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Abstract

This paper investigates the application of transductive

transfer learning methods for action classification. The ap-

plication scenario is that of off-line video annotation for

retrieval. We show that if a classification system can ana-

lyze the unlabeled test data in order to adapt its models, a

significant performance improvement can be achieved. We

applied it for action classification in tennis games for train

and test videos of different nature. Actions are described

using HOG3D features and for transfer we used a method

based on feature re-weighting and a novel method based on

feature translation and scaling.

1. Introduction

In action recognition, as in most classification problems,

systems are trained with samples from one setup and often

expected to be applied to another setup. A system is trained

with feature vectors X
train = {xi : i ∈ train} defined

in a space X train , obtained, for instance, from videos of a

set of actions with labels Y
train = {yi : i ∈ train} de-

fined in problem of space Ytrain . These samples Xtrain are

obtained from a set of people in a set of environments, illu-

mination conditions, camera configurations/types and with

certain types of background. Let D = {X , p(X)} be do-

main defined by the space and the marginal probability dis-

tribution, and let T = {Y, P (Y|X)} be the classification

task. A pattern recognition system is expected to perform

well if the test samples X
test are obtained with the same

conditions as Xtrain , e.g. if they are new videos of the same

people performing the same actions in the same environ-

ments as before.

However, in most application scenarios there is a change

of scene, video quality, performing actors etc., so although
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X train = X test and Ytrain = Ytest , the domains are differ-

ent because p(Xtrain) 6= p(Xtest). The usual approach is to

assume Dtrain ≈ Dtest , and treat this as a classical general-

ization problem in machine learning by means of classifier

regularization [6].

We consider the application scenario of an autonomous

system that is capable of detecting when a change of do-

main happens. An example is that of Almajai et al. [3],

who present a method that detects anomalies if a system

trained to automatically annotate videos of tennis singles is

presented with videos of tennis doubles. Their system uses

an effective ball tracker [24] to detect sequences of events

with the HMM-based method of [2]. It also uses player

action classification cues, but does not use the number of

detected people as a cue so the analysis is purely based on

the sequence of events.

Once a change of domain is detected, a system for auto-

matic video annotation can easily start to gather data from

the new domain in order to adapt the models for it. If the

application considered allows off-line processing, such as

video annotation for after-match analysis or for data re-

trieval, such a scenario is possible and we show that it leads

to better performance on action classification.

This problem characterizes a case of transductive trans-

fer learning, as defined by Pan and Yang [18]: we aim

to improve the learning of the target predictive function

P (Ytrg |Xtrg) in Dtrg using the knowledge in Dsrc and

T src , where Dsrc 6= Dtrg . For that, we evaluate two meth-

ods that transform the features of Xsrc so that they become

more similar to X
trg and the classifier is re-trained using

the transformed samples.

In the experiments of this paper, we assume that labels of

all the source domain samples are available, so src = train .

We also assume that all the target samples are available but

none of their labels are, and the challenge consists in classi-

fying all the target samples, so trg = test . But it is relevant

to point out that once the transfer has been learnt, the clas-

sifier should become apt for application on unseen samples

in the target domain.

In the next section we give an overview of related work
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and follow by reviewing the work of Arnold et al. [4] in

Section 3, which we use as a base. Next, we propose a new

method in Section 4. In Section 5 we describe the experi-

mental setup. The results are then presented in Section 6.

This paper concludes in Section 7 where the contributions

are highlighted and future work is discussed.

2. Related Work

The problem described above relates to a number

of other problems in Machine Learning, such as semi-

supervised learning and domain adaptation [18]. Perhaps

the main difference is that we assume that a set of samples

from the new domain X
trg is given all at once and the prob-

lem switches to classifying elements of this new domain,

i.e., we do not necessarily require the new model to be ap-

plicable to samples in X
src . Transductive transfer learning

seems to have been dealt with by a relatively small niche of

researchers, despite its broad range of applications.

Dai et al. [9] try to translate X src into X trg so that learn-

ing can be done within a single feature space. Their aim is

to link the two feature spaces with the construction of a fea-

ture translator p(Xtrg |Xsrc). This approach is not directly

related to our problem because we assume the typical val-

ues p(X) change, but the feature space remains the same

X src = X trg .

A more related approach is that of estimating a low di-

mensional feature space Xnew to which both source X src

and target X trg spaces are mapped [16, 17, 7]. If a good

mapping is found, the classifier learnt on the source domain

will also be effective on the target domain. The downside

is that these approaches may lead to loss of information and

they use assumptions that may not generalize to all types of

feature spaces.

Methods for domain adaptation can be formulated to ap-

ply to our problem. In speech recognition and audio pro-

cessing, the problem of adaptation to new acoustic environ-

ments relates to adaptation of p(X) [23]. One can use the

maximum likelihood linear regression (MLLR) to estimate

a set of linear transformations for the Gaussian parameters

of the HMMs [14]. In [12], a vector Taylor series approach

for HMM adaptation was introduced for decoding noisy ut-

terances at test time. An intermediate step of noise adaptive

model training is used and results in Pseudo-clean model

parameters. In [19], Rodriguez et al. proposed an adapta-

tion scheme for semi-continuous HMMs for unsupervised

writer style adaptation in handwritten word spotting. In im-

age segmentation, Maximum a Posteriori (MAP) adaptation

was used for play field segmentation in order to re-estimate

the GMM parameters [5]. One issue with all the approaches

discussed in this paragraph is that they work on the assump-

tion that the observation data follows a probabilistic gener-

ative model.
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Figure 1. Absolute values of the correlation matrix of the HOG3D

feature space (960 dimensions), obtained from the 1277 action

samples of the tennis singles dataset. There appears to be some

mild patterns at every 60 dimensions, probably because we used 3

temporal splits and icosahedrons for edge orientation quantization

(see Section 5).

3. Transfer Learning by Feature Re-weighting

The feature extraction method used in this paper (see

Section 5) gives a high dimensional space of features in the

range [0, 1] with relatively small correlation between each

other (see Figure 1). Given the nature of this feature space,

the method based on MaxEnt proposed by Arnold et al. [4]

seemed to be very appropriate and it possibly is the least

expensive in terms of computational cost. In this section we

describe it and propose some revisions.

For ease of notation, xi
j is the feature j of sample xi and

Esrc [xj , y] is used to represent EX
src

[xj , y] which is the

expectation of having feature xj with label equal to y, ∀x ∈
X

src :

Esrc [xj , y] =
1

N src
train

N src
train
∑

i=1

xi
j1[y](yi) , (1)

N src
train is the number of labeled training data in the source

domain and

1[y](yi) =

{

1 if yi = y,

0 otherwise

The problem in transductive tasks is that the joint dis-

tribution of the features with labels differs between the

source and target domains, so Esrc [xj , y] is not the same

as Etrg [xj , y], ∀j ∈ 1, · · · , D, where D is the dimensional-

ity of X . If the expectations in the train and test datasets

are similar, then the model Λ learnt on the training data

will generalize well to the test data. In Arnold et al.’s al-

gorithm [4] a transformation G(·) of the feature space X
can be learnt such that the joint distributions of the source

and target features with their labels are aligned:

Etrg [G(xj), y] = Esrc [G(xj), y], ∀xj ∈ X . (2)



It can be too challenging (if not impossible) to estimate a

single transformation of the feature space that would gener-

ate a space where Etrg = Esrc . A possibility would be to

have one transformation for the source and another for the

target samples. This condition can even further be relaxed

by arguing that it is enough to transform only one of the do-

mains, say the source data, so that data from both domains

could be separated by a single hyper-plane. In maximum

entropy phraseology, the relaxed transformation is:

Etrg [xj , y] = Esrc [G(xj), y], ∀xj ∈ X . (3)

The problem with this, of course, is that in the unsuper-

vised transductive transfer case, we do not have Y
trg and

therefore cannot estimate Etrg [xj , y]. Hence an approxi-

mation Etrg [xj , y] using the joint estimates on the target

unlabeled data from a model learnt using the source data is

applied, as proposed in [4]:

Etrg [xj , y] ≈ E
trg

Λsrc
[xj , y] =

1

N
trg
test

N
trg

test
∑

i=1

xi
jPΛsrc

(y|xi) ,

(4)

where N
trg
test is the number of target domain (unlabeled) test

examples. Note that in [4], the authors use the joint proba-

bility PΛsrc
(y, xi), instead of the posterior PΛsrc

(y|xi). This

approximation of Etrg [xj , y] may not reflect the true target

expectation, but it is the best that can be done in the unsu-

pervised transductive setting.

We suggest that more accurate definitions of E[xj , y]
would have denominators depending on class la-

bels/predictions and propose the following modifications of

Equations (1) and (4):

Etrain [xj , y] =

∑N train
src

i=1 xi
j1[y](yi)

∑N train
src

i=1 1[y](yi)
, (5)

and

Etrg [xj , y] ≈ E
trg

Λsrc
[xj , y] =

∑N
trg

test

i=1 xi
jPΛsrc

(y|xi)
∑N

trg

test

i=1 PΛsrc
(y|xi)

. (6)

Based on these expectations the source domain transfor-

mation G(·) is defined as:

∀i = 1: N src
train , G(xi

j) = xi
j

E
trg

Λsrc
[xj , yi]

Esrc [xj , yi]
, (7)

The effect is to re-scale xj , giving more weight to features

that occur frequently in the target but rarely in the source

(in a conditional sense), and down-weighting features that

are common in the source but seldom seen in the target [4].

In practice, since the target expectation E
trg

Λsrc
[xj , y] is

only approximate, the transformed features need to be

smoothed with the original ones in each iteration as follows:

G′(xi
j) = (1− θ)xi

j + θG(xi
j) , (8)

where θ controls the degree to which we use the target con-

ditional estimates to alter the source conditionals. Once the

labeled samples have been transformed by G′(·), it is nec-

essary to update the model Λsrc and retrain the classifier. If

a kernel method is used, this also means the kernels have to

be re-computed.

4. Translating and Scaling Features

The feature re-weighting scheme of Section 3 is proba-

bly ideal for binary feature spaces, but may be too simple

for other types of features. We propose to translate and scale

the samples of the training set based on the expected value

and standard deviation of features for each class:

∀i = 1: N src
train ,

G(xi
j) =

xi
j − Esrc [xj , yi]

σsrc
j,yi

σ
trg

j,yi
+ E

trg

Λsrc
[xj , yi] , (9)

where σsrc
j,yi

is the standard deviation of feature xj of the

source samples labeled as yi and

σ
trg

j,yi
=

√

√

√

√

∑N
trg

test

k=1 (x
k
j − E

trg

Λsrc
[xj , yi])2PΛsrc

(yi|xk)
∑N

trg

test

k=1 PΛsrc
(yi|xk)

.

(10)

The smoothing function is then applied as before (Equa-

tion 8).

5. Experimental Setup

For the experiments in this paper, we used the tennis

dataset described by de Campos et al. [11] and used the fea-

tures obtained by the method described as space-time-shape

(STS) in that paper. Videos of tennis games obtained from

TV broadcast in standard resolution (SD) were processed

and Yan et al.’s ball tracker [24] was used to detect relevant

instances in time, i.e., when the velocity vector of the ball

suddenly changes. The frame of those relevant instances

were analyzed and using a method based on background

subtraction, the players were detected.

For each detected player, a single HOG3D feature vec-

tor [13] was extracted. We used HOG3D [13] descrip-

tors for our task because it was among the top performing

methods evaluated in Wang et al.’s survey [22]. HOG3D

is a three dimensional generalization of SIFT [15] or lo-

cal histograms of oriented gradients (HOG) [10]. It uses

polyhedral structures for the quantization of the 3-D spatio-

temporal edge orientations to avoid the singularities in the

use of polar coordinate systems (as performed in [20]). An-

other advantage of HOG3D [13] is its computational ef-

ficiency due to the use of three-dimensional integral im-

ages. The bounding box of each player is given, so a

HOG3D feature vector is obtained by analyzing that bound-

ing box in a buffer of 12 frames around each detected player.



Singles (PAL)

serve hit non-hit

76 219 943

Doubles (NTSC)

serve hit non-hit

46 167 1351

Figure 2. Sample images and players performing each action from

de Campos et al.’s dataset, obtained from [11] c©IEEE 2011. The

number of samples for each class is also shown under their label.

The parameters used for HOG3D were those optimized for

the KTH dataset in [13]. They generate 960D vectors

(4 × 4 × 3 × 20) using a 4 × 4 grid in space, 3 splits in

time and, for each sub-block, a histogram of edge orien-

tations is quantized using a icosahedron (20 faces regular

polyhedron).

In de Campos et al.’s dataset, two videos were pro-

cessed using the above procedure, a video of singles

(recorded in PAL) and a video of doubles tennis (recorded in

NTSC) [11]. They have different background, illumination

conditions and players. In the video of singles, the players’

scale is in general larger than that of the doubles’ video.

Figure 2 presents a sample frame of each of the videos and

some sample actions. Actions are labeled as serve, hit and

non-hit, and the dataset is quite unbalanced.

For classification, we followed [11] and used KLDA

(Kernelised Linear Discriminant Analysis [8]). A minor

difference is that instead of using the χ2 measure to build

the RBF kernel functions, we used the ℓ1 distance because

χ2 is not a metric and ℓ1 seem to be just as good as χ2 to

compare histogram-based feature vectors. Given the train-

ing kernels, KLDA generates a |Y| − 1 dimensional space

where samples are projected (|Y| is the number of classes).

Due to the nature of this dataset, KLDA over-fits the data,

so all the samples in the training set belonging to the same

class are projected to the same point, making it impossible

to estimate the covariance matrix for each class. This prob-

lem was not approached in [11] because the authors used

KLDA as a discriminative classifier, i.e., without using a

generative data model. In this paper, in order to apply the

transfer algorithms of Sections 3 and 4, it is necessary to

estimate Λsrc of PΛsrc
(Y|X). For that, we used a five-fold

cross validation in the training set to obtain estimates of the

mean and covariance matrix for each class.

6. Results

As discussed in Section 5, the games of singles and

doubles in the dataset are quite different from each other.

In [11], the authors simply took the game of singles for

training and the doubles for testing. In this paper, we eval-

uate the use of transductive transfer learning to improve the

classifier performance.

First of all we reproduced the experiment of [11]. They

evaluated the results in terms of mean Area Under the ROC

Curve (mAUC) and obtained 90.3%. In the same experi-

ments (training on singles, testing on doubles, without us-

ing transfer learning), we obtained an mAUC of 91.2%. Our

baseline is slightly higher than that of [11] probably because

of the use of a full generative model in PΛsrc
(Y|X) and be-

cause we use ℓ1 instead of χ2 for the kernel radial basis

function.

In the analysis presented in the rest of this paper, we do

not evaluate results using area under ROC curves because

we used a generative MAP-based three-class classifier in-

stead of using three discriminative binary classifiers trained

in a one-vs-others fashion (used in [11]). A more appropri-

ated performance measure was the mean accuracy (mAcc)

for the 3 classes. The mAcc is measured by averaging out

the correct classification rate for each class, giving equal

importance to all classes, so it is not affected by data skew.

On the same experiment as above, we obtained an mAcc of

58.72%, which seems quite low, but this is a challenging

dataset.

Figure 3 presents the mAcc as a function of the transfer

rate. It present results with Arnold et al.’s method [4] and

shows that the rectifications of Equations 5 and 6 lead to

much better results (see reweight curve), presenting a steady

climb in mAcc as the transfer rate grows. The method of

Section 4 (trans+scale) reaches a higher peak of classifi-

cation performance, presenting an improvement of nearly

20%. The confusion matrix obtained with θ = 0.4 is shown
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Figure 3. Mean accuracy obtained as a function of the transfer rate

θ of (8), using X
src
train = singles and X

trg
test = doubles. The curve

Arnold etal refers to the method of [4], reweight refers to its modi-

fications proposed in Section 3 and trans+scale refers to Section 4.

The best mAcc of those methods are 78.14% for trans+scale and

74.64% for reweight. The baseline (no transfer) gives 58.72% and

the cross-validation on the test set gives 73.34%.

Confusion Matrix

result

tr
u
th

1180(1068) 184(182) 3(117)

70(36) 96(119) 3(14)

4(2) 0(3) 42(41)

non−hit hit serve

non−hit

hit

serve

Figure 4. Best confusion matrix obtained with the trans+scale

method (θ = 0.4) on the tennis dataset, training with singles

and testing with doubles. The numbers in brackets are results

from [11].

in Figure 4. In brackets, the same figure also shows re-

sults presented by de Campos et al. in [11], who manually

selected thresholds on the classifier output (“thresholds se-

lected so that the true positive rate is 77.62% and the false

positive rate is 22.38%” [11]). Note that our results are bet-

ter at detecting serves and non-hits, but hits get confused

with non-hits more often, whereas in [11] non-hits are often

confused with serves.

After θ = 0.4, the performance of trans+scale starts to

drop possibly because its transformation is more complex

and may lead to over-fitting to unlabeled data that was not

necessarily classified correctly.

Figure 5 shows the results obtained by swapping the

source/train and target/test samples. Note that with conser-

vative transfer rate both methods increase the performance,

but for θ ≥ 0.4, trans+scale leads to negative transfer.

For an additional analysis, we also performed a five-

fold cross validation experiment on each domain to estimate

what would be the best expected result of using transductive

transfer. The resulting mAcc was: Singles: 92.29% and
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Figure 5. Same as Figure 3 but using X
src
train = doubles and X

trg
test

= singles. The peak mAcc are: 83.89% (trans+scale), 84.99%

(scale), the baseline is 81.30% and cross-validation on the test set

gives 92.29%.

Doubles: 73.34%. These results are shown as cross-val in

Figures 3 and 5.

Note in Figure 3 that both methods lead to a better perfor-

mance than the cross-validation result on the target domain.

In other words, both were able to achieve full benefit of hav-

ing the test samples as unlabeled data for transfer. The same

is not true in Figure 5. We suggest that this is because the

doubles dataset is more unbalanced and noisier than the sin-

gles dataset, thus the cross-validation results on doubles are

not so good but on singles they were very good. This also

means that when the singles game is used as the test set,

the baseline mAcc is much higher and the improvement of

3.69% in mAcc (obtained with reweight and θ = 0.4) actu-

ally means a reduction of 5.07% in mean error rate, which

is quite significant.

7. Conclusion

In this paper, we investigated a novel application of

transductive transfer learning for video annotation. More

specifically, we assume that a system that is able to detect

a change of context is available and when such a change

is detected, the system can start to gather new unlabeled

samples. Once a set of samples is gathered, the system can

apply methods of transductive transfer learning in order to

adapt the models and to improve classification in this new

domain.

We based our work on the method introduced in [4],

where the source domain features are re-weighted based on

the ratio of the joint expectation of features and class labels

in target and source domains. We then proposed a modifi-

cation for a more complex transformation, based on trans-

lation and scaling of each feature, for each class label.

We presented experiments in a dataset of action recogni-

tion in tennis games and showed that, in one scenario, the



proposed method can lead to an increase of nearly 20% in

mean accuracy, giving results that are better than a 5-fold

cross-validation on the test data set.

7.1. Future Work

An obvious next step is to perform experiments with

more datasets for a broader evaluation of the application of

transductive transfer learning.

The methods evaluated in this paper are based on transfer

learning via feature space transformation. We plan to eval-

uate other modalities of transductive transfer via samples

analysis, such as that of Acharya et al. [1], which combines

ensembles of classifiers and clusterers to generate a more

consolidated classifier. Another approach that should be in-

vestigated is that of transfer via hyperplane adaptation, such

as that of transductive SVM [21].
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