)|. This derivation holds for any vanilla ULR.
To demonstrate the Rademacher bounds discussed in this paper we present an empirical

comparison of the bounds over two datasets (Voting, Pima) from the UCI repository15. For
each dataset we took m+ u to be the size of the dataset (435 and 768 respectively) and we
took m to be 1/3 of the full-sample size. The matrix W is the 10-nearest neighbors graph
computed with the cosine similarity metric. We applied the CM algorithm with β = 0.5. The
Monte-Carlo bounds (both upper and lower) were computed with δ = 0.05 and n = 105.

15. We also obtained similar results for several other UCI datasets.
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Figure 1: A comparison of transductive Rademacher bounds.

We compared upper and lower Mote-Carlo bounds with the generic ULR bound (22)
and the kernel-ULR bound (25). The graphs in Figure 1 compare these four bounds for
each of the datasets as a function of the number of non-zero eigenvalues of U . Specifically,
each point t on the x-axis corresponds to bounds computed with a matrix Ut that approxi-
mates U using only the smallest t eigenvalues of U . In both examples the lower and upper
Monte-Carlo bounds tightly “sandwich” the true Rademacher complexity. It is striking
that generic-ULR bound is very close to the true Rademacher complexity. In principle,
with our simple Monte-Carlo method we can approximate the true Rademacher complexity
up to any desired accuracy (with high confidence) at the cost of drawing sufficiently many
Rademacher vectors.

7. PAC-Bayesian Bound for Transductive Mixtures

In this section we adapt part of the results of Meir and Zhang (2003) to transduction. The
proofs of all results presented in this section appear in Appendix I.

Let B = {hi}|B|i=1 be a finite set of base-hypotheses. The class B can be formed after
observing the full-sample Xm+u, but before obtaining the training/test set partition and
the labels. Let q = (q1, . . . , q|B|) ∈ R

|B| be a probability vector, i.e.
∑|B|

i=1 qi = 1 and qi ≥ 0
for all 1 ≤ i ≤ |B|. The vector q can be computed after observing training/test partition
and the training labels. Our goal is to find the “posterior” vector q such that the mixture
hypothesis h̃q

�=
∑|B|

i=1 qihi minimizes Lu(h̃q) = 1
u

∑m+u
j=m+1 �

(∑|B|
i=1 qihi(j), yj

)
.

In this section we derive a uniform risk bound for a set of q’s. This bound depends on
the KL-divergence (see the definition below) between q and the “prior” probability vector
p ∈ R

|B|, where the vector p is defined based only on the unlabeled full-sample. Thus
our forthcoming bound (see Theorem 4) belongs to the family of PAC-Bayesian bounds
(McAllester, 2003; Derbeko et al., 2004), which depend on prior and posterior information.
Notice that our bound, is different from the PAC-Bayesian bounds for Gibbs classifiers that
bound Eh∼B(q)Lu(h) = 1

u

∑m+u
j=m+1 Eh∼B(q)�(h(j), yj), where h ∼ B(q) is a random draw of

the base hypothesis from B according to distribution q.
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Remark 10 As by one of the reviewers noted, by Jensen inequality Lu(h̃q) ≤ Eh∼B(q)Lu(h).
Hence any risk bound for transductive Gibbs classifier holds true also for transductive mix-
ture classifier. Currently known risk bound for transductive Gibbs classifiers (Theorem 18
in the paper of Derbeko et al., 2004) diverges when u → ∞. Our forthcoming risk bound
(41) has no such deficiency.

We assume that q belongs to domain Ωg,A = {q | g(q) ≤ A}, where g : R
|B| →

R is a predefined function and A ∈ R is a constant. The domain Ωg,A and the set B
induce the class B̃g,A of all possible mixtures h̃q. Recalling that Q

�= (1/m + 1/u), S �=
m+u

(m+u−0.5)(1−0.5/max(m,u)) and c0 =
√
32 ln(4e)/3 < 5.05, we apply Theorem 2 with Hout

�=

B̃g,A and obtain that with probability of at least 1 − δ over the training/test partition of
Xm+u, for all h̃q ∈ B̃g,A,

Lu(h̃q) ≤ L̂γm(h̃q) +
Rm+u(B̃g,A)

γ
+ c0Q

√
min(m,u) +

√
S

2
Q ln

1
δ
. (39)

Let Q1
�=

√
S
2Q (ln(1/δ) + 2 ln logs (sg̃(q)/g0)). It is straightforward to apply the technique

used in the proof of Theorem 10 of Meir and Zhang (2003) and obtain the following bound,
which eliminates the dependence on A.

Corollary 2 Let g0 > 0, s > 1 and g̃(q) = smax(g(q), g0). For any fixed g and γ > 0,
with probability of at least 1− δ over the training/test set partition, for all16 h̃q,

Lu(h̃q) ≤ L̂γm(h̃q) +
Rm+u(B̃g,g̃(q))

γ
+ c0Q

√
min(m,u) +Q1 . (40)

We now instantiate Corollary 2 for g(q) being the KL-divergence and derive a PAC-Bayesian
bound. Let g(q) �= D(q‖p) =∑|B|

i=1 qi ln
(
qi
pi

)
be KL-divergence between p and q. Adopting

Lemma 11 of Meir and Zhang (2003) to the transductive Rademacher variables, defined in
(1), we obtain the following bound.

Theorem 4 Let g0 > 0, s > 1, γ > 0. Let p and q be any prior and posterior distribution
over B, respectively. Set g(q) �= D(q‖p) and g̃(q) �= smax(g(q), g0). Then, with probability
of at least 1− δ over the training/test set partition, for all h̃q,

Lu(h̃q) ≤ L̂γm(h̃q) +
Q

γ

√
2g̃(q) sup

h∈B
‖h‖22 + c0Q

√
min(m,u) +Q1 . (41)

Theorem 4 is a PAC-Bayesian result, where the prior p can depend on Xm+u and the poste-
rior can be optimized adaptively, based also on Sm. As our general bound (15), the bound
(41) has the convergence rate of O(1/

√
min(m,u)). The bound (41) is syntactically similar

to inductive PAC-Bayesian bound for mixture hypothesis (see Theorem 10 and Lemma 11
in the paper of Meir & Zhang, 2003), having similar convergence rate of O(1/

√
m). However

the conceptual difference between inductive and transductive bounds is that in transduction
we can define the prior vector p after observing the unlabeled full-sample and in induction
we should define p before observing any data.

16. In the bound (40) the meaning of Rm+u( eBg,eg(q)) is as follows: for any q, let A = eg(q) and

Rm+u( eBg,g̃(q))
�
= Rm+u( eBg,A).

217



El-Yaniv & Pechyony

8. Concluding Remarks

We studied the use of Rademacher complexity analysis in the transductive setting. Our
results include the first general Rademacher bound for soft classification algorithms, the
unlabeled-labeled representation (ULR) technique for bounding the Rademacher complexity
of any transductive algorithm and a bound for Bayesian mixtures. We demonstrated the
usefulness of these results and, in particular, the effectiveness of our ULR framework for
deriving error bounds for several advanced transductive algorithms.

It would be nice to further improve our bounds using, for example, the local Rademacher
approach of Bartlett, Bousquet, and Mendelson (2005). However, we believe that the main
advantage of these transductive bounds is the possibility of selecting a hypothesis space
based on a full-sample. A clever data-dependent choice of this space should provide sufficient
flexibility to achieve a low training error with low Rademacher complexity. In our opinion
this opportunity can be explored and exploited much further. In particular, it would be
interesting to develop an efficient procedure for the choice of hypothesis space if the learner
knows the properties of the underlying distribution (e.g., if the clustering assumption holds).

This work opens up new avenues for future research. For example, it would be interesting
to optimize the matrix U in the ULR explicitly (to fit the data) under a constraint of low
Rademacher complexity. Also, it would be nice to find “low-Rademacher” approximations
of particular U matrices. The PAC-Bayesian bound for mixture algorithms motivates the
development and use of transductive mixtures, an area that has yet to be investigated.
Finally, it would be interesting to utilize our bounds in model selection process.

Acknowledgments

We are grateful to anonymous reviewers for their insightful comments. We also thank
Yair Wiener and Nati Srebro for fruitful discussions. Dmitry Pechyony was supported in
part by the IST Programme of the European Community, under the PASCAL Network of
Excellence, IST-2002-506778.

Appendix A. Proof of Lemma 1

The proof is based on the technique used in the proof of Lemma 5 in the paper of Meir
and Zhang (2003). Let σ = (σ1, . . . , σm+u)T be the Rademacher random variables of
Rm+u(V, p1) and τ = (τ1, . . . , τm+u)T be the Rademacher random variables of Rm+u(V, p2).
For any real-valued function g(v), for any n ∈ Im+u

1 and any v′ ∈ V,

sup
v∈V

[g(v)] = Eτn

{
τnv
′
n + sup

v∈V
[g(v)]

∣∣∣∣∣ τn �= 0
}
≤ Eτn

{
sup
v∈V

[τnvn + g(v)]

∣∣∣∣∣ τn �= 0
}

.

(42)
We use the abbreviation τ s1

�= τ1, . . . , τs. We apply (42) with a fixed τn−11 and g(v) �=
f(v) +

∑n−1
i=1 τivi, and obtain that

sup
v∈V

[
n−1∑
i=1

τivi + f(v)

]
≤ Eτn

{
sup
v∈V

[
n∑
i=1

τivi + f(v)

] ∣∣∣∣∣ τn �= 0
}

. (43)
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To complete the proof of the lemma, we prove a more general claim: for any real-valued
function f(v), for any 0 ≤ n ≤ m+ u,

Eσ

{
sup
v∈V

[
n∑
i=1

σivi + f(v)

]}
≤ Eτ

{
sup
v∈V

[
n∑
i=1

τivi + f(v)

]}
. (44)

The proof is by induction on n. The claim trivially holds for n = 0 (in this case (44) holds
with equality). Suppose the claim holds for all k < n and all functions f(v). We use the
abbreviation σs1

�= σ1, . . . , σs. For any function f ′(v) have

Eσn
1
sup
v∈V

[
n∑
i=1

σivi + f ′(v)

]

= 2p1

{
1
2
Eσn−1

1
sup
v∈V

[
n−1∑
i=1

σivi + vn + f ′(v)

]
+
1
2
Eσn−1

1
sup
v∈V

[
n−1∑
i=1

σivi − vn + f ′(v)

]}

+(1− 2p1)Eσn−1
1

sup
v∈V

[
n−1∑
i=1

σivi + f ′(v)

]

≤ 2p1

{
1
2
Eτn−1

1
sup
v∈V

[
n−1∑
i=1

τivi + vn + f ′(v)

]
(45)

+
1
2
Eτn−1

1
sup
v∈V

[
n−1∑
i=1

τivi − vn + f ′(v)

]}
+ (1− 2p1)Eτn−1

1
sup
v∈V

[
n−1∑
i=1

τivi + f ′(v)

]

= Eτn−1
1

{
2p1Eτn

{
sup
v∈V

[
n∑
i=1

τivi + f ′(v)

] ∣∣∣∣∣ τn �= 0
}
+ (1− 2p1) sup

v∈V

[
n−1∑
i=1

τivi + f ′(v)

]}

= Eτn−1
1

{
2p1

(
Eτn

{
sup
v∈V

[
n∑
i=1

τivi + f ′(v)

] ∣∣∣∣∣ τn �= 0
}
− sup

v∈V

[
n−1∑
i=1

τivi + f ′(v)

])

+ sup
v∈V

[
n−1∑
i=1

τivi + f ′(v)

]}

≤ Eτn−1
1

{
2p2

(
Eτn

{
sup
v∈V

[
n∑
i=1

τivi + f ′(v)

] ∣∣∣∣∣ τn �= 0
}
− sup

v∈V

[
n−1∑
i=1

τivi + f ′(v)

])

+ sup
v∈V

[
n−1∑
i=1

τivi + f ′(v)

]}
(46)

= Eτn−1
1

{
2p2Eτn

{
sup
v∈V

[
n∑
i=1

τivi + f ′(v)

] ∣∣∣∣∣ τn �= 0
}

+(1− 2p2) sup
v∈V

[
n−1∑
i=1

τivi + f ′(v)

]}

= Eτn
1
sup
v∈V

[
n∑
i=1

τivi + f ′(v)

]
.
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The inequality (45) follow from the inductive hypothesis, applied thrice with f(v) = vn +
f ′(v), f(v) = −vn+ f ′(v) and f(v) = f ′(v). The inequality (46) follows from (43) and the
fact that p1 < p2.

Appendix B. Proof of Lemma 2

We require the following standard definitions and facts about martingales.17 Let Bn
1

�=
(B1, . . . , Bn) be a sequence of random variables and bn

1
�= (b1, . . . , bn) be their respective

values. The sequence Wn
0

�= (W0,W1, . . . ,Wn) is called a martingale w.r.t. the underlying
sequence Bn

1 if for any i ∈ In1 , Wi is a function of Bi
1 and EBi

{
Wi|Bi−1

1

}
=Wi−1.

Let f(Xn
1 )

�= f(X1, . . . ,Xn) be an arbitrary function of n (possibly dependent) random
variables. Let W0

�= EXn
1
{f(Xn

1 )} and Wi
�= EXn

1

{
f(Xn

1 )|Xi
1

}
for any i ∈ In1 . An elemen-

tary fact is thatWn
0 is a martingale w.r.t. the underlying sequence Xn

1 . Thus we can obtain
a martingale from any function of (possibly dependent) random variables. This routine of
obtaining a martingale from an arbitrary function is called Doob’s martingale process. By
the definition of Wn we have Wn = EXn

1
{f(Xn

1 )|Xn
1} = f(Xn

1 ). Consequently, to bound
the deviation of f(Xn

1 ) from its mean it is sufficient to bound the difference Wn −W0. A
fundamental inequality, providing such a bound, is McDiarmid’s inequality (McDiarmid,
1989).

Lemma 10 (McDiarmid, 1989, Corollary 6.10) Let Wn
0 be a martingale w.r.t. Bn

1 .
Let bn

1 = (b1, . . . , bn) be the vector of possible values of the random variables B1, . . . , Bn.
Let

ri(bi−1
1 ) �= sup

bi

{
Wi : Bi−1

1 = bi−1
1 , Bi = bi

}− inf
bi

{
Wi : Bi−1

1 = bi−1
1 , Bi = bi

}
.

Let r2(bn
1 )

�=
∑n

i=1(ri(b
i−1
1 ))2 and r̂2

�= supbn
1
r2(bn

1 ). Then,

PBn
1
{Wn −W0 > ε} < exp

(
−2ε

2

r̂2

)
. (47)

The inequality (47) is an improved version of the Hoeffding-Azuma inequality (Hoeffding,
1963; Azuma, 1967).

The proof of Lemma 2 is inspired by McDiarmid’s proof of the bounded difference
inequality for permutation graphs (McDiarmid, 1998, Section 3). LetWm+u

0 be a martingale
obtained from f(Z) by Doob’s martingale process, namely W0

�= EZm+u
1

{
f(Zm+u

1 )
}
and

Wi
�= EZm+u

1

{
f(Zm+u

1 )|Zi
1

}
. We compute the upper bound on r̂2 and apply Lemma 10.

Fix i, i ∈ Im1 . Let πππm+u
1 = π1, . . . , πm+u be a specific permutation of Im+u

1 and π′i ∈
{πi+1, . . . , πm+u}. Let p1

�= Pj∼Im+u
i+1

{
j ∈ Imi+1

}
= m−i

m+u−i and p2
�= Pj∼Im+u

i+1

{
j ∈ Im+u

m+1

}
=

17. See, e.g., Chapter 12 of Grimmett and Stirzaker (1995), and Section 9.1 of Devroye et al. (1996) for more
details.
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1− p1 = u
m+u−i . We have

ri(πππi−1
1 ) = sup

πi

{
Wi : Bi−1

1 = πππi−1
1 , Bi = πi

}− inf
πi

{
Wi : Bi−1

1 = πππi−11 , Bi = πi
}

= sup
πi,π′i

{
EZ

{
f(Z) | Zi−1

1 = πππi−11 , Zi = πi
}−EZ

{
f(Z) | Zi−1

1 = πππi−11 , Zi = π′i
}}

= sup
πi,π′i

{
Ej∼Im+u

i+1
EZ

{
f(Z) | Zi−1

1 = πππi−11 , Zi = πi, Zj = π′i
}

− Ej∼Im+u
i+1

EZ

{
f(Zij) | Zi−1

1 = πππi−11 , Zi = πi, Zj = π′i
}}

= sup
πi,π′i

{
Ej∼Im+u

i+1
EZ

{
f(Z)− f(Zij) | Zi−1

1 = πππi−1
1 , Zi = πi, Zj = π′i

}}
(48)

= sup
πi,π′i

{
p1 ·EZ,j∼Im

i+1

{
f(Z)− f(Zij) | Zi−1

1 = πππi−11 , Zi = πi, Zj = π′i
}

(49)

+ p2 · EZ,j∼Im+u
m+1

{
f(Z)− f(Zij) | Zi−1

1 = πππi−11 , Zi = πi, Zj = π′i
}}

Since f(Z) is (m,u)-permutation symmetric function, the expectation in (49) is zero. There-
fore,

ri(πππi−11 ) = sup
πi,π′i

{
p2 · EZ,j∼Im+u

m+1

{
f(Z)− f(Zij) | Zi−1

1 = πππi−11 , Zi = πi, Zj = π′i
}}

≤ uβ

m+ u− i
.

Since f(Z) is (m,u)-permutation symmetric, it also follows from (48) that for i ∈ Im+u
m+1 ,

ri(πππi−1
1 ) = 0. It can be verified that for any j > 1/2, 1

j2
≤ ∫ j+1/2

j−1/2
1
t2
dt, and therefore,

r̂2 = sup
πππm+u
1

m+u∑
i=1

(
ri(πππi−11 )

)2 ≤ m∑
i=1

(
uβ

m+ u− i

)2

= u2β2
m+u−1∑
j=u

1
j2

≤ u2β2

∫ m+u−1/2

u−1/2

1
t2
dt =

mu2β2

(u− 1/2)(m + u− 1/2) . (50)

By applying Lemma 10 with the bound (50) we obtain

PZ {f(Z)−EZ {f(Z)} ≥ ε} ≤ exp
(
−2ε

2(u− 1/2)(m + u− 1/2)
mu2β2

)
. (51)

The entire derivation is symmetric in m and u. Therefore, we also have

PZ {f(Z)−EZ {f(Z)} ≥ ε} ≤ exp
(
−2ε

2(m− 1/2)(m + u− 1/2)
m2uβ2

)
. (52)

By taking the tightest bound from (51) and (52) we obtain the statement of the lemma.
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Appendix C. Proof of Lemma 3

We consider the following algorithm18 (named RANDPERM) for drawing the first m elements
{Zi}mi=1 of the random permutation Z of Im+u

1 :

1: Let Zi = i for any i ∈ Im+u
1 .

2: for i = 1 to m do
3: Draw di uniformly from Im+u

i .
4: Swap the values of Zi and Zdi

.
5: end for

Algorithm 1: RANDPERM - draw the first m elements of the random permutation of m+ u
elements.

The algorithm RANDPERM is an abridged version of the procedure of drawing a random
permutation of n elements by drawing n−1 non-identically distributed independent random
variables, presented in Section 5 of the paper of Talagrand (1995) (which according to
Talagrand is due to Maurey, 1979).

Lemma 11 The algorithm RANDPERM performs a uniform draw of the first m elements
Z1, . . . , Zm of the random permutation Z.

Proof: The proof is by induction on m. If m = 1, then a single random variable d1 is
uniformly drawn among Im+u, and therefore, Z1 has a uniform distribution over Im+u

1 . Let
dm
1

�= d1, . . . , dm. Suppose the claim holds for all m1 < m. For any two possible values
πππm1

�= π1, . . . , πm and πππ′m1
�= π′1, . . . , π′m of Z1, . . . , Zm, we have

Pdm
1
{Zm

1 = πππm1 } = Pdm−1
1

{Zm−1
1 = πππm−11 } ·Pdm{Zm = πm | Zm−1

1 = πππm−1
1 }

= Pdm−1
1

{Zm−1
1 = πππ′m−11 } · 1

u+ 1
(53)

= Pdm−1
1

{Zm−1
1 = πππ′m−11 } ·Pdm{Zm = π′m | Zm−1

1 = πππ′m−11 }
= Pdm

1
{Zm

1 = πππ′m1 } .

The equality (53) follows from the inductive assumption and the definition of dm. �

Consider any (m,u)-permutation symmetric function f = f(Z) over random permuta-
tions Z. Using the algorithm RANDPERM we can represent any random permutation Z as a
function g(d) of m independent random variables. The value of the function g(d) is the
output of the algorithm RANDPERM operated with the values of random draws given by d.
The next lemma relates the Lipschitz constant of the function f(g(d)) to the Lipschitz
constant of f(Z):

18. Another algorithm for generating random permutation from independent draws was presented in Ap-
pendix B of Lanckriet et al. (2004). This algorithm draws a random permutation by means of drawing
m + u independent random variables. Since we only deal with (m, u)-permutation symmetric functions,
we are only interested in the first m elements of the random permutation. The algorithm of Lanckriet
et al. needs m + u draws of independent random variables to define the above m elements. The algo-
rithm RANDPERM, presented in this section, needs only m draws. If we use the algorithm of Lanckriet
et al. instead of RANDPERM, the forthcoming bound (55) would have the term m + u instead of m. This
change, in turn, would result in a non-convergent risk bound being derived using our techniques.
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Lemma 12 Let f(Z) be an (m,u)-permutation symmetric function of random permutation
Z. Suppose that for all i ∈ Im1 , j ∈ Im+u

m+1 , |f(Z) − f(Zij)| ≤ β. Let d′i be an independent
draw of the random variable di. Then for any i ∈ Im1 ,

|f(g(d1, . . . , di−1, di, di+1, . . . , dm))− f(g(d1, . . . , di−1, d′i, di+1, . . . , dm))| ≤ β . (54)

Proof: The values of d �= (d1, . . . , di, . . . , dm) and d′ �= (d1, . . . , d′i, . . . , dm) induce, re-
spectively, the first m values19 Zm

1 = {Z1, . . . , Zm} and Z′m1 = {Z ′1, . . . , Z ′m} of the two
dependent permutations of Im+u

1 . Since f is (m,u)-permutation symmetric, its value is
uniquely determined by the value of Zm

1 . We prove that the change of di by d′i results in a
change of a single element in Zm

1 . Combined with the property of |f(Z)− f(Zij)| ≤ β, this
will conclude the proof of (54).

We refer to d and d′ as, respectively, ‘old’ and ‘new’ draws. Consider the operation
of RANDPERM with the draws d and d′. Let πi, πdi

and πd′i be the values of, respectively,
Zi, Zdi

and Zd′i just before the ith iteration of RANDPERM. Note that di ≥ i and d′i ≥ i.
In the old permutation, after the ith iteration Zi = πdi

, Zdi
= πi and Zd′i = πd′i . In the

new permutation, after the ith iteration Zi = πd′i , Zdi
= πdi

and Zd′i = πi. After the ith
iteration of RANDPERM the value of Zi remains intact. However the values of Zdi

and Zd′i
may change. In particular the values of πdi

and πi may be among Zi+1, . . . , Zm at the end
of the run of RANDPERM. We have four cases:

Case 1 If πd′i /∈ Zm
1 and πi /∈ Zm

1 then πdi
/∈ Z′m1 , πi /∈ Z′m1 and Z′m1 = Zm

1 \{πdi
} ∪ {πd′i}.

Case 2 If πd′i ∈ Zm
1 and πi ∈ Zm

1 then πdi
∈ Z′m1 , πi ∈ Z′m1 and Z′m1 = Zm

1 .

Case 3 If πi ∈ Zm
1 and πd′i /∈ Zm

1 then πdi
∈ Z′m1 , πi /∈ Z′m1 and Z′m1 = Zm

1 \{πi} ∪ {πd′i}.
Case 4 If πd′i ∈ Zm

1 and πi /∈ Zm
1 then πi ∈ Z′m1 , πdi

/∈ Z′m1 and Z′m1 = Zm
1 \{πdi

} ∪ {πi}.
�

We apply a bounded difference inequality of McDiarmid (1989) to f(g(d)) and obtain

Pd {f(g(d)) −Ed {f(g(d))} ≥ ε} ≤ exp
(
− 2ε2

β2m

)
. (55)

Since f(Z) is a (m,u)-permutation symmetric, it follows from (55) that

PZ {f(Z)−EZ {f(Z)} ≥ ε} ≤ exp
(
− 2ε2

β2m

)
. (56)

Since the entire derivation is symmetric in m and u we also have

PZ {f(Z)−EZ {f(Z)} ≥ ε} ≤ exp
(
− 2ε

2

β2u

)
. (57)

The proof of Lemma 3 is completed by taking the minimum of the bounds (56) and (57).

19. For notational convenience in this section, we refer to Zm
1 as a set of values and not as a vector of values

(as is done in other sections).

223



El-Yaniv & Pechyony

Appendix D. Proof of Claims in Lemma 4

Proof of Claim 1. Note that N1 and N2 are random variables whose distribution is
induced by the distribution of σ̃. We have by (9) that

R̃m+u(V) = EN1,N2Eσ̃∼Rad(N1,N2) sup
v∈V

m+u∑
i=1

(σ̃i,1 + σ̃i,2) v(i) = EN1,N2s(N1, N2) .

Proof of Claim 2. By the definitions ofHk and Tk (appearing at the start of Section 4.1),
for any N1, N2 ∈ Im+u

1 we have

EZ,Z′ sup
v∈V

[
TN1{v(Z)} −TN2{v(Z′)}+HN2{v(Z′)} −HN1{v(Z)}

]
=

EZ,Z′ sup
v∈V

[
1
u

m+u∑
i=N1+1

v(Zi)− 1
u

m+u∑
i=N2+1

v(Z ′i) +
1
m

N2∑
i=1

v(Z ′i)−
1
m

N1∑
i=1

v(Zi)

︸ ︷︷ ︸
�
=r(v,Z,Z′,N1,N2)

]
. (58)

The values of N1 and N2, and the distribution of Z and Z′, with respect to which we take
the expectation in (58), induce a distribution of assignments of coefficients

{
1
m ,− 1

m , 1u ,− 1
u

}
to the components of v. For any N1, N2 and realizations of Z and Z′, each component v(i),
i ∈ Im+u

1 , is assigned to exactly two coefficients, one for each of the two permutations (Z
and Z′). Let a �= (a1, . . . , am+u), where ai

�= (ai,1, ai,2) is a pair of coefficients. For any
i ∈ Im+u

1 , the pair (ai,1, ai,2) takes the values of the coefficients of v(i), where the first
component is induced by the realization Z (i.e., ai,1 is either − 1

m or 1
u) and the second

component by the realization of Z′ (i.e., ai,2 is either 1
m or − 1

u).
Let A(N1, N2) be the distribution of vectors a, induced by the distribution of Z and Z′,

for particular N1, N2. Using this definition we can write

(58) = Ea∼A(N1,N2) sup
v∈V

[
m+u∑
i=1

(ai,1 + ai,2)v(i)

]
. (59)

Let Par(k) be the uniform distribution over partitions ofm+u elements into two subsets,
of k and m + u − k elements, respectively. Clearly, Par(k) is a uniform distribution over(

m+ u
k

)
elements. The distribution of the random vector (a1,1, a2,1, . . . , am+u,1) of the

first elements of pairs in a is equivalent to Par(N1). That is, this vector is obtained by
taking the first N1 indices of the realization of Z and assigning − 1

m to the corresponding
components. The other components are assigned to 1

u . Similarly, the distribution of the
random vector (a1,2, a2,2, . . . , am+u,2) is equivalent to Par(N2). Therefore, the distribution
A(N1, N2) of the entire vector a is equivalent to the product distribution of Par(N1) and

Par(N2), which is a uniform distribution over
(

m+ u
N1

)
·
(

m+ u
N2

)
elements, where each

element is a pair of independent permutations.
We show that the distributions Rad(N1, N2) and A(N1, N2) are identical. Given N1 and

N2 and setting ω = (m+u)2, the probability of drawing a specific realization of σ̃ (satisfying

224



Transductive Rademacher Complexity and its Applications

n1 + n2 = N1 and n2 + n3 = N2) is

(
m2

ω

)n2 (mu

ω

)N1−n2 (mu

ω

)N2−n2
(
u2

ω

)m+u−N1−N2+n2

=
mN1+N2u2(m+u)−N1−N2

(m+ u)2(m+u)
. (60)

Since (60) is independent of the ni’s, the distribution Rad(N1, N2) is uniform over all
possible Rademacher assignments satisfying the constraints N1 and N2. It is easy to see
that the support size of Rad(N1, N2) is the same as the support size of A(N1, N2). Moreover,
the support sets of these distributions are identical; hence these distributions are identical.
Therefore, it follows from (59) that

(58) = Eσ̃∼Rad(N1,N2)

{
sup
v∈V

[
m+u∑
i=1

(σ̃i,1 + σ̃i,2)v(i)

]}
= s(N1, N2) .

It is easy to see that Eσ̃N1 = Eσ̃{n1+n2} = m and that Eσ̃N2 = Eσ̃{n2+n3} = m. Since
EZ{ψ(Z)} is (58) with N1 = m and N2 = m, we have

EZ{ψ(Z)} = Eσ̃∼Rad(m,m)

{
sup
v∈V

[
m+u∑
i=1

(σ̃i,1 + σ̃i,2) v(i)

]}
= s (Eσ̃N1,Eσ̃N2) .

Proof of Claim 3.
We bound the differences |s(N1, N2)− s (N ′1, N2) | and |s(N1, N2)− s (N1, N

′
2) | for any

1 ≤ N1, N2, N
′
1, N

′
2 ≤ m + u. Suppose w.l.o.g. that N ′1 ≤ N1. Recalling the definition of

r(·) in (58) we have

s(N1, N2) = EZ,Z′ sup
v∈V

[
r(v,Z,Z′, N1, N2)

]

s(N ′1, N2) = EZ,Z′ sup
v∈V

[
r(v,Z,Z′, N1, N2) +

(
1
u
+
1
m

) N1∑
i=N ′1+1

v(Zi)

]
. (61)

The expressions under the supremums in s(N1, N2) and s(N ′1, N2) differ only in the two
terms in (61). Therefore, for any N1 and N ′1,

∣∣s(N1, N2)− s(N ′1, N2)
∣∣ ≤ Bmax

∣∣N1 −N ′1
∣∣ (1

u
+
1
m

)
. (62)

Similarly we have that for any N2 and N ′2,

∣∣s(N1, N2)− s(N1, N
′
2)
∣∣ ≤ Bmax

∣∣N2 −N ′2
∣∣ (1

u
+
1
m

)
. (63)

We use the following Bernstein-type concentration inequality (see Devroye et al., 1996,
Problem 8.3) for the binomial random variable X ∼ Bin(p, n): PX {|X −EX| > t} <

2 exp
(
− 3t2

8np

)
. Abbreviate Q

�= 1
m + 1

u . Noting that N1, N2 ∼ Bin
(

m
m+u ,m+ u

)
, we use
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(62), (63) and the Bernstein-type inequality (applied with n
�= m + u and p

�= m
m+u) to

obtain

PN1,N2 {|s(N1, N2)− s(Eσ̃ {N1} ,Eσ̃ {N2})| ≥ ε}
≤ PN1,N2 {|s(N1, N2)− s(N1,Eσ̃N2)|+ |s(N1,Eσ̃N2)− s(Eσ̃N1,Eσ̃N2)| ≥ ε}
≤ PN1,N2

{
|s(N1, N2)− s(N1,Eσ̃N2)| ≥ ε

2

}
+PN1,N2

{
|s(N1,Eσ̃N2)− s(Eσ̃N1,Eσ̃N2)| ≥ ε

2

}
≤ PN2

{
|N2 −Eσ̃N2|BmaxQ ≥ ε

2

}
+PN1

{
|N1 −Eσ̃N1|BmaxQ ≥ ε

2

}

≤ 4 exp

(
− 3ε2

32(m+ u) m
m+uB

2
maxQ

2

)
= 4exp

(
− 3ε2

32mB2
maxQ

2

)
.

Next we use the following fact (see Devroye et al., 1996, Problem 12.1): if a nonnegative
random variable X satisfies P{X > t} ≤ c · exp(−kt2) for some c ≥ 1 and k > 0, then
EX ≤√

ln(ce)/k. Using this fact, along with c
�= 4 and k

�= 3/(32mQ2), we have

|EN1,N2 {s(N1, N2)} − s(Eσ̃N1,Eσ̃N2)| ≤ EN1,N2 |s(N1, N2)− s(Eσ̃N1,Eσ̃N2)|

≤
√
32 ln(4e)

3
mB2

max

(
1
u
+
1
m

)2

.

Appendix E. Proof of Lemma 5

The proof is a straightforward extension of the proof of Lemma 5 from Meir and Zhang
(2003) and is also similar to the proof of our Lemma 1 in Appendix A. We prove a stronger
claim: if for all i ∈ Im+u

1 and v,v′ ∈ V, |f(vi)−f(v′i)| ≤ |g(vi)−g(v′i)|, then for any function
c̃ : Rm+u → R.

Eσ sup
v∈V

[
m+u∑
i=1

σif(vi) + c̃(v)

]
≤ Eσ sup

v∈V

[
m+u∑
i=1

σig(vi) + c̃(v)

]
.

We use the abbreviation σn1
�= σ1, . . . , σn. The proof is by induction on n, such that

0 ≤ n ≤ m+ u. The lemma trivially holds for n = 0. Suppose the lemma holds for n− 1.
In other words, for any function c̃(v),

Eσn−1
1

sup
v∈V

[
c̃(v) +

n−1∑
i=1

σif(vi)

]
≤ Eσn−1

1
sup
v∈V

[
c̃(v) +

n−1∑
i=1

σig(vi)

]
.

Let p
�= mu

(m+u)2
. We have

A
�= Eσn

1
sup
v∈V

[
c(v) +

n∑
i=1

σif(vi)

]
= EσnEσn−1

1
sup
v∈V

[
c(v) +

n∑
i=1

σif(vi)

]
(64)
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= pEσn−1
1

{
sup
v∈V

[
c(v) +

n−1∑
i=1

σif(vi) + f(vn)

]
+ sup

v∈V

[
c(v) +

n−1∑
i=1

σif(vi)− f(vn)

]}
(65)

+(1− 2p)Eσn−1
1

sup
v∈V

[
c(v) +

n−1∑
i=1

σif(vi)

]
. (66)

We apply the inductive hypothesis three times: on the first and second summands in (65)
with c̃(v) �= c(v)+f(vn) and c̃(v) �= c(v)−f(vn), respectively, and on (66) with c̃(v) �= c(v).
We obtain

A ≤ pEσn−1
1

{
sup
v∈V

[
c(v) +

n−1∑
i=1

σig(vi) + f(vn)

]
+ sup

v∈V

[
c(v) +

n−1∑
i=1

σig(vi)− f(vn)

]}
︸ ︷︷ ︸

�
=B

+(1− 2p)Eσn−1
1

sup
v∈V

[
c(v) +

n−1∑
i=1

σig(vi)

]
︸ ︷︷ ︸

�
=C

.

The expression B can be written as follows.

B = pEσn−1
1

{
sup
v∈V

[
c(v) +

n−1∑
i=1

σig(vi) + f(vn)

]
+ sup

v′∈V

[
c(v′) +

n−1∑
i=1

σig(v′i)− f(v′n)

]}

= pEσn−1
1

sup
v,v′∈V

[
c(v) + c(v′) +

n−1∑
i=1

[
σi(g(vi) + g(v′i))

]
+ (f(vn)− f(v′n))

]

= pEσn−1
1

sup
v,v′∈V

[
c(v) + c(v′) +

n−1∑
i=1

[
σi(g(vi) + g(v′i))

]
+

∣∣f(vn)− f(v′n)
∣∣ ] . (67)

The equality (67) holds since the expression c(v)+c(v′)+
∑n−1

i=1 σi(g(vi)+g(v′i)) is symmetric
in v and v′. Thus, if f(v) < f(v′) then we can exchange the values of v and v′ and this
will increase the value of the expression under the supremum. Since |f(vn) − f(v′n)| ≤
|g(vn)− g(v′n)| we have

B ≤ pEσn−1
1

sup
v,v′∈V

[
c(v) + c(v′) +

n−1∑
i=1

[
σi(g(vi) + g(v′i))

]
+ |g(vn)− g(v′n)|

]

= pEσn−1
1

sup
v,v′∈V

[
c(v) + c(v′) +

n−1∑
i=1

[
σi(g(vi) + g(v′i))

]
+ (g(vn)− g(v′n))

]

= pEσn−1
1

{
sup
v∈V

[
c(v) +

n−1∑
i=1

σig(vi) + g(vn)

]
+ sup

v∈V

[
c(v) +

n−1∑
i=1

σig(vi)− g(vn)

]}
�= D.

Therefore, using the reverse argument of (64)-(66),

A ≤ C +D = Eσn
1
sup
v∈V

[
c(v) +

n∑
i=1

σig(vi)

]
.
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Appendix F. Proof of Lemma 6

Let c ∈ R, U �= c · I. If c = 0, then the soft classification generated by A is a constant zero.
In this case, for any h generated by A, we have L̂γm(h) = 1 and the lemma holds.

Suppose c �= 0. Then
α =

1
c
· h . (68)

Since the (m+ u)× (m+ u) matrix U has m+ u singular values, each one is precisely c, by
(22) the Rademacher complexity of the trivial ULR is bounded by

μ1

√
2

mu
(m+ u)c2 = cμ1

√
2
(
1
m
+
1
u

)
. (69)

We assume w.l.o.g. that the training points have indices from 1 to m. Let A = {i ∈
Im1 | yih(i) > 0 and |h(i)| > γ} be a set of indices of training examples with zero margin
loss. Let B = {i ∈ Im1 | |h(i)| ∈ [−γ, γ]} and C = {i ∈ Im1 | yih(i) < 0 and |h(i)| > γ}.
By (68) and the definition of the sets A, C, for any i ∈ A ∪ C, |αi| > γ

c . Similarly, for any
i ∈ B, |αi| = |h(i)|

c . We obtain that the bound (69) is at least

c

√
(|A|+ |C|)γ

2

c2
+

∑
i∈B

h(i)2

c2

√
1
m

.

Therefore, the risk bound (15) is bounded from below by

L̂γm(h) +
1
γ

√
(|A|+ |C|)γ2 +

∑
i∈B

h(i)2 ·
√
2
m

≥
∑

i∈B(1− |h(i)|/γ) + |C|
m

+

√
|A|+ |C|+

∑
i∈B

h(i)2

γ2
·
√
2
m

=

|B|+ |C| −∑
i∈B ri

m
+

√
|A|+ |C|+

∑
i∈B

r2i ·
√
2
m

=

m− |A| −∑
i∈B ri

m
+

√
|A|+ |C|+

∑
i∈B

r2i ·
√
2
m

�= D ,

where ri =
|h(i)|
γ . We prove that D ≥ 1. Equivalently, it is sufficient to prove that for

ri1 , . . . , ri|B| ∈ [0, 1]|B| it holds that

f
(
ri1 , . . . , ri|B|

)
=

(|A|+∑
i∈B ri)2

|A|+ |C|+∑
i∈B r2i

≤ m .

We claim that the stronger statement holds:

f
(
ri1 , . . . , ri|B|

)
=
(|A|+ |C|+∑

i∈B ri)2

|A|+ |C|+∑
i∈B r2i

≤ m . (70)
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To prove (70) we use the Cauchy-Schwarz inequality, stating that for any two vectors a,b ∈
R
m, 〈a,b〉 ≤ ‖a‖2 · ‖b‖2. We set bi = 1 for all i ∈ Im1 . The vector a is set as follows: ai

�= ri
if i ∈ B and ai = 1 otherwise. By this definition of a and b, we have that 〈a,b〉 ≥ 0 and
thus (〈a,b〉)2 ≤ ‖a‖22 · ‖b‖22. The application of this inequality with the defined vectors a
and b results in the inequality (70).

Appendix G. Proofs from Section 6.2

Proof of Lemma 7: Let ei be an (m+ u)× 1 vector whose ith entry equals 1 and other
entries are zero. According to the definition of RKHS, we need to show that for any
1 ≤ i ≤ m+ u, h(i) = 〈U(i, ·),h〉L. We have

〈U(i, ·),h〉L = U(i, ·)Lh = eiULh

= eTi

(
m+u∑
i=2

1
λi

uiuT
i

)(
m+u∑
i=1

λiuiuT
i

)
h = eTi

(
m+u∑
i=2

uiuT
i

)
h

= eTi (I − u1uT
1 )h = eTi

(
I − 1

m+ u
1 · 1T

)
h = h(i) .

�

Lemma 13 For any 1 ≤ i ≤ m+ u, U(i, ·) ∈ HL.

Proof: Since L is a Laplacian matrix, u1 = 1. Since the vectors {ui}m+u
i=1 are orthonormal

and u1 = 1, we have U · 1 =
(∑m+u

i=2
1
λi

uiuT
i

)
1 = 0. Therefore, for any 1 ≤ i ≤ m + u,

U(i, ·) · 1 = 0. �

Proof of Lemma 8: Let ‖h‖L =
√〈h,h〉L �=

√
hTLh be a norm in GL. The optimization

problem (30)-(31) can be stated in the following form:

min
h∈HL

‖h‖2L + c(h− �τ)TC(h− �τ) . (71)

Let U ⊆ HL be a vector space spanned by the vectors {U(i, ·)}m+u
i=1 . Let h‖

�=
∑m+u

i=1 αiU(i, ·)
be a projection of h onto U . For any 1 ≤ i ≤ m + u, αi =

〈h,U(i,·)〉L
‖U(i,·)‖L . Let h⊥ = h − h‖

be a part of h that is perpendicular to U . It can be verified that h⊥ ∈ HL and for any
1 ≤ i ≤ m+ u, 〈h⊥, U(i, ·)〉L = 0. For any 1 ≤ i ≤ m+ u we have

h(i) = 〈h, U(i, ·)〉L = 〈
m+u∑
j=1

αjU(j, ·), U(i, ·)〉L + 〈h⊥, U(i, ·)〉L

=
m+u∑
j=1

αj〈U(j, ·), U(i, ·)〉L =
m+u∑
j=1

αjU(i, j) = h‖(i) . (72)

The second equation in (72) holds by Lemma 13. As a consequence of (72), the empirical
error (the second term in (71)) depends only on h‖. Furthermore,

hTLh = 〈h,h〉L = ‖h‖2L = ‖
m+u∑
i=1

αiU(i, ·)‖2L + ‖h⊥‖2L ≥ ‖
m+u∑
i=1

αiU(i, ·)‖2L .
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Therefore, for an h∗ ∈ H that minimizes (71), h∗⊥ = 0 and h∗ = h∗‖ =
∑m+u

i=1 αiU(i, ·) = Uα.
�

Appendix H. Proof of Lemma 9

Let LN
�= I − L = I − D−1/2WD−1/2 be a normalized Laplacian of W . The eigenvalues

{λ′i}m+u
i=1 of LN are non-negative and the smallest eigenvalue of LN , denoted here by λ′min,

is zero (Chung, 1997). The eigenvalues of the matrix I − βL = (1 − β)I + βLN are
{1 − β + βλ′i}m+u

i=1 . Since 0 < β < 1, all the eigenvalues of I − βL are strictly positive.

Hence the matrix I − βL is invertible and its eigenvalues are
{

1
1−β+βλ′i

}m+u

i=1
. Finally, the

eigenvalues of the matrix U are
{

1−β
1−β+βλ′i

}m+u

i=1
. Since λ′min = 0, the largest eigenvalue of

U is 1. Since all eigenvalues of LN are non-negative, we have that λmin > 0.

Appendix I. Proofs from Section 7

Proof of Corollary 2: Let {Ai}∞i=1 and {pi}∞i=1 be a set of positive numbers such that∑∞
i=1 pi ≤ 1. By the weighted union bound argument we have from (39) that with proba-

bility of at least 1− δ over the training/test set partitions, for all Ai and q ∈ Ωg,Ai ,

Lu(h̃q) ≤ L̂γm(h̃q) +
Rm+u(B̃g,Ai)

γ
+ c0Q

√
min(m,u) +

√
S

2
Q ln

1
piδ

. (73)

We set Ai
�= g0s

i and pi
�= 1

i(i+1) . It can be verified that
∑∞

i=1 pi ≤ 1. For each q let iq be
the smallest index for which Aiq ≥ g(q). We have two cases:

Case 1 iq = 1. In this case iq = logs(g̃(q)/g0) = 1.

Case 2 iq ≥ 2. In this case Aiq−1 = g0s
iq−1 < g(q) ≤ g̃(q)s−1, and therefore, iq ≤

logs(g̃(q)/g0).

Thus we always have that iq ≤ logs(g̃(q)/g0). It follows from the definition of Aiq and g̃(q)
that Aiq ≤ g̃(q). We have that ln(1/piq) ≤ 2 ln(iq + 1) ≤ 2 ln logs(sg̃(q)/g0). Substituting
these bounds into (73) and taking into account the monotonicity of Rm+u(B̃g,Ai) (in Ai),
we have that with probability of at least 1− δ, for all q, the bound (40) holds. �

Proof of Theorem 4: We require several definitions and facts from the convex analysis
(Rockafellar, 1970). For any function f : R

n → R the conjugate function f∗ : R
n → R

is defined as f∗(z) = supx∈Rn (〈z,x〉 − f(x)). The domain of f∗ consists of all values of z
for which the value of the supremum is finite. A consequence of the definition of f∗ is the
so-called Fenchel inequality :

〈x, z〉 ≤ f(x) + f∗(z) . (74)

It can be verified that the conjugate function of g(q) = D(q‖p) is g∗(z) = ln
∑|B|

j=1 pje
zj .

Let h̃(i) �= (h1(i), . . . , h|B|(i)). In the derivation that follows we use the following inequality
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(Hoeffding, 1963): if X is a random variable such that a ≤ X ≤ b and c is a constant, then

EX exp(cX) ≤ exp
(
c2(b− a)2

8

)
. (75)

For any λ > 0 we have,

Rm+u(B̃g,A) = QEσ sup
q∈Ωg,A

〈σ, h̃q〉 = QEσ sup
q∈Ωg,A

〈
q,

m+u∑
i=1

σih̃(i)

〉

=
Q

λ
Eσ sup

q∈Ωg,A

〈
q, λ

m+u∑
i=1

σih̃(i)

〉

≤ Q

λ

(
sup

q∈Ωg,A

g(q) +Eσg∗
(
λ

m+u∑
i=1

σih̃(i)

))
(76)

≤ Q

λ

⎛
⎝A+Eσ ln

|B|∑
j=1

pj exp

[
λ

m+u∑
i=1

σihj(i)

]⎞⎠ (77)

≤ Q

λ

(
A+ sup

h∈B
Eσ ln exp

[
λ

m+u∑
i=1

σih(i)

])

≤ Q

λ

(
A+ sup

h∈B
lnEσ exp

[
λ

m+u∑
i=1

σih(i)

])
(78)

≤ Q

λ

(
A+ sup

h∈B
ln exp

[
λ2

2

m+u∑
i=1

h(i)2
])

(79)

= Q

(
A

λ
+

λ

2
sup
h∈B

‖h‖22
)

. (80)

Inequality (76) is obtained by applying (74) with f
�= g and f∗ �= g∗. Inequality (77) follows

from the definition of g and g∗. Inequality (78) is obtained by an application of the Jensen
inequality and inequality (79) is obtained by applying m + u times (75). By minimizing
(80) w.r.t. λ we obtain

Rm+u(B̃g,A) ≤ Q
√
2A sup

h∈B
‖h‖22 .

Substituting this bound into (39) we get that for any fixed A, with probability at least 1−δ,
for all q ∈ Bg,A

Lu(h̃q) ≤ L̂γm(h̃q) +
Q

γ

√
2A sup

h∈B
‖h‖22 + c0Q

√
min(m,u) +

√
S

2
Q ln

1
δ
.

Finally, by applying the weighted union bound technique, as in the proof of Corollary 2, we
obtain the statement of the theorem. �
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