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Abstract

Most existing Zero-Shot Learning (ZSL) methods have

the strong bias problem, in which instances of unseen (tar-

get) classes tend to be categorized as one of the seen

(source) classes. So they yield poor performance after be-

ing deployed in the generalized ZSL settings. In this paper,

we propose a straightforward yet effective method named

Quasi-Fully Supervised Learning (QFSL) to alleviate the

bias problem. Our method follows the way of transductive

learning, which assumes that both the labeled source im-

ages and unlabeled target images are available for training.

In the semantic embedding space, the labeled source images

are mapped to several fixed points specified by the source

categories, and the unlabeled target images are forced to be

mapped to other points specified by the target categories.

Experiments conducted on AwA2, CUB and SUN datasets

demonstrate that our method outperforms existing state-of-

the-art approaches by a huge margin of 9.3 ∼ 24.5% fol-

lowing generalized ZSL settings, and by a large margin of

0.2 ∼ 16.2% following conventional ZSL settings.

1. Introduction

With the availability of large-scale training data, the field

of visual object recognition has made significant progress

in the last several years [17, 35, 37, 13, 14]. However,

collecting and labeling training data are laboriously diffi-

cult and costly. For example, in fine-grained classification,

expert knowledge is required to discriminate between dif-

ferent categories. For rare categories, such as endangered

species, it’s an extremely difficult work to collect sufficient

and statistically diverse training images. Even worse, the

frequencies of observing objects follow a long-tailed dis-

tribution [33, 45], which indicates that the number of such

unfrequent objects significantly surpasses that of common

objects. Given limited or zero training images, existing vi-

Figure 1. An illustrative diagram of the bias towards seen source

classes in the semantic embedding space. The blue circles denote

the anchor points specified by the source classes.

sual recognition models (e.g., deep CNN models) struggle

to make correct predictions.

Zero-Shot Learning (ZSL) [8, 18, 1, 31, 2, 29, 41, 24]

has emerged as a promising paradigm to alleviate the above

problem. Unlike fully supervised classification which re-

quires sufficient labeled training images for each category,

ZSL distinguishes between two types of categories: source

and target, where the labeled images are only available for

the source categories. To facilitate the recognition of nov-

el target categories, ZSL assumes the source and the target

categories share a common semantic space to which both

the images and class names can be projected. The semantic

space can be defined by attributes [8, 1], word2vec [21] or

WordNet [23]. Under this assumption, the recognition of

images from novel target categories can be achieved by the

nearest neighbor search in the shared space.

Depending on whether the unlabeled data of target class-

es are available for training, existing ZSL methods can be

categorized into two schools: inductive ZSL [9, 25, 43, 2,

31, 4] and transductive ZSL [16, 10, 12]. For the inductive

ZSL, only data of the source categories are available dur-

ing the training phase. For the transductive ZSL methods,

both the labeled source data and the unlabeled target data

are available for training. The transductive ZSL aims to u-

tilize the information from both the labeled source data and

the unlabeled target data to accomplish the ZSL task.
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During the test phase, most existing inductive and trans-

ductive ZSL methods [18, 1, 31, 2, 29, 24] assume the test

images come solely from the target classes. Therefore, the

search space for classifying the new test images is restrict-

ed to the target classes. We call this experimental settings

conventional settings. However, in a more practical situa-

tion, the test images come not only from the target but also

from the source classes. Hence, both the source and the tar-

get classes should be considered. This experimental settings

are usually regarded as the generalized ZSL settings [41, 6],

abbreviated to generalized settings in this paper.

Existing ZSL methods perform much worse in the gen-

eralized settings than in the conventional settings [41, 6].

One vital factor accounting for the poor performance can

be explained as follows. ZSL achieves the recognition of

new categories by establishing the connection between the

visual embeddings and the semantic embeddings. However,

during the phase of bridging the visual and the semantic em-

beddings, there exists a strong bias [6] (shown in Figure 1).

During the training phase of most existing ZSL methods,

the visual instances are usually projected to several fixed

anchor points specified by the source classes in the seman-

tic embedding space. This leads to a strong bias when these

methods are used for testing: given images of novel classes

in the target dataset, they tend to categorize them as one of

the source classes.

To alleviate the mentioned problem above, we propose a

novel transductive ZSL method in this paper. The proposed

method assumes that both the labeled source and the un-

labeled target data are available during the training phase.

On the one hand, the labeled source data are used to learn

the relationship between visual images and semantic em-

beddings. On the other hand, the unlabeled data of target

classes are used to alleviate the strong bias towards source

classes. More specifically, unlike other ZSL methods which

always map input images to several fixed anchor points in

the embedding space during training, our method allows the

mapping from the inputs to other points, which significantly

alleviates the strong bias problem.

We dub the proposed ZSL method as Quasi-Fully Super-

vised Learning (QFSL), as it works like the conventional

fully supervised classification in which a multi-layer neu-

ral network and a classifier are integrated together (shown

in Figure 2). The architecture of the multi-layer neural net-

work is usually taken from AlexNet [17], GoogleNet [37]

or other well-known deep networks. In the training phase,

our model is trained in an end-to-end manner to recognize

the data from both source and target classes even without

labeled data for the target classes. This feature brings up

a compelling advantage: when the labeled data of target

classes are available in the future, it can be directly used to

train our model. In the test phase, our trained model can be

directly used to recognize new images from both the source

and the target classes without any modifications.

To sum up, we made the following contributions: 1) A

transductive learning (QFSL) method is proposed to learn

unbiased embeddings for ZSL. To our knowledge, this is the

first work to adopt transductive learning method in solving

the ZSL problem in generalized settings. 2) Experiments re-

veal that our method significantly outperforms existing ZSL

methods, in both generalized and conventional settings.

2. Related Work

Zero-Shot Learning ZSL relies on the semantic space

to associate source and target classes. Various semantic s-

paces have been investigated, including attributes [8, 18, 1,

41, 24], word vector [9, 23], text description [29, 42] and

human gaze [15]. The attribute has been shown to be an

effective semantic space [2, 31, 24] for ZSL. However, its

superior performance is obtained at the cost of much more

expensive human labor. As an alternative, the word vectors

are gaining more attention recently [22, 27] since they are

learned from the large text corpus in an unsupervised way.

Albeit their popularity, the word vectors often suffer from

visual-semantic discrepancy problem [28, 5, 7]. In addition

to the word vectors, human gaze [15] is recently proposed

to replace the attributes, as its annotation can be performed

by non-experts without domain knowledge.

In terms of the way how the visual space and the seman-

tic space are related, existing ZSL methods can be mainly

categorized into three groups: (1) from the visual space to

the semantic space [9, 2, 29], (2) from the semantic space

to the visual space [42, 34, 16] and (3) both the visual space

and the semantic space are projected to a shared intermedi-

ate space [20, 44, 4]. As long as one of the above pathways

is established, classification can be carried out via the n-

earest neighbor search in the embedding space which both

the original visual inputs and the class labels can access.

However, most existing ZSL methods share a common de-

ficiency. During the training phase, regardless of how these

two spaces are related, the existing ZSL usually project the

visual inputs to several fixed points in the embedding space.

It leads to the bias problem as discussed in Section 1. Our

work aims at alleviating this problem to improve the perfor-

mance of ZSL.

Transductive Zero-Shot Learning Transductive ZSL

solves ZSL in a semi-supervised learning manner where

both the labeled source data and the unlabeled target data

are available. Propagated Semantic Transfer (PST) [30] ex-

ploits the manifold structure of novel classes to conduct la-

bel propagation. Transductive Multi-View ZSL (TMV) [10]

and Unsupervised Domain Adaption (UDA) [16] associate

cross-domain data by CCA and regularized sparse coding.

In [12], a joint learning approach is proposed to learn the

Shared Model Space (SMS) for transductive ZSL settings.
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Figure 2. An overall architecture of the proposed QFSL model. Both the labeled and the unlabeled data are used to train the same model.

Here for a better understanding, we depict them in two streams.

With the SMS, knowledge can be effectively transferred be-

tween classes using attributes. In this paper, we leverage

both the labeled source data and the unlabeled target data to

learn an unbiased embedding space for ZSL.

Zero-Shot Learning in Generalized Settings In perfor-

mance evaluation, most existing ZSL methods usually as-

sume that the test instances belong only to the unseen tar-

get classes. However, in practice, we are more often re-

quired to recognize instances from both the source and the

target classes. The generalized settings relax the unrealis-

tic assumption of the conventional settings with both the

seen classes and the unseen classes at test time. In [9, 25],

the source classes are considered when the classification is

conducted, but only data from the unseen classes are tested.

In [36], a two-stage approach is proposed to solve the ZS-

L problem in generalized settings. Before classification, it

first determines whether a test instance is from a source or

target class. In [6], an empirical study and analysis of ZSL

in generalized settings are provided. Recently, [41] shows

many ZSL methods behave much worse in the generalized

settings than in the conventional settings.

3. Quasi-Fully Supervised Learning

3.1. Problem Formulation

Assume that there is a source dataset Ds =
{(xs

i , y
s
i )}

Ns

i=1 consisting of Ns images. Each image xs
i

is associated with a corresponding label ysi , ysi ∈ Ys =
{yi}

S
i=1, and S is the number of the source classes. Similar-

ly, there is a target dataset Dt = {(xt
i, y

t
i)}

Nt

i=1 consisting of

Nt images. Each image xt
i is associated with a correspond-

ing label yti , y
t
i ∈ Yt = {yS+i}

T
i=1, and T is the number

of the target classes. Ys ∪ Yt = Y , Ys ∩ Yt = ∅. The

goal of ZSL in conventional settings is to learn a prediction

function f as below from the source data

f(x;W ) = argmax
y∈Y

F (x, y;W ), (1)

so that its performance on the target data is maximized. F is

a score function, which ranks the correct label higher than

the incorrect labels, and W is the parameters of F . F usu-

ally takes the following bilinear form [1, 9, 2]:

F (x, y;W ) = θ(x)TWϕ(y), (2)

where θ(x) and ϕ(y) are the visual and the semantic embed-

dings, respectively. The score function is usually optimized

by minimizing the regularized loss:

L =
1

Ns

Ns∑

i=1

Lp(yi, f(xi;W )) + γΩ(W ), (3)

where Lp is the classification loss (such as entropy loss and

structured SVM [38]) to learn the mapping between the vi-

sual and the semantic embeddings. Ω is the regularization

term used to constrain the complexity of the model.

In this paper, we assume the labeled source data Ds, the

unlabeled target data Dt
u = {xt

i}
Nt

i=1, and the semantic em-

beddings ϕ are available for training in our approach. The

aim of our method is to achieve good performance in not

only the conventional but also the generalized settings.

3.2. The QFSL Model

Different from the bilinear form described above, the s-

coring function F in our method is designed as a nonlinear

one. The whole model is implemented by a deep neural

network (shown in Figure 2). It consists of four modules:

the visual embedding subnet, the visual-semantic bridging

subnet, the scoring subnet, and the classifier. The visual

embedding subnet maps the raw images into visual embed-

ding space. The visual-semantic bridging subnet projects

the visual embeddings to semantic embeddings. The scor-

ing subnet produces scores of every class in the semantic

embedding space. And the classifier makes the final predic-

tions based on the scores. All modules are differentiable and

implemented by widely used layers including the convolu-

tional layer, the fully connected layer, the ReLU [17] layer

and the softmax layer. Hence, our model can be trained in
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an end-to-end manner. Now we describe each module in

detail in the following sections.

3.2.1 Visual Embedding Subnet

Most existing ZSL models [11, 2, 3, 31, 43, 19] adopt deep

CNN features for visual embeddings. The visual embed-

ding function θ is fixed in these methods. So they do not

fully exploit the power of deep CNN models. Here, we also

adopt a pre-trained CNN model to perform visual embed-

ding. The major difference is that our visual embedding

function can be optimized together with other modules1.

The parameters of the visual embedding subnet are denoted

by Wθ. Unless otherwise specified, we use the output of the

first fully connected layer as the visual embeddings.

3.2.2 Visual-Semantic Bridging Subnet

It is vital to build the connections between the image and

the semantic embeddings. The connection can be built by

either a linear [1, 9, 2] or a nonlinear [40, 36] function. In

this paper, we adopt a non-linear function φ to project the

visual embeddings to the semantic embeddings. φ is imple-

mented by several fully connected layers, each of which is

followed by a ReLU non-linear activation layer. The design

of bridging function depends on the CNN architecture from

the visual embedding subnet. Specifically, our design fol-

lows the fully connected layers of the selected CNN model.

The visual-semantic bridging subnet is optimized together

with the visual embedding subnet. The parameters of the

visual-semantic bridging subnet are denoted by Wϕ.

3.2.3 Scoring Subnet

After bridging the visual and the semantic embeddings,

recognition task can be carried out by the nearest neighbor

search in the semantic embedding space. Given an image,

we firstly obtain its visual embedding by the visual embed-

ding subnet. Then the visual embedding is mapped to the

semantic embedding by the visual-semantic bridging sub-

net. Finally, we use the inner product between the projected

embedding and the normalized semantic embeddings as the

scores. Therefore, the score function is

F (x, y;W ) = φ(θ(x;Wθ);Wϕ)ϕ
∗(y) (4)

where Wθ and Wϕ are the weights of the visual embedding

function and the visual-semantic bridging function respec-

tively, and ϕ∗(y) is the normalized semantic embedding of

y: ϕ∗(y) = φ(y)
∥φ(y)∥

2

.

1In some situations, keeping the visual embedding subnet fixed pro-

duces better performance. We conduct further discussions in Section 4.2.1.

The scoring subnet is implemented as a single fully con-

nected layer. The weights are initialized with the normal-

ized semantic vectors of both the source and the target class-

es: [ϕ∗(y1), ϕ
∗(y2), ..., ϕ

∗(yS+T )]. Unlike the visual em-

bedding subnet and the visual-semantic bridging subnet, the

weights of the scoring subnet are frozen and will not be up-

dated during the training phase. In this way, for a labeled

source image (xs
i , ysi ), our model is trained to project the

image xs
i to an embedding which has the most similar di-

rection with the semantic embedding ϕ(ysi ).
Note that though we don’t have the labeled data of target

classes, the target classes will also be involved in the train-

ing in our approach. Hence during the training phase, our

method produces S + T scores for a given image.

3.2.4 Classifier

After the scoring subnet, we apply a traditional (S + T )-

way softmax classifier to produce the predicted probability

vector for all the classes. The predicted class of the input

image is just the one with the highest probability.

3.3. Optimization of the QFSL Model

As described above, the architecture of our method is

like the conventional fully supervised classification mod-

el with a (S + T )-way classifier for both the target and

the source classes. Unfortunately, only the data for source

classes are labeled while the data from target classes is un-

labeled. In order to train the proposed model, we define a

Quasi-Fully Supervised Learning (QFSL) loss:

L =
1

Ns

Ns∑

i=1

Lp(x
s
i ) +

1

Nt

Nt∑

i=1

λLb(x
t
i) + γΩ(W ). (5)

It is known that the loss of conventional fully supervised

classification is usually composed by the classification loss

Lp and regulation loss Ω. Different from such conventional

definition, our proposed QFSL incorporates an additional

bias loss Lb to alleviate the bias towards source classes:

Lb(x
t
i) = − ln

∑

i∈Yt

pi, (6)

where pi is the predicted probability of class i. Given unla-

beled instances from the target classes, this loss encourages

our model to increase the sum of probabilities of being any

target class. And consequently the model will prevent the

instances of target classes from being mapped to the source

classes.

For the classification loss Lp, we adopt the entropy loss

in our method. For the regularization loss Ω, ℓ2-norm is

used for all the trainable parameters W = {Wθ,Wϕ}. λ

and γ are trade-off weights among different losses, and they

are set via cross-validation.
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During the training phase, all the labeled and unlabeled

data are mixed for training. Our model is optimized by

the stochastic gradient descent algorithm. Each batch of

training images is randomly drawn from the mixed dataset.

Although our method is straightforward without bells and

whistles, experiments show that it not only significantly al-

leviates the bias problem but also facilitates the building of

connections between visual and semantic embeddings.

4. Experiments

In this section, extensive experiments are carried out to

evaluate the performance of the proposed QFSL method.

Firstly, we introduce some basic experimental settings.

Then we discuss two implementation details of our method.

Finally, we compare our proposed QFSL with existing state-

of-the-art ZSL methods, in both the conventional and the

generalized settings.

4.1. Experimental Settings

Datasets Three datasets are considered: Animals with

Attributes 2 (AwA2) [41], Caltech-UCSD Birds-200-2011

(CUB) [39] and SUN Attribute Database (SUN) [26].

AwA2 is a coarse-grained dataset. It contains 37,322 im-

ages of 50 animals classes, in which 40 classes are used for

training and the rest 10 classes for testing. For each class,

there are about 750 labeled images. CUB is a fine-grained

dataset containing 11,788 images of 200 bird species. We

use 150 classes for training and the rest 50 for testing. In

this dataset, each class has about 60 labeled images. SUN is

another fine-grained dataset. There are 14,340 images com-

ing from 717 types of scenes, of which 645 types are used

for training, and the rest 72 for testing. Note that there are

only about 20 images for every class on SUN, which is rel-

atively scarce. In our experiments, we adopt either the stan-

dard train/test splits (SS) or the splits proposed (PS) in [41]

in some experiments for fair comparisons.

Class-level attributes are used in our experiments. For

AwA2, we use the provided continuous 85-dimension class-

level attributes [41]. For CUB, continuous 312-dimension

class-level attributes are provided in [39]. For SUN, there

are continuous 102-dimension attributes provided in [26].

Model Selection and Training Four popularly used

deep CNN models are involved in our following experi-

ments: AlexNet [17], GoogLeNet [37], VGG19 [35] and

ResNet101 [41]. They are all pre-trained on ImageNet [32]

with 1K classes. Among these models, GoogLeNet is one

of the most popular models used in the ZSL field, so we

adopt GoogLeNet when we make comparisons between our

and existing methods.

Unless otherwise specified, the learning rate is fixed to

be 0.001, and the minibatch size is 64. The scaling weight-

s of bias loss (λ) and weights decay (γ) are 1 and 0.0005,
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Figure 3. Comparisons between optimizing the visual embed-

ding subnet and keeping it fixed. Performance difference =

MCA(unfixed) − MCA(fixed).
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Figure 4. Performance difference with different number of training

images per class on AwA2.

respectively. The training process stops after 5,000 itera-

tions. These hyper-parameters are selected based on class-

wise cross validation [43, 4, 6].

Evaluation Metrics To compare the performances, we

adopt the Mean Class Accuracy (MCA) as the evaluation

metric in our experiments:

MCA =
1

|Y|

∑

y∈Y

accy, (7)

where accy is the top-1 accuracy on the test data from class

y. In the conventional settings, MCA on only the target test

data (MCAt) is considered (Y = Yt in Eqn. 7). In the gen-

eralized settings, the search space at evaluation time is not

restricted to the target classes, instead the the source class-

es are also included. Meanwhile, the test instances come

from not only the target dataset, but also the source dataset

(Y = Ys + Yt in Eqn. 7). Therefore, we adopt MCAt,

MCAs (MCA on the source test data) and their harmonic

mean (H) as the evaluation metrics:

H =
2 ∗MCAs ∗MCAt

MCAs +MCAt

. (8)

4.2. Implementation Discussions

4.2.1 Optimization of the Visual Embedding Subnet

Many existing ZSL methods adopt pre-trained deep Con-

vNets as the visual embedding function. Most of them keep

the trained CNN models fixed and do not optimize them

during the training phase. In contrast, in our method, the vi-

sual embedding subnet can be optimized together with oth-

er parts. In this experiment, we compare the performance
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Figure 5. Performance of QFSL with varying λ.

of our method between with and without the visual embed-

ding subnet fixed. All four models (AlexNet, GoogLeNet,

VGG19, and ResNet101) are adopted to implement our

methods. Experiments in the generalized settings are con-

ducted on CUB, AwA2 and SUN datasets. The results of

AlexNet and VGG19 are shown in Figure 3 (GoogLeNet

and ResNet101 produce similar results). It can be seen

that with the visual embedding subnet optimized, QFSL

achieves much better performance on CUB and AwA2 than

that with visual embedding function fixed. However, on

the SUN dataset, training the visual embedding subnet pro-

duces a worse performance. We speculate that the scarce

training data for source classes account for that. On AwA2

and CUB, there are about 750 and 60 training images for

each category, respectively. However, there are only 20 im-

ages for each category on SUN. To validate our specula-

tion, we conduct another experiment on the AwA2 dataset,

as there are much more images per class in this dataset. In

this experiment, our model is trained with different numbers

(denoted by n) of labeled source images per class. Results

are depicted in Figure 4. It can be concluded that with few-

er training images per class, training the visual embedding

subnet indeed leads to worse performance, which verifies

our speculation.

4.2.2 Classification Loss and Bias Loss

As aforementioned in Section 3.3, there are three compo-

nents in our loss function: the classification loss, the bias

loss, and the regularization loss. The classification loss is

used to build the connection between the visual embeddings

and the semantic embeddings, and the bias loss is designed

to alleviate the bias towards source classes. In this section,

we explore how the trade-off between the classification loss

and the bias loss impacts the performance of QFSL in the

generalized settings.

We test QFSL with several different λ values

{0.0, 0.5, 1.0, 2.0, 5.0, 10.0} on all the three datasets. In the

experiment, we adopt the AlexNet as the visual embedding

function. Figure 5 shows the results of QFSL with different

λ. Consistently, on all the three datasets, MCAs decreases

steadily as we increase λ. It is reasonable because putting

more attention to alleviating the bias will distract the model

from building the connection between image and semantic

Table 1. Comparisons in conventional settings (in %). For each

dataset, the best result is marked in bold font and the second best

in blue. We report results averaged over 5 random trails.
CUB SUN AwA2

Method SS PS SS PS SS PS

DAP [19] 37.5 40.0 38.9 39.9 58.7 46.1

CONSE [25] 36.7 34.3 44.2 38.8 67.9 44.5

SSE [43] 43.7 43.9 25.4 54.5 67.5 61.0

ALE [1] 53.2 54.9 59.1 58.1 80.3 62.5

§ DEVISE [9] 53.2 52.0 57.5 56.5 68.6 59.7

SJE [2] 55.3 53.9 57.1 53.7 69.5 61.9

ESZSL [31] 55.1 53.9 57.3 54.5 75.6 58.6

SYNC [4] 54.1 55.6 59.1 56.3 71.2 46.6

UDA [16] 39.5 – – – – –

£ TMV [10] 51.2 – 61.4 – – –

SMS [12] 59.2 – 60.5 – – –

QFSL− 58.5 58.8 58.9 56.2 72.6 63.5

↑10.5 ↑13.3 ↑0.3 ↑0.2 ↑4.5 ↑16.2

QFSL 69.7 72.1 61.7 58.3 84.8 79.7
§ : inductive ZSL methods.
£ : transductive ZSL methods.
↑ : performance boost compared with the best existing ZSL methods (including

the baseline QFSL−).

Alexnet GoogLeNet VGG19

46

54.1

61.4

81.2

57.1

69.1
72.6

84.8

57.9
61.2

71.3

84.1

M
C
A
t(
%
)

Architecture

QFSL−(CUB)

QFSL(CUB)

QFSL−(AwA2)

QFSL(AwA2)

Figure 6. Comparisons between QFSL− and QFSL on different

CNN architectures.

embeddings. For MCAt, the overall best results are ob-

tained when λ ∈ [0.5, 2]. Smaller λ (< 0.5) leaves the bias

problem unsolved. On the other side, larger λ (> 2) yields

negative effects on the building of the relationship between

image and semantic embeddings, thus decreasing MCAt in

return.

4.3. Comparisons in Conventional Settings

We firstly compare our method with existing state-of-

the-art ZSL methods in the conventional settings. The com-

pared methods include: 1) inductive methods DAP [19],

CONSE [25], SSE [43], ALE [1], DEVISE [9], SJE [2],

ESZSL [31], SYNC [4], and 2) transductive methods U-

DA [16], TMV [10] and SMS [12]. In addition to these ex-

isting ZSL methods, there exists a latent baseline: training

our proposed model with only labeled source data, i.e., the

inductive version of our model. In this case, QFSL loss de-

grades to conventional fully supervised classification loss.

We denote this baseline by QFSL− and also compare our

method with it.

Experiments are conducted on AwA2, CUB, and SUN.

We use both the standard split (SS) and the proposed split

(PS) [41] for more convincing results. The visual embed-

ding subnet is optimized for AwA2 and CUB, but fixed for

SUN. Table 1 shows the experimental results. It can be seen
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Table 2. Comparisons in the generalized settings (in %). Previously published results are given in normal font, and results of our implemen-

tations are given in italics font. For QFSLG and QFSLR, the visual embedding function is implemented with GoogLeNet and ResNet101,

respectively. For each dataset, the best result is marked in bold font and the second best in blue. We report results averaged over 5 random

trails (CMT∗: CMT with novelty detection).
AwA2 CUB SUN

Method MCAs MCAt H MCAs MCAt H MCAs MCAt H

DAP [19] 84.7 0.0 0.0 67.9 1.7 3.3 25.1 4.2 7.2

CONSE [25] 90.6 0.5 1.0 72.2 1.6 3.1 39.9 6.8 11.6

SSE [43] 82.5 8.1 14.8 46.9 8.5 14.4 36.4 2.1 4.0

† ALE [1] 81.8 14.0 23.9 62.8 23.7 34.4 33.1 21.8 26.3

DEVISE [9] 74.7 17.1 27.8 53.0 23.8 32.8 30.5 14.7 19.8

SJE [2] 73.9 8.0 14.4 59.2 23.5 33.6 30.5 14.7 19.8

ESZSL [31] 77.8 5.9 11.0 63.8 12.6 21.0 27.9 11.0 15.8

SYNC [4] 90.5 10.0 18.0 70.9 11.5 19.8 43.3 7.9 13.4

CMT [36] 90.0 0.5 1.0 49.8 7.2 12.6 21.8 8.1 11.8

CMT∗ [36] 89.0 8.7 15.9 60.1 4.7 8.7 28.0 8.7 13.3

‡ CS [6] 77.6 45.3 57.2 49.4 48.1 48.7 22.0 44.9 29.5

baseline 72.8 52.1 60.7 48.1 33.3 39.4 18.5 30.9 23.1

QFSLG 92.4↑1.8 64.3↑12.2 75.8↑15.1 74.2↑2.0 71.6
↑23.5 72.9↑24.2 33.6↓6.3

54.8
↑9.9

41.7
↑12.2

‡ QFSLR
93.1

↑2.5
66.2

↑14.1
77.4

↑16.7
74.9

↑2.7 71.5↑23.4 73.2
↑24.5 31.2↓8.7 51.3↑6.4 38.8↑9.3

† : ZSL methods which do not takes generalized settings into consideration.
‡ : ZSL methods which takes generalized settings into consideration.
↑ : Performance boost compared with the best existing ZSL methods (including the baseline).
↓ : Performance drop compared with the best existing ZSL methods (including the baseline).

that 1) the baseline of our method (QFSL−) yields compa-

rable performance with existing ZSL methods, and 2) the

proposed method outperforms the baseline and existing ap-

proaches on all datasets. Notably, on CUB and AwA2, our

method outperforms other state-of-the-art ZSL methods (in-

cluding QFSL−) by a large margin of 4.5 ∼ 16.2%. The

experimental results indicate that our approach effectively

utilizes the valuable information contained in the unlabeled

target data to facilitate the building of connections between

the visual and the semantic embeddings.

To further verify that our method is not only effective

to a specific CNN model, we implement our method with

AlexNet, GoogleNet, and VGG respectively. In this ex-

periment, as QFSL− is shown to achieve comparable per-

formance with other ZSL methods in Table 1, we compare

our method only with QFSL−. The comparison result is

provided in Figure 6. It can be noticed that our method

outperforms the baseline consistently on all the three CNN

models, which validates the effectiveness of our method.

4.4. Comparisons in Generalized Settings

Our method is designed to alleviate the strong bias prob-

lem. Therefore, we verify its effectiveness in the general-

ized settings, in which the strong bias problem often leads

to poor performance. Before evaluating the performance

of our method, there remains one issue to address. When

evaluating the performance in the test phase, most of the

existing transductive ZSL methods use the same target data

used in the training phase. However, if our method adopts

the same policy, it will be problematic because our method

has already used the supervisory information that the unla-

beled data are coming from the target classes. To solve this

problem, we split the unlabeled target data into two halves

and train two QFSL models. One half of the unlabeled data

is used for training and the other one for testing when train-

ing our first model, and vice versa when training our second

model. The final performance of our method is the average

performance of these two models. To our knowledge, this is

the first study on applying the transductive method to solve

the ZSL problem in generalized settings.

We compare our method with several state-of-the-art ZS-

L methods [19, 25, 43, 1, 9, 2, 31, 4]. However, these meth-

ods do not take the generalized settings into consideration.

In addition to these methods, we also compare our meth-

ods with two other ZSL methods Calibrated Stacking (C-

S) [6] and Cross Model Transfer (CMT) [36], which take

the generalized settings into consideration. CS maximizes

the performance in the generalized settings by trading of-

f between MCAs and MCAt. CMT first utilizes novelty

detection methods [36] to differentiate between source and

target classes and then accordingly applies the correspond-

ing classifiers. As our method utilizes the unlabeled target

data, we introduce another baseline (called baseline here)

for a clearer comparison. The baseline trains a deep binary

classifier (GoogLeNet) on the available source data and un-

labeled target data to discriminate between the source and

the target data, then classifies the test instances in the corre-

sponding search space.

The original data split and other experimental settings

are kept the same as that used in [41], where the visual em-

bedding function is implemented with ResNet101. For a

fair comparison, we also adopt ResNet101 to implement the

visual embedding function (denoted by QFSLR). In addi-

tion, as GoogLeNet is widely used in ZSL, the performance

of our method with GoogLeNet is also provided (denoted

by QFSLG). Experimental results are given in Table 2. It
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can be seen that generally our method improves the over-

all performance (harmonic mean H) by an obvious mar-

gin (9.3 ∼ 24.5% on the three datasets). The performance

boost mainly comes from the improvement of mean class

accuracy on the target classes (MCAt), meanwhile with-

out much performance drop on the source classes (MCAs).

These compelling results verify that our method can signif-

icantly alleviate the strong bias towards source classes by

using the unlabeled instances from the target classes.

Another noticeable result from Table 2 is that the results

of QFSLR are generally better that of QFSLG on CUB and

AwA2 datasets. However, on SUN, QFSLG achieves better

performance. We observe the fact that only scarce (about

20) training images are available for each source category in

the SUN dataset accounts for that. Using such scarce data

to train deep CNN models like ResNet101 usually leads to

over-fitted models.

5. Further Study and Discussions

In real-world scenarios, the number of the target class-

es usually greatly surpasses that of source ones. However,

most datasets for ZSL benchmark violate that. For exam-

ples, for AwA2, only 10 of 50 classes are treated as target

ones. On CUB, only 50 out of 150 classes are used as the

target. More severely, on the SUN dataset, only 72 out of

717 classes are put into the target classes. In this section,

we empirically study how the imbalance between the source

and the target classes affects the proposed QFSL method.

Experiments are conducted on the SUN dataset, as

there are much more classes in it. The visual embed-

ding function is implemented with GoogLeNet. We adop-

t the standard split used by the most of other works.

72 classes are treated as the target categories. For the

source categories, we randomly select seven subsets from

the rest categories. The number of source categories is

{100, 200, 300, 450, 550, 600, 645}. We use these 7 differ-

ent source data and the fixed target data to test out method.

For a better understanding of our method, we also depict

the performance of the baseline QFSL−, in which only the

labeled source data are available.

Results in generalized settings are demonstrated in Fig-

ure 7. On the one hand, as the number of source classes in-

creases, the classification task of source data becomes more

difficult, which results in the performance drop in MCAs.

On the other hand, the increasing source classes provide

more knowledge to build the mapping between the visual

and the semantic embeddings, which results in the perfor-

mance boost in terms of MCAt.

Note that albeit with taking additional consideration of

addressing the bias problem, our proposed method pro-

duces a comparable performance with the baseline QFSL−

in MCAs. Furthermore, with more imbalanced source and

target classes, the new test instances from target classes are

100 200 300 450 550 600 646
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35
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65
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Figure 7. Performance of QFSL with different numbers of source

classes on SUN.

more likely to be classified into source classes (i.e., the bias

problem is more severe). Because our method alleviates

the bias problem, it yields much better performance in this

case. Consequently, as the number of source classes in-

creases (i.e., the imbalance ratio between source and target

classes becomes larger), the superiority of our method over

the baseline QFSL− becomes larger.

6. Conclusions and Future Work

In this work, we have proposed a straightforward yet

effective method to learn the unbiased embedding for ZS-

L. This method assumes both the labeled source data and

the unlabeled target data are available at the training time.

On the one hand, the labeled source data are projected to

the points specified by the source classes in the semantic

space, which builds the relationship between the visual em-

beddings and the semantic embeddings. On the other hand,

the unlabeled target data are forced to be projected to other

points specified by the target classes, which alleviates the

bias towards source classes significantly. Various experi-

ments conducted on different benchmarks demonstrate that

our method outperforms other state-of-the-art ZSL methods

by a large margin in both the conventional and the general-

ized settings.

There are many different research lines which are worthy

of further study following this work. For example, in this

work, semantically meaningful attributes are adopted as the

semantic space. In our future work, we will exploit other

semantic space such as word vectors. Another example is

that this work addresses the bias problem by transductive

learning, in our future work we will consider solving the

same problem following the way of inductive learning.
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